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ABSTRACT

A new algorithm for the generation of word graphs in a cross-word
decoder that uses long span m-gram language models is presented.
The generation of word hypotheses within the graph relies on the
word m-tuple-based boundary optimization. The graphs contain
the full word history knowledge information since the graph struc-
ture reflects all LM constraints used during the search. This re-
sults in better word boundaries and in enhanced capabilities to
prune the graphs. Futhermore the memory costs for expanding
the m-gram constrained word graphs to apply very long span LMs
(e.g. ten-grams that are constructed by log linear LM combination)
are considerably reduced. Experiments for lattice generation and
rescoring have been carried out on the SK-word WSJ task and the
64K-word NAB task.

1. INTRODUCTION

Word graphs are used in speech recognition systems to represent
the most probable recognition hypotheses in a compact way. Hy-
potheses in a graph, which is commonly generated by using com-
putationally cheaper models, can be rescored by the application of
more expensive knowledge sources, e.g. long span language mod-
els or natural language understanding models [6, 7].

In the bigram language model (LM) decoding framework [7,
1] the word-pair approximation [9] for the dependence of the word
boundaries plays an important role for constructing word graphs.
The boundary assumption implicitly results from the dynamic pro-
gramming (DP) search strategy that is conditioned on the prede-
cessor word. Such boundary optimization generates each word-
pair at most once at any ending time and thus keeps the graph
relatively size small by avoiding redundant sentence hypotheses.

An alternative way to construct word graphs is based on
the DP recombination of time-conditioned hypotheses [6, 8]. By
construction, this method does not rely on the word-pair approx-
imation. In general, the time-conditioned method produces very
large word graphs with many redundant hypotheses. Hence, these
graphs have to be reduced in a subsequent step by an explicit
boundary optimization on the word level.

In the newest time-synchronous beam search decoders [5, 2]
long span context dependent models like cross-word HMMs and
m-gram (m > 2) LMs are integrated. As shown in the follow-
ing sections, using these enhanced knowledge sources leads to the
generation of improved word graphs that are based on an extended
word m-tuple boundary assumption. In addition, the structural
graph constraints allow an efficient expansion of word graphs to
further apply very long span history dependent knowledge sources
like ten-gram LMs.

2. DECODING

The generation of word graphs is integrated in a time-synchronous
one-pass DP-decoder [2] that uses cross-word HMMs and m-gram
LMs. The DP works on partial hypotheses that are conditioned on
their (m — 1)-word predecessor history according to the LM m-
gram order. The word lexicon is organized as a reentrant phonetic
prefix tree. The following definitions are introduced to describe
the word graph generation:

W : an N word sequence W = (wi,...,wn).

Sm (W) : the m-gram LM-state of a sequence W is given by the
(m—1) most recent words Sy (W) = (WN—m42,- - -, WN)-

h(w;T,t) : probability p(X%,;|w) that word w produces the
acoustic vectors X%, = z(7 + 1),...,z(t).

G(W3; t) : joint probability p(X4|W) - P(W) of generating the
acoustics X* and a word sequence W with ending time .

H(Sm;t) : joint probability of generating the acoustics X% and
a word sequence with the final (m — 1) words given by Sy,
at ending time ¢.

As shown in [4] the definition of the m-gram state Sy, (W)
must be augmented by the phonetic fan-out context of W for de-
coding and generation of word graphs with cross-word acoustic
models.

2.1. Recombination of partial search hypotheses

The DP optimization in the decoder is conditioned on the partial
hypotheses” (m — 1) word history S,,. When the search reaches
the leaf for word w in the lexicon tree this results in an exten-
sion of the preceding partial hypothesis W to the new hypothesis
W = (W, w). Within the lexical tree, the DP recombination is
applied to all preceding hypotheses being in an identical m-gram
state Sy (W) but having entered the tree at different starting times
7. Using the m-gram P(w|Sm(W)), the following optimization
generates the probability for the new partial hypothesis w ending
at time ¢:

G(W:t) = P(w|Sm(W)) - max{H (Sm(W);7) - h(w:T,1)}

M

The optimal tree starting time (boundary between W and w)

Topt 18 given implicitly by the optimization in Eq. 1, and the bound-

ary only depends on the ending time ¢ and the 1 most recent words
in W, hence Topt = 7(Sm+1(W); ).



3. WORD GRAPH ALGORITHM

The word graph to be generated consists of edges corresponding to
word hypotheses w containing this word’s acoustic and LM scores.
The graph edges connect nodes which are associated with the word
boundary times and the local hypotheses’ m-gram states: all par-
tial paths ending in the same graph node have an identical (m—1)
word history (for cross-word models the history is extended by the
phonetic fan-out context [4]).

3.1. Word graph generation

The following algorithm constructs a m-gram constrained word
graph using the hypotheses information provided by the decoder:

1. Ateach time ¢, consider all word m-tuples within the beam:
(uy...,v,w)
——

m words

By Eq. 1, at time ¢ each word m-tuple is generated by the
decoder at most once.

2. For each (u,...,v,w;t) keep track of the word boundary
7(u,...,v,w;t) provided by Eq. 1.

3. Create a graph edge that contains:

e the current word w
e the word acoustic score h(w; 7(u, . . . ,v,w;t), t)
e the word m-gram LM-score P(w|u,...,v

4. For each individual pair of time and m-gram LM-state
(t; Sm(u, ..., v,w)) create a graph node.

5. Link the graph edge of (u, ..., v, w;t) with

e the start node (7(u, ..., v, w;t); Sm(u,...,v))
e the end node (¢; Sm (u,. .., v, w)

6. Path management:
The beam pruning strategy and hypothesis recombination
prevent hypotheses from being further expanded in the DP.
Unexpanded hypotheses can cause dead paths in the word
graph that do not reach the final graph node. A garbage col-
lection removes dead partial paths to reduce memory con-
sumption, at regular intervals.

3.2. Word graph properties

In step 5 of the word graph algorithm all partial hypothesis paths at
the same ending time being in the same m-gram-state are merged
into a single node before the DP recombination is applied in the
decoder. When the best path through this node is extended in one
of the subsequent steps of the algorithm, the dependence of the
boundary time associated with this node is confined to the identity
of the m most recent words as given by step 2. Hence, for all
partial sentences ending at time ¢ in the graph and sharing the same
m recent words an identical word boundary 7 is assumed.

Such word m-tuple assumption for the word boundary can be
regarded as an extension of the word-pair approximation in [9].
Although the use of the word-pair approximation may be ques-
tionable for short words [8] it works satisfactory in most cases [1].
With the increasing m-gram order used in the word graph con-
struction algorithm the boundary is further improved due to the
extended context length taken into account in Eq. 1.

In Fig. 1 examples of search hypotheses and the corresponding
word graphs in a bigram and a trigram decoder are shown. Using

longer span LMs (here: trigram vs. bigram) delays the recombina-
tion and more LM-states will occur, in general. In the correspond-
ing word graph this leads to the generation of more nodes and to
lower branching factors (assuming an equal number of word hy-
potheses). When a partial hypothesis is not further expanded due
to recombination or pruning (see Fig. 1) the resulting dead path
will be typically longer for the trigram graph because of the lower
branching factor. So, the final trigram word graph contains fewer
edges and has smaller branching factors compared to the bigram
graph.
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v
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Figure 1: Generation of m-gram constraint word graphs using bi-
gram (m = 2) and a trigram (m = 3) decoding.

4. LONG SPAN HISTORY WORD GRAPH EXPANSION
To rescore the hypotheses within the graph using longer span his-
tory conditioned models (e.g. n-gram LMs, n > m) the m-gram
graph structure has to be expanded according to the new context
length. Typically the resulting graph size is increased exponen-
tialy with (n — m). Thus, the incorpation of long span condi-
tioned models (i.e. larger m) in the word graph construction can
reduce the costs for expanding the graph considerably. Further-
more, when the goal is to find the top-best hypothesis given the
new long span LM the graph expansion can be performed localy
at each DP optimization step [1].

4.1, Construction of long range language models

Backing-off is unsuitable for very long-range LMs. Techniques
combining language models of different range and type perform
much better. Log-linear interpolation [3] can be viewed as a sim-
plified version of maximum-entropy models and is defined by

plwlh) = 5o [ mtwiny™ @

where p; are the different components to be combined and Z) (h)
is the normalization, which is however ignored in recognition.



In this paper log-linear interpolation is used for 6-gram and
10-gram LMs. For the 10-gram we have the specialized structure
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where ho is the word immediately preceding w and all older words
of the history have negative indexes. The 6-gram has the same
structure but the last four terms of the products are skipped.

The components are:

e ps(w|h): A standard backing-off five-gram smoothed addition-
ally by linear interpolation with a class-five-gram. The count-
trees of both models are pruned and the relative size is adjusted
to optimize perplexity. The exponent is A5 = 0.85.

o pi(w|h—;): Distance-i-bigrams where intermediate words in
the history are removed, e.g. a distance-1-bigram ignores ho
and instead goes one word further in the history. A distance-
8-gram adds 10-gram information to the combined model. For
distances up to four individual count-trees are used. The distance-
S-bigrams to distance-8-bigrams share a count-tree. All distance-
bigrams are a linear interpolation of word and class models.
The weight of the distance-8-bigram is A5 = 0.23.

e p(w): A unigram is needed to cancel out the unigram informa-
tion always present in a distance-bigram.

e pl(wlhoh—;—1): Distance-j-trigrams. It is a bigram extended
by an additional older word h—; 1 from the history. All distance-
trigram access the same tied count-tree.. The weight of the
distance-8-bigram is A5 = 0.19.

e p(w|ho): A bigram that cancels out irrelevant parts of the distance-

trigrams.

Tab. 1 gives the perplexities. Note the decreasing perplexity
gains from 3-gram to 6-gram and from 6-gram to 10-gram, but the
total improvement of the 10-gram compared to the trigram is still
28%.

LM-Range 2 3 4 6 10
PP 112.7 | 60.4 | 50.4 | 45.4 | 43.3

Table 1: Perplexities for an increasing language model range.

5. EXPERIMENTAL RESULTS

The recognition system uses gender-dependent triphone HMMs
trained on the WSJO+1 database. Results are presented for a SK
and for a 64K vocabulary task. The SK task consists of the male
speakers of the Nov’92 and Nov’93 evaluation and development
sets (776 sentences, 13113 spoken words, OOV: 0.16%). The 64K
task consists of the female speakers in the Nov’94 development
and evaluation sets of the North American Business (NAB) corpus
(315 sentences, 7770 spoken words, OOV: 0.73%). In all experi-
ments wide beam widths are used in the search to generate large
word graphs.

The acoustic search space is specified by the following quanti-
ties: the average number of word end hypotheses and of LM-states
per time frame. Word end hypotheses are the potential edges in the

graph; the potential nodes in the graph are derived from the LM-
states. Word error rates (WER) are given for first-pass decoding
and for LM-rescoring experiments.

To specify the properties of the generated graphs the following
quantities are given [4]: average word graph density (WGD), word
graph branching factor (BF), and graph word error rate (GER) of
matching the spoken sentence.

5.1. Word graph generation

The generation of word graphs using various kinds of acoustic
models and LMs is illustrated in the left hand parts of Tab. 2
for the 5K task and of Tab. 3 for the 64K task. The number
of word end hypotheses and of different LM-states in the search
space increases when moving to longer span LMs and to cross-
word HMMs caused by the extended context dependencies. The
top-best WER of the search is improved due to the better know-
ledge sources. For longer m-gram contexts a decrease of the BF in
the word graphs can be observed that directly corresponds to the
decreasing ratio between the number of word ends and LM-states.
Although the decoder generates more word-ends for longer span
context models, the sizes (WGD) of the resulting m-gram word
graphs are significantly smaller. As explained in Sec. 3.2, this ap-
parently paradoxical situation can be attributed to the increasing
average length of dead paths in addition to the stronger pruning
using more detailed knowledge sources. Hence, the size of the m-
gram graphs is reduced by the hypotheses with small probabilities
with increasing m-gram order. With the lower graph density and
the smaller branching factor, the total number of sentence hypothe-
ses contained in the graph is reduced which increases the graph
word error rate (GER) in spite of improved top-best WER.

5.2. Word graph pruning

To control the final word graph size, forward-backard (FB) prun-
ing [5] with different beam width settings (see first column Tab. 2
and 3) is applied. This method efficiently makes use of all acoustic
and LM knowledge sources contained in the m-gram word graphs
and pruning is based on Thus, the most probable hypotheses are al-
ways kept within the pruned graphs. FB-pruning clearly takes ad-
vantage from the improved long span context knowledge sources
in the higher order m-gram graphs: after pruning down the word
graphs to comparable sizes, the GER is improved for the longer
span LM and cross-word graphs. This effect becomes more signif-
icant for smaller target sizes of the graphs.

5.3. Rescoring with longer span language models

On the right hand parts of Tab. 2 and 3 rescoring results are shown
for applying n = 4,6, 10-gram LMs to the WSJ m-gram word
graphs and n = 3-gram LM to the NAB m-gram graphs. Signifi-
cant performance improvements can still be observed when mov-
ing from long span history dependent models used in the decoder
to very long span LMs for rescoring. The rescoring WERSs on
the original unpruned graphs (top line in each box) are not sen-
sitive to the m-gram order of the graphs. This indicates that the
relevant top-best rescoring sentence hypotheses are contained in
almost all m-gram graphs. Furthermore the influence of the word
boundaries in the m-gram graphs that are optimized according to
the m-tuple approximation on the performance is small. Only
for the WSJ within-word bigram constraint word graph in some
cases small degradations may be attributed to non-optimal bound-
aries; any context-conditioned boundary optimization beyond the
word-pair approximation results in the optimal rescoring WER.
The rescoring WERSs on the FB-pruned word graphs demonstrate



FB word graph properties
beam | WGD | BF | GER n=4 | n=6

n-gram rescoring WER
| n=10

2-gram word graph (m=2), within-word HMM
search: word ends: 291, LM-states: 61, WER: 8.14%

- 4635.7 | 9.10 | 0.29% || 5.27% | 4.96% | 4.82%
150k 146.7 | 3.03 | 0.43% || 5.27% | 4.96% | 4.82%
100k 36.5 239 | 0.78% || 5.27% | 4.99% | 4.89%
50k 10.2 1.85 | 2.04% || 5.34% | 5.12% | 5.00%
20k 4.0 147 | 4.74% || 6.22% | 6.13% | 6.05%

3-gram word graph (m=3), within-word HMM
search: word ends: 397, LM-states: 206, WER: 5.85%

- 1900.2 | 3.81 | 0.40% | 5.23% | 4.96% | 4.77%
150k 138.6 | 2.33 | 0.50% || 5.23% | 4.96% | 4.79%
100k 39.2 2.05 | 0.79% || 5.25% | 4.96% | 4.79%
50k 10.7 1.75 | 1.98% || 5.22% | 4.91% | 4.79%
20k 4.1 145 | 3.65% || 5.33% | 4.85% | 4.94%

4-gram word graph (m=4), within-word HMM
search: word ends: 294, LM-states: 214, WER: 5.23%

- 3015 | 2.84 | 0.75% || 5.23% | 4.96% | 4.77%
150k 1175 | 2.24 | 0.78% || 5.23% | 4.96% | 4.77%
100k 50.5 1.96 | 0.91% || 5.23% | 4.96% | 4.77%
50k 12.5 1.71 | 1.77% || 5.23% | 4.91% | 4.71%
20k 4.4 1.43 | 3.25% || 5.23% | 4.85% | 4.70%

2-gram word graph (m=2), cross-word HMM
search: word ends: 1354, LM-states: 625, WER: 6.85%

- 707.5 | 490 | 0.72% || 4.64% | 4.42% | 4.34%
150k 79.4 2.54 | 0.75% || 4.64% | 4.43% | 4.34%
100k 28.9 2.16 | 1.06% || 4.64% | 4.46% | 4.34%
50k 9.2 1.77 | 2.08% || 4.73% | 4.55% | 4.46%
20k 3.6 1.41 | 4.00% || 5.27% | 5.22% | 5.20%

3-gram word graph (m=3), cross-word HMM
search: word ends: 1459, LM-states: 952, WER: 5.08%

- 2312 | 3.00 | 1.08% || 4.84% | 4.48% | 4.36%
150k 59.6 223 | 1.09% || 4.84% | 4.48% | 4.36%
100k 26.9 1.99 | 1.27% || 4.84% | 4.48% | 4.36%
50k 9.4 1.71 | 2.08% || 4.84% | 4.52% | 4.42%
20k 3.6 1.40 | 3.46% || 4.79% | 4.61% | 4.53%

Table 2: SK WSJ task: properties of m-gram constrained word
graphs and rescoring results for n-gram LMs.

that the graph sizes can be considerably reduced (down to a WGD
of 30) without any degradations on the n-gram rescoring perfor-
mance. When the word graph sizes are further reduced, there is
a clear advantage for rescoring on longer range context depen-
dent graphs: due to the improved pruning properties the degrada-
tion of rescoring WER becomes smaller when increasing the word
graph context constraint order. This indicates that the best n-gram
rescoring hypotheses obtained from the heavily pruned higher or-
der word graphs are not contained in the lower order graphs of
comparable size.

6. CONCLUSION
An extended method for generating word graphs using long span
LMs and cross-word HMMs has been described. The advantages
for using higher order context conditioned word graphs are: i) bet-
ter modeling of word boundaries due to an extended word m-tuple
boundary optimization; ii) improved pruning of word graphs by

rescoring WER
trigram (n=3)

FB word graph properties
beam | WGD | BF | GER
2-gram word graph (m=2), within-word HMM
word ends: 311, LM-states: 100, WER: 12.54%

- 1896.8 | 9.20 | 1.62% 9.47%
150k 1934 | 3.61 | 1.70% 9.47%
100k 53.4 2.64 | 2.19% 9.49%
50k 12.1 1.94 | 4.12% 9.63%
20k 4.3 1.56 | 7.66% 10.32%

3-gram word graph (m=3), within-word HMM
word ends: 497, LM-states: 299, WER: 9.47%

- 712.5 | 3.90 | 2.02% 9.47%
150k 176.1 | 2.64 | 2.11% 9.47%
100k 60.3 2.19 | 2.29% 9.47%
50k 135 1.82 | 3.60% 9.47%
20k 4.6 1.49 | 5.88% 9.47%

Table 3: 64K NAB task: properties of m-gram constrained word
graphs and rescoring results for trigram LM.

exploiting the more detailed knowledge sources; iii) smaller costs
for graph expansion since higher order context constraints are en-
coded in the word graph structure. Evaluations on LVCSR tasks
show that rescoring of m-gram graph using very long span LMs
leads to useful WER improvements. An apparent disadvantage of
using long range context dependent word graphs is that the number
of hypotheses contained in the graphs is reduced. This has, how-
ever extremely small influence on the rescoring performance. The
minor influence may be also attributed to relatively similar LMs
(2-gram to 10-gram trained on the same data) used here, that ex-
ploit similar top best hypotheses in the graphs; the situation may
change when applying knowlege sources that are different in na-
ture, e.g. related to speech understanding.
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