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ABSTRACT 

This paper proposes a new adaptive filtering algorithm called the 
Huber Prior Error-Feedback Least Squares Lattice (H-PEF-LSL) 
algorithm for robust adaptive filtering in impulse noise 
environment. It minimizes a modified Huber M-estimator based 
cost function, instead of the least squares cost function. In 
addition, the simple modified Huber M-estimate cost function 
also allows us to perform the time and order recursive updates in 
the conventional PEF-LSL algorithm so that the complexity can 
be significantly reduced to ( )O M , where M  is the length of the 
adaptive filter. The new algorithm can also be viewed as an 
efficient implementation of the recursive least M-estimate (RLM) 
algorithm recently proposed by the authors [1], which has a 
complexity of )( 2MO . Simulation results show that the proposed 
H-PEF-LSL algorithm is more robust than the conventional PEF-
LSL algorithm in suppressing the adverse influence of the 
impulses at the input and desired signals with small additional 
computational cost. 

1. INTRODUCTION 

Impulsive interference, which results from nature or man-made 
electromagnetic waves, can significantly degrade the performance 
of linear adaptive filters. Nonlinear techniques are usually 
employed to suppress such adverse effects. For example, the 
median filtering has been applied to the LMS and the RLS 
algorithms to protect the filter weights from the effects of 
impulsive interference, giving rise to the order statistic least mean 
square (OSLMS) [2] and the order statistic fast Kalman filtering 
(OSFKF) algorithms [3]. While the adaptive threshold nonlinear 
(ATNA) [4] algorithm uses the clipping function to limit the 
transient fluctuation of the estimation error on filter coefficients 
in the LMS algorithm. Recently, the authors have proposed a new 
family of adaptive filters for robust adaptive filtering in impulse 
noise environment based on the concept of robust statistics [1, 5, 
6]. Instead of minimizing the conventional mean squares error 
(MSE) or the least squares (LS) cost functions, the robust M-
estimators based cost functions, which are more robust to impulse 
noise, were minimized. In particular, a recursive least M-estimate 
(RLM) [1], a least mean M-estimate (LMM) [5] and a robust 
gradient adaptive lattice - normalized LMS (RGAL-NLMS) [6] 
algorithms were developed to suppress the impulsive interference 
in the input or the desired signals. Simulation results showed that 
the RLM, LMM and RGAL-NLMS algorithms offer improved 
robustness to impulses in the desired and input signals over the 
conventional recursive least square (RLS), LMS and GAL-NLMS 
algorithms, respectively. 

Although the recursive least squares (RLS) algorithm provides 
fast initial convergence rate and low steady state error as 
compared to the least mean squares (LMS) family [7, 8], research 
results indicated that it is more sensitive to quantization errors. In 
fact, it is numerical unstable if implemented in fixed point with 
less than 24-bit accuracy. Extensive research was devoted to this 
stability problem and the development of fast RLS algorithm with 

( )O M  complexity, where M  is the length of the transversal 
filter. One attractive class of the fast algorithms is the RLS lattice 
(RLSL) algorithm [7, 8]. They not only provide the exact LS 
solution, but also possess many distinctive properties such as low 
computational complexity, modular implementation, and better 
numerical stability than the conventional RLS algorithm [8]. 
Therefore, the RLSL algorithms have found many applications in 
speech signal processing and acoustic echo cancellation (AEC) 
where good convergence performance, numerical stability, and 
high computational complexity are the main concerns [9, 10]. 

In this paper, we generalize the robust statistic approach to the 
prior error feedback LSL (PEF-LSL) algorithm. In particular, a 
Huber PEF-LSL (H-PEF-LSL) algorithm is derived by 
minimizing the modified Huber M-estimate function. Simulation 
results show that the proposed H-PEF-LSL algorithm offers 
improved robustness over the conventional PEF-LSL algorithm 
in suppressing the adverse influence of the impulses both in the 
input and desired signals with small additional computational 
cost.  

The paper is organized as follows: the formulation of the PEF-
LSL algorithm is given in Section 2. The Huber PEF-LSL 
algorithm is introduced in Section 3. Simulation result and 
comparison with other algorithms are described in Section 4. 
Finally, conclusions are drawn in Section 5. 

2. FORMULATION OF THE PRIOR ERROR 
FEEDBACK LSL ALGORITHM 

The transversal RLS and the PEF-LSL algorithms are 
mathematically identical. Both of them are developed to obtain 
the optimal solution of the following exponentially weighted least 
squares error cost function [8] 
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where ˆ( ) ( ) ( 1) ( )Te n d n n n= − −w X  is called the prior estimation 

error. ( ) [ ( ), , ( 1)]Tn x n x n M= − +X " , ( )d n  and ˆ ( )nw  are the input 
vector, desired signal and coefficient vector of the transversal 
filter, respectively. The superscript T , M  and 0 1λ< ≤  denote 
respectively the transpose operator, order of the adaptive filter 
and the forgetting factor. The optimal LS solution ˆ ( )nw  of (1) is 
governed by the following normal equation: 

 ˆ( ) ( ) ( )n n n=R w P  or 1ˆ ( ) ( ) ( )n n n−=w R P , (2) 

where 
1

( ) ( ) ( ) ( 1) ( ) ( )
n n i T T

i
n i i n n nλ λ−

=
= = − +∑R X X R X X , 

     
1

( ) ( ) ( ) ( 1) ( ) ( )
n n i

i
n d i i n d n nλ λ−

=
= = − +∑P X P X , (3) 

are the autocorrelation matrix of ( )nX , and the cross-correlation 
vector between ( )nX  and ( )d n . Direct inversion of )(nR  in (2) 

will require 3( )O M arithmetic operations. For the transversal RLS 

algorithm, the arithmetic complexity is reduced to 2( )O M since 
the time recursive property of ( )nR  in (3) is used. The lattice 
structure based LSL-type algorithms explore both the time 
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recursive and order recursive properties of ( )nR , and its 
complexity is further reduced to ( )O M .  

Fig. 1 shows the structure of an adaptive lattice ladder filter 

(ALLF). Signals ( )x n , ˆ( )d n  and ( )d n  are the input, output and 
desired signals of the ALLF, respectively, where n  denotes the 
time index. It is assumed that the noise-free desired signal 0( )d n  

and the input are corrupted by statistically independent additive 
interference ( )d nη  and ( )s nη , respectively. The PEF-LSL 

algorithm is summarized as follows [8]: 

Lattice prediction part ( 1, ,m M= " ): 

 1 1( ) ( ) ( 1) ( 1)f
m m m mf n f n k n b n− −= + − − , (4) 

 1 1( ) ( 1) ( 1) ( )b
m m m mb n b n k n f n− −= − + −  ( m =1 to 1M + ), (5) 

where ,
ˆ( ) ( ) ( )m m LSf n x n x n= − and ,

ˆ( ) ( ) ( )m m LSb n x n M x n M= − − −  

are respectively the m stage forward and backward prediction 
errors; ( )f

mk n  and ( )b
mk n  are respectively the stage m forward and 

backward reflection coefficients, which are updated at each 
iteration as 

 1 1 1( ) ( 1) ( 1) ( 1) ( ) / ( 1)f f b
m m m m m mk n k n n b n f n E nγ − − −= − − − − − , (6) 

 1 1 1( ) ( 1) ( 1) ( ) ( ) / ( )b b f
m m m m m mk n k n n f n b n E nγ − − −= − − − , (7) 

where 2 2
1 1 1 1( 1) ( 1) ( 1) ( 1) / ( 1)b

m m m m mn n n b n E nγ γ γ− − − −− = − − − − − , 
2

1 1 1 1( ) ( 1) ( 1) ( )f f
m m m mE n E n n f nλ γ− − − −= − + −  and 

2
1 1 1 1( 1) ( 2) ( 1) ( 1)b b

m m m mE n E n n b nλ γ− − − −− = − + − −  are respectively the 

convention factor (or the maximum likelihood variable), the 
forward and backward time averaged prediction error energies. 

LS filtering part ( 1, , 1m M= +" ): 

 1 1 1( 1) ( 1) ( 2) ( 1)m m m me n e n w n b n− − −− = − − − − , (8) 

1 1 1 1 1( 1) ( 2) ( 1) ( 1) ( 1) / ( 1)b
m m m m m mw n w n n b n e n E nγ− − − − −− = − + − − − − ,(9) 

 1 1 1( ) ( ) ( 1) ( )m m m me n e n w n b n− − −= − − , (10) 

where ( )me n  and ( )mw n  are respectively the m  stage prior 

estimation error and the ladder coefficient at time instant n . The 
PEF-LSL algorithm has the following important properties: (1) 
the lattice predictors perform the Gram-Schmidt 
orthogonalization of the input data with very good numerical 
property [11]; (2) the direct update of the forward and backward 
coefficients in (6) and (7) also leads to better numerical behavior 
of this algorithm [8]; (3) the backward prediction errors ( )mb n ’s 

( 1, 1m M= +" ) at different stages are uncorrelated and 
orthogonal to the space spanned by the input vector 

( ) [ ( ), , ( 1)]T
m n x n x n m= − +X " . 

From the above formulations, it can be seen that if ( )x n  and/or 
( )d n  are corrupted by additive impulsive noise, then ( )nR  

and/or ( )nP  in (3) and hence ˆ ( )nw in (2) will exhibit momentary 
fluctuation which might take many iterations to recover, affecting 
the convergence speed of the RLS adaptive filter [1]. For the 
PEF-LSL algorithm, since 0 0( ) ( ) ( )f n b n x n= =  and 0( ) ( )e n d n= , 

the effect of the impulses will propagate through the order and 
time recursion of the algorithm by disturbing the variables such 
as reflection coefficients, etc. Thus, it can be expected that the 
PEF-LSL algorithm will be significantly degraded by the 
impulses in ( )x n  and ( )d n . 

3. HUBER PEF-LSL (H-PEF-LSL) ALGORITHM 

In this section, the proposed robust prior error feedback recursive 
least squares lattice algorithm will be developed using the robust 
statistics approaches and the conventional PEF-LSL algorithm 
[8]. In fact, this work is motivated by our previous work on the 
robust RLM algorithm [1]. First at all, we shall give a brief 
introduction to the recursive least M-estimate (RLM) algorithm 
[1]. Then, the proposed Huber PEF-LSL algorithm will be 
discussed in detailed. 

3.1 Recursive Least M-estimate (RLM) Algorithm [1] 

In [1], the authors have proposed a new class of adaptive filter 
based on the concept of robust statistics. Instead of the LS cost 
function ( )LSJ n  in (1), the following M-estimator based cost 

function is minimized. 

 ( )
1

( ) ( )
n n i

i
J n e iρ λ ρ−

=∑! , (11) 

where ( )ρ ⋅  is an M-estimate function. In [1], ( )ρ ⋅  is chosen as 
the Hampel’s three parts redescending M-estimate function for its 
computational simplicity and more flexibility in choosing the 
interval parameters for impulse noise suppression. The optimal 
weight vector for this objective function was found to be 
governed by the following M-estimate normal equation: 

 ( ) ( ) ( )n n nρ ρ=X XR w P# , (12) 

where ( ) ( )
1

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
n n i T T

i
n q e i i i n q e n n nρ ρλ λ−

=
= = − +∑X XR X X R X X , 

 ( ) ( )
1

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
n n i

i
n q e i d i i n q e n d n nρ ρλ λ−

=
= = − +∑X XP X P X , (13) 

and ( ) ( ) /q e e eψ!  and ( ) ( ) /e e eψ ρ∂ ∂! . Similar to the derivation 
of the RLS algorithm, the recursive least M-estimate (RLM) 
algorithm and a systematic method for estimating the required 
thresholds for ( )ρ ⋅  was developed in [1]. Simulation results 
showed that the RLM algorithm has better performance than the 
RLS and N-RLS algorithms when the input and desired signals 
are corrupted by impulses. Its initial convergence, steady-state 
error, computational complexity, and tracking capability of the 
RLM algorithm are found to be comparable to the conventional 
RLS algorithm [1]. The convergence analysis of the RLM 
algorithm was also given in [12].  

Careful examination of (13) reveals that both the time and order 
recursive properties of ( )nρXR  are lost due to the introduction of 

the nonlinear function ( ( ))q e n . In other words, it is very difficult, 
if not possible, to develop an exact time and order recursion like 
the LSL-liked algorithm for minimizing the cost function in (11). 
Fortunately, as we shall present as in the next section that if 

( ( ))e nρ  is chosen as the modified Huber function, then (12) will 
be considerably simplified and the time and order recursion in the 
PEF-LSL algorithm can still be applied. 

3.2 The Huber PEF-LSL (H-PEF-LSL) algorithm 

The modified Huber function ( ( ))e nρ  [13] and its corresponding 
weight function ( ( ))q e n  are given by 

 
2

2

( ) /2 0 ( )
( ( ))

/ 2

e n e n
e n

otherwise

ξ
ρ

ξ
 < ≤= 


, (14) 

 
1 0 ( )

( ( ))
0

e n
q e n

otherwise

ξ < ≤= 


, (15) 

where ξ  is a threshold value, which is usually estimated 
continuously. Actually, the modified Huber function can be 
viewed as a simplification of the Hampel’s three parts 
redescending M-estimate function used in [1]. This 
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simplification, as we shall see later in this section, allows us to 
utilize again the order and time update of ( )nρXR in (13). First of 

all, let’s consider that case where ( )e n  is larger than ξ . This 

indicates that there might be an impulse in the input or desired 
signals. Because ( ( ))q e n  is equal to zero, (12) and (13) will be 

simplified to ( ) ( 1)n nρ ρλ= −X XR R  and ( ) ( 1)n nρ ρλ= −X XP P . That 

is, ( )nρXR  and ( )nρXP  are not updated but just multiplied by λ . 

When ( )e n  is less than or equal to ξ , no impulse is detected. In 

this case, ( ( ))q e n  is equal to one and (13) becomes identical to 
(3). Therefore, the order and time updates in the PEF-LSL 
algorithm can be performed, significantly reducing the arithmetic 
complexity. Before proceeding to the detailed implementation, 
let’s consider the estimation of the threshold parameter ξ  in (15). 
The solution to this problem has been addressed previously by 
the authors in [1]. The error signal is modeled as a Gaussian 
signal corrupted by additive impulse noise. Then, the threshold ξ  
in (15) can be chosen as [1] 

 ˆ ( )ek nξξ σ= , (16) 

where kξ  is a constant and 2ˆ ( )e nσ is the variance of the error 

signal without the impulses. Because of the Gaussian assumption, 
we have 99% confidence that there is an impulse in ( )e n  (and 

hence )(nd  and )(nx ) when ( )e n ξ>  with 2.576kξ =  [1]. 

Moreover, ˆ ( )e nσ  can be in (16) can be estimated using the 

following formula [1]:  

 ( )2 2ˆ ˆ( ) ( 1) (1 )med ( )e e en n C A nσ σσ λ σ λ= − + − , (17) 

where 2 2( ) { ( ), , ( 1)}e wA n e n e n N= − +" , wN  is the length of the 

estimation window, σλ  is the forgetting factor and 

( )1.483 1 5/( 1)wC N= + −  is a finite sample correction factor ([14], 

p.44). Due to the recursive nature of the estimation in (17), the 
estimation window is of infinite length, giving rise to a more 
stable estimation against impulse noise [1]. The tracking ability 
of this estimation is also very good, as suggested by computer 
simulations [1, 5]. Interested readers are referred to [1] for 
details. 

Due to the order recursion, the estimation error ( )e n  will be 

available at the last stage of the ALLF, see Fig. 1, 1( ) ( )Me n e n+= . 

If ( )e n ξ> , ( )d n  or )(nx  are suspected to be corrupted by 

impulses. In this case, as mentioned earlier, no updating will be 
performed and the previous filtering parameters should be used 
instead of those generated in the current iteration. However, when 

( )x n  is corrupted by an impulse, the case will become more 
complicated. Although we can also detect this impulse from 

( )e n , replacing the filtering parameters by their values in the 
previous iteration cannot effectively suppress the effect of this 
impulse on the lattice parameters. If we replace both the lattice 
and the filtering parameters by their values in the past iteration, 
the exact order and time recursions of the PEF-LSL algorithm 
will be damaged. Therefore, it is better to suppress the impulse in 

( )x n  before it enters the ALLF, following the method proposed 
in [6]. Similar idea has also been proposed by Kim [15], in which 
the authors suggested a pre-filter to remove the impulses in ( )x n . 
Following our work in [6], there is no need to add another pre-
filter since the lattice prediction part actually implement the 
prediction of ( )x n . As a result, impulse can be detected directly 

from ( )Mf n , and a predictor for ( )x n  can be formed as follows 

 1
ˆ( ) ( 1) ( 1)M f

m m mx n b n k n== ∑ − − . (18) 

The corresponding threshold to detect the impulse in ( )Mf n  
follows the same way as described in (16) and (17). Details of the 
H-PEF-LSL algorithm are summarized in Table 1. This algorithm 
can also be view as an effective implementation of the RLM 
algorithm in impulse noise environment, while preserving the 
advantages of the lattice-based algorithms. 

4. SIMULATIONS  

The performance of the proposed H-PEF-LSL algorithm is 
evaluated and compared with the RLS, the RLM, and the PEF-
LSL algorithms in impulse noise environment. The adaptive filter 
shown in Fig. 1 is used to identify the unknown system *w , 
which is a 9th order lowpass FIR filter with coefficients 

* [.2, - .4, .6, - .8,1, - .8, .6, - .4, .2]T      =w . To evaluate its tracking ability 

to sudden system change, *w is changed to *−w , at 3000n = . The 
input signal ( )x n  is generated by passing a zero-mean, unit 
variance white Gaussian process through a linear time-invariant 
filter with coefficients [.3887,1,.3887] [8]. The output of the 

unknown system 0( )d n  is corrupted by the additive noise ( )d nη , 

which is modeled as the frequently used contaminated Gaussian 
noise, ( ) ( ) ( ) ( )d g wn n b n nη η η= + [1, 2]. In fact, ( )g nη  and ( )w nη  are 

independent identically distributed (i.i.d.) zero mean Gaussian 
noises with variance 2

gσ  and 2
wσ , respectively, ( )b n  is an i.i.d 

Bernoulli random variable with occurrence probability 
( ( ) 1)r rP b n p= = . The ratio 2 2 2 2/ /im im g r w gpγ σ σ σ σ= =  determines the 

impulsive characteristic of ( )d nη . For fixed value of 2
gσ , the 

larger the imγ , the more impulsive ( )d nη  becomes. The signal-to-

noise ratio at the system output is defined 
as

0

2 2
1010log ( / )d gSNR σ σ= , where 

0

2
dσ  is the variance of 0 ( )d n . 

Simulation parameters and the initial values for various 
algorithms are shown in Fig. 2. For illustration purpose, from 

1n =  to 1700, 0( ) ( )gn nη η=  is used. Whereas from 1701n =  to 

2650, 0( ) ( ) ( ) ( )g wn n b n nη η η= +  with 0.005rp =  and 300imr =  is 

used. To visualize clearly the effect of impulses in ( )d n , their 
locations generated by ( )b n  are fixed and marked in Fig. 2 but 

their amplitudes are varied according to ( )w nη , which is 

generated statistically independent in each run. Also in order to 
visualize the effect of the impulse in the input signal, one impulse 
located at 500n =  is added to the filter input signal. The MSE 
results averaged over 200 independent runs are plotted in Fig. 2. 
From the Fig. 2, we have the following observations: (1) the 
performances of the H-PEF-LSL and the RLM algorithms are 
very close to each other; (2), The RLS and the PEF-LSL 
algorithms are significantly degraded by the impulses. The effect 
of a single impulse in ( )d n  and ( )x n  will last for more than 250 
and 800 iterations for the RLS and the PEF-LSL algorithms, 
respectively; (3) the performance of the RLM and the H-PEF-
LSL algorithms is very robust to the impulses in ( )d n  and ( )x n ; 
(4) the initial convergence, steady state-error, and the tracking 
ability to the system sudden change of the H-PEF-LSL algorithm 
are comparable to other algorithms considered. 

5. CONCLUSION 

A Huber Prior Error-Feedback Least Squares Lattice (H-PEF-
LSL) algorithm for robust adaptive filtering in impulse noise 
environment is presented. It minimizes the modified Huber M-
estimator based cost function, instead of the conventional least 
squares based cost function. In additional to improved robustness 
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to impulse, the simple modified Huber M-estimate cost function 
also allows us to perform the time and order recursive updates in 
the conventional PEF-LSL algorithm so that the arithmetic 
complexity can be significantly reduced to ( )O M . The new 
algorithm can also be viewed as an efficient implementation of 
the recursive least M-estimate (RLM) algorithm recently 
proposed by the authors [1], which has a complexity of )( 2MO . 
Simulation results show that the proposed H-PEF-LSL algorithm 
is more robust than the conventional PEF-LSL algorithm in 
suppressing the adverse influence of the impulses at the input and 
desired signals with small additional computational cost. Its 
initial convergence, steady state error, and tracking ability to 
sudden system change are comparable to the RLM algorithm. 
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Fig. 1 Adaptive Lattice ladder Filter (ALLF) Structure 
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Fig. 2. The MSE performance of the various algorithms in 

impulse noise. (1) PEF-LSL (square); (2) H-PEF-LSL 
(bold diamond); (3) RLM (triangle); (4) RLS (x 
sign). 9M = , 0.01δ = , 5f eN N= =  (for H-PEF-LSL), 

0.99σλ λ= = , 30SNR dB= , 2 2ˆ (0) (0)e dσ = , 2 2ˆ (0) (0)f Mfσ = , 

13wN =  (for RLM), 1(0)− =R I  (for RLS and RLM).  

Table 1. The Huber PEF–LSL algorithm 

Initializations ( 0n = ): 0: 1 0: 1(0) ( 1)f b
M ME E δ− −= − = , 0 (0) 1γ = , 

1: 1:(0) (0) 0f b
M Mk k= = , 0: (0) 0Mw = . ( )1.483 1 5/( 1)f fC N= + − , 

( )1.483 1 5/( 1)e eC N= + −  

Lattice prediction: ( 0n > , 1,m M= " ), 0 ( 1) 1nγ − = , 0 ( ) ( )e n d n= , 
2 2

1( ) [ ( ), , ( 1)]f M MA n f n f n N= − +" , (if 1n = , 1(1)
ff NA ×= 0 ) 

( )2 2ˆ ˆ( ) ( 1) (1 )med ( )f f f fn n C A nσ σσ λ σ λ= − + − , ˆ ( )f fk nξξ σ= , 

if ( )M ff n ξ> , then 1( ) ( 1) ( 1)M f
m m mx n b n k n== ∑ − −  end, 

0 0( ) ( ) ( )f n b n x n= = , 2
0 0 0( ) ( ) ( 1) ( )f b fE n E n E n x nλ= = − + , 

2
1 1 1 1( ) ( 1) ( 1) ( )f f

m m m mE n E n n f nλ γ− − − −= − + − , 
2

1 1 1 1( 1) ( 2) ( 1) ( 1)b b
m m m mE n E n n b nλ γ− − − −− = − + − − , 

1 1( ) ( ) ( 1) ( 1)f
m m m mf n f n k n b n− −= + − − , 

1 1( ) ( 1) ( 1) ( )b
m m m mb n b n k n f n− −= − + −  ( m =1 to 1M + ), 

1 1 1( ) ( 1) ( 1) ( 1) ( ) / ( 1)f f b
m m m m m mk n k n n b n f n E nγ − − −= − − − − − , 

1 1 1( ) ( 1) ( 1) ( ) ( ) / ( )b b f
m m m m m mk n k n n f n b n E nγ − − −= − − − , 

2 2
1 1 1 1( 1) ( 1) ( 1) ( 1) / ( 1)b

m m m m mn n n b n E nγ γ γ− − − −− = − − − − − ; 

Filtering ( 0n > , 1, 1m M= +" ) 

1 1 1( 1) ( 1) ( 2) ( 1)m m m me n e n w n b n− − −− = − − − − , 

1 1 1 1 1( 1) ( 2) ( 1) ( 1) ( 1) / ( 1)b
m m m m m mw n w n n b n e n E nγ− − − − −− = − + − − − − , 

1 1 1( ) ( ) ( 1) ( )m m m me n e n w n b n− − −= − − , 
2 2

1 1 2( ) [ ( ), , ( 1)]e M MA n e n e n N+ += − +" , (if 1n = , 1(1)
ee NA ×= 0 ) 

( )2 2ˆ ˆ( ) ( 1) (1 )med ( )e e e en n C A nσ σσ λ σ λ= − + − , ˆ ( )e ek nξξ σ= , 

if 1( )M ee n ξ+ > , then 1 1( 1) ( 2)m mw n w n− −− = − , ˆ( ) ( )m ee n nσ=  end. 

6. REFERENCE  
[1] Y. Zou, S. C. Chan, and T. S. Ng, “A Recursive Least M-Estimate 

(RLM) Adaptive Filter For Robust Filtering in Impulsive Noise,” 
IEEE Signal Processing Letters, vol. 7, No. 11, pp. 5-8, 2000. 

[2] T. I. Haweel and P. M. Clarkson, “A Class of Order Statistic LMS 
Algorithms,” IEEE Transactions on Signal Processing, vol. 40, 
No.1, pp. 44-53, 1992. 

[3] R. Settineri, M. Najim, and D. Ottaviani, “Order Statistic Fast 
Kalman Filter,” IEEE ISCAS-96, vol. 2, pp. 116-119, 1996. 

[4] S. Koike, “Adaptive Threshold Nonlinear Algorithm for Adaptive 
Filters with Robustness against Impulsive Noise,” IEEE 
Transactions on Signal Processing, vol. 45, No. 9, pp. 2391-2395, 
1997. 

[5] Y. Zou, S. C. Chan, and T. S. Ng, “Least Mean M-Estimate 
Algorithms for Robust Adaptive Filtering in Impulse Noise,” 
International European Signal Processing Conference (EUSIPCO-
2000), Tampere, Finland, 2000. 

[6] Y. Zou, S. C. Chan, and T. S. Ng, “A Robust Statistics Based 
Adaptive Lattice-Ladder Filter in Impulsive Noise,” IEEE ISCAS-
2000, Geneva, Switzerland, 2000. 

[7] J. G. Proakis, C. M. Reader, Fuyun Ling and C. L. Nikias Advanced 
Digital Signal Processing. New York, Toronto: Maxwell 
Macmillan, 1992. 

[8] S. S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, 
N.J.: Prentice Hall, 1996. 

[9] B. Friedlander, “Lattice Filters for Adaptive Processing,” IEEE 
Proceedings, vol. 70, No. 8, pp. 829-867, 1982. 

[10] M. D. Miranda, M. Gerken, and M. T. M. Da Silva, “Efficient 
implementation of error-feedback LSL algorithm,” Electronics 
Letters, vol.35, No. 16, pp. 1308 -1309, 1999. 

[11] H. K. Baik and V. J. Mathews, “Adaptive lattice bilinear filters,” 
IEEE Transactions on Signal Processing, vol. 41, No. 6, pp. 2033 -
2046, 1993. 

[12] Y. Zou, “Robust Statistics Based Adaptive Filtering Algorithms For 
Impulsive Noise Suppression,” Ph. D. Dissertation, The University 
of Hong Kong, 2000. 

[13] Y. Zou, S. C. Chan, and T. S. Ng, “A Robust M-Estimate Adaptive 
Filter for Impulse Noise Suppression,” IEEE ICASSP-99, vol. 4, pp. 
1765-1768, 1999. 

[14] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier 
Detection: New York: John Wiley & Sons Inc., 1987. 

[15] S. R. Kim and A. Efron, “Adaptive Robust Impulsive Noise 
Filtering,” IEEE Transactions on Signal Processing, vol. 43, No. 8, 
pp. 1855-1866, 1995. 


