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ABSTRACT

This paper proposes a new adaptive filtering algorithm called the
Huber Prior Error-Feedback Least Squares Lattice (H-PEF-LSL)
agorithm for robust adaptive filtering in impulse noise
environment. It minimizes a modified Huber M-estimator based
cost function, instead of the least squares cost function. In
addition, the simple modified Huber M-estimate cost function
aso allows us to perform the time and order recursive updates in
the conventional PEF-LSL agorithm so that the complexity can
be significantly reduced to O(M) , where M is the length of the

adaptive filter. The new algorithm can also be viewed as an
efficient implementation of the recursive least M-estimate (RLM)
agorithm recently proposed by the authors [1], which has a
complexity of O(M?) . Simulation results show that the proposed

H-PEF-LSL agorithm is more robust than the conventional PEF-
LSL agorithm in suppressing the adverse influence of the
impulses at the input and desired signals with small additional
computational cost.

1. INTRODUCTION

Impulsive interference, which results from nature or man-made
electromagnetic waves, can significantly degrade the performance
of linear adaptive filters. Nonlinear techniques are usualy
employed to suppress such adverse effects. For example, the
median filtering has been applied to the LMS and the RLS
agorithms to protect the filter weights from the effects of
impulsive interference, giving rise to the order statistic least mean
square (OSLMS) [2] and the order statistic fast Kalman filtering
(OSFKF) agorithms [3]. While the adaptive threshold nonlinear
(ATNA) [4] agorithm uses the clipping function to limit the
transient fluctuation of the estimation error on filter coefficients
in the LM S agorithm. Recently, the authors have proposed a new
family of adaptive filters for robust adaptive filtering in impulse
noise environment based on the concept of robust statistics [1, 5,
6]. Instead of minimizing the conventional mean sgquares error
(MSE) or the least squares (LS) cost functions, the robust M-
estimators based cost functions, which are more robust to impulse
noise, were minimized. In particular, a recursive least M-estimate
(RLM) [1], a least mean M-estimate (LMM) [5] and a robust
gradient adaptive lattice - normaized LMS (RGAL-NLMYS) [6]
a gorithms were devel oped to suppress the impulsive interference
in the input or the desired signals. Simulation results showed that
the RLM, LMM and RGAL-NLMS dgorithms offer improved
robustness to impulses in the desired and input signas over the
conventional recursive least square (RLS), LMS and GAL-NLMS
agorithms, respectively.

Although the recursive least squares (RLS) algorithm provides
fast initiadl convergence rate and low steady state error as
compared to the least mean squares (LM S) family [7, 8], research
results indicated that it is more sensitive to quantization errors. In
fact, it is numerical unstable if implemented in fixed point with
less than 24-bit accuracy. Extensive research was devoted to this
stability problem and the development of fast RLS algorithm with

O(M) complexity, where M is the length of the transversal
filter. One attractive class of the fast algorithmsis the RLS lattice
(RLSL) agorithm [7, 8]. They not only provide the exact LS
solution, but also possess many distinctive properties such as low
computational complexity, modular implementation, and better
numerical stability than the conventiona RLS agorithm [8].
Therefore, the RLSL algorithms have found many applicationsin
speech signal processing and acoustic echo cancellation (AEC)
where good convergence performance, numerical stability, and
high computational complexity are the main concerns [9, 10].

In this paper, we generalize the robust statistic approach to the
prior error feedback LSL (PEF-LSL) algorithm. In particular, a
Huber PEF-LSL (H-PEF-LSL) dgorithm is derived by
minimizing the modified Huber M-estimate function. Simulation
results show that the proposed H-PEF-LSL algorithm offers
improved robustness over the conventional PEF-LSL algorithm
in suppressing the adverse influence of the impulses both in the
input and desired signals with small additional computational
cost.

The paper is organized as follows: the formulation of the PEF-
LSL dgorithm is given in Section 2. The Huber PEF-LSL
algorithm is introduced in Section 3. Simulation result and
comparison with other algorithms are described in Section 4.
Finally, conclusions are drawn in Section 5.

2. FORMULATION OF THE PRIOR ERROR
FEEDBACK LSL ALGORITHM

The transversal RLS and the PEF-LSL agorithms are
mathematically identical. Both of them are developed to obtain
the optimal solution of the following exponentially weighted least
squares error cost function [8]
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where e(n)=d(n)-w'(n-1)X(n) is called the prior estimation
error. X(n)=[x(n),--,x(n-M +1)]", d(n) and w(n) are the input
vector, desired signal and coefficient vector of the transversal
filter, respectively. The superscript T, M and 0<A <1 denote
respectively the transpose operator, order of the adaptive filter
and the forgetting factor. The optimal LS solution w(n) of (1) is
governed by the following normal equation:
R(n)W(n) =P(n) or w(n)=R™*(n)P(n), 2

where R(N)= " A" X ()X (i) =AR(n -1 +X ()X (n)

P(n) = zi":lf\”’id(i)xa) =AP(n-1) +d(n)X (n), ©)
are the autocorrelation matrix of X(n), and the cross-correlation
vector between X(n) and d(n) . Direct inversion of R(n) in (2)
will require O(M?) arithmetic operations. For the transversal RLS
agorithm, the arithmetic complexity is reduced to O(M?) since
the time recursive property of R(n) in (3) is used. The lattice
structure based LSL-type agorithms explore both the time



recursive and order recursive properties of R(n) , and its
complexity isfurther reducedto O(M) .

Fig. 1 shows the structure of an adaptive lattice ladder filter
(ALLF). Signas x(n), d(n) and d(n) are the input, output and
desired signals of the ALLF, respectively, where n denotes the
time index. It is assumed that the noise-free desired signal d,(n)
and the input are corrupted by statistically independent additive
interference n,(n) and n,(n) , respectively. The PEF-LSL
agorithm is summarized asfollows [8]:

Lattice prediction part (m=1---,M ):

fn() = foa(M) +ky (N =D, 4(n -D) 4
bn(n) =b,,(n=1) +kp(n -, ,(n) (M=1toM +1), (©)
where  f,(n) =x(n) -X,.5(n) and b, (n)=x(n-M) =X, s(n -M)

are respectively the m stage forward and backward prediction
errors; k! (n) and k2(n) are respectively the stage m forward and
backward reflection coefficients, which are updated a each
iteration as

kn (M) =k5, (N =1) =Y,y (n =Db, 4 (n =D f (N/E>,(n-1), (6)

kn(n) = kn(n =2) =y, 4 (0 D) f, ()b, (N)/E; 4() (M
where ym(n =)= ym—1(n -1 - yr2n71(n _1)b|$\—1(n _1)/Erl\]n—1(n -1 ’
Ena(n) =AE;4(N =1 +y,.(n -1 f7,(n) and

EP,(n-1) =AE"_,(N —2) +y,,(n -Db?,(n -1) are respectively the
convention factor (or the maximum likelihood variable), the
forward and backward time averaged prediction error energies.
LS filtering part (m=1,---,M +1):

€‘m(n—l) =Q11—1(n -1 _Wm—1(n —2)bm_1(n -1, (8)
Wy 1 (N=1) =W, (0 =2) +y,,,(n -Dh, (N -De,(n -/ E; (0 -D) ,(9)

€n(N) = &,4(n) ~W,, 1 (N =1, 4(n) , (10)
where e, (n) and w,(n) are respectively the m stage prior
estimation error and the ladder coefficient at time instant n. The
PEF-LSL agorithm has the following important properties: (1)
the lattice predictors perfform  the  Gram-Schmidt
orthogonalization of the input data with very good numerical

property [11]; (2) the direct update of the forward and backward
coefficientsin (6) and (7) also leads to better numerical behavior

of this agorithm [8]; (3) the backward prediction errors b,(n) 's
( m=1--M+1 ) a different stages are uncorrelated and
orthogona to the space spanned by the input vector
Xu(n) =[x(n),-,x(n —m+1)]" .

From the above formulations, it can be seen that if x(n) and/or
d(n) are corrupted by additive impulsive noise, then R(n)
and/or P(n) in (3) and hence w(n) in (2) will exhibit momentary
fluctuation which might take many iterations to recover, affecting
the convergence speed of the RLS adaptive filter [1]. For the
PEF-LSL agorithm, since f,(n)=h,(n)=x(n) and e(n)=d(n) ,
the effect of the impulses will propagate through the order and
time recursion of the algorithm by disturbing the variables such
as reflection coefficients, etc. Thus, it can be expected that the
PEF-LSL agorithm will be significantly degraded by the
impulsesin x(n) and d(n) .

3. HUBERPEF-LSL (H-PEF-LSL) ALGORITHM

In this section, the proposed robust prior error feedback recursive
least squares lattice agorithm will be developed using the robust
statistics approaches and the conventional PEF-LSL agorithm
[8]. In fact, this work is motivated by our previous work on the
robust RLM algorithm [1]. First at al, we shall give a brief
introduction to the recursive least M-estimate (RLM) agorithm
[1]. Then, the proposed Huber PEF-LSL agorithm will be
discussed in detailed.

3.1 Recursiveleast M-estimate (RLM) Algorithm [1]

In [1], the authors have proposed a new class of adaptive filter
based on the concept of robust statistics. Instead of the LS cost
function J,¢(n) in (1), the following M-estimator based cost

function is minimized.
J,MES Ao (e),

where p(} is an M-estimate function. In [1], p(}} is chosen as
the Hampel’ s three parts redescending M -estimate function for its
computational simplicity and more flexibility in choosing the
interval parameters for impulse noise suppression. The optimal
weight vector for this objective function was found to be
governed by the following M-estimate normal equation:

Ry, (MW(n) =P, (), (12)
wherer,,(n) = ZlnzlA”"q(e(i))X(i)XT(i) =AR,,(n-1) +q(e(m) X MX"(n) ,
P =5 L A" q(ei))d (i) X (i) = AR, (n-1) +g(e(n))d(n) X (n) , (13)

and q(e) 2y (e)/e and w(e)=dp(e)/de. Similar to the derivation
of the RLS agorithm, the recursive least M-estimate (RLM)
algorithm and a systematic method for estimating the required
thresholds for p() was developed in [1]. Simulation results

showed that the RLM algorithm has better performance than the
RLS and N-RLS agorithms when the input and desired signals
are corrupted by impulses. Its initia convergence, steady-state
error, computational complexity, and tracking capability of the
RLM agorithm are found to be comparable to the conventional
RLS algorithm [1]. The convergence analysis of the RLM
algorithm was also given in [12].

11)

Careful examination of (13) reveds that both the time and order
recursive properties of R, ,(n) are lost due to the introduction of
the nonlinear function g(e(n)) . In other words, it is very difficult,

if not possible, to develop an exact time and order recursion like
the LSL-liked algorithm for minimizing the cost function in (11).
Fortunately, as we shall present as in the next section that if
p(e(n)) is chosen as the modified Huber function, then (12) will

be considerably simplified and the time and order recursion in the
PEF-LSL algorithm can still be applied.

3.2TheHuber PEF-LSL (H-PEF-LSL) algorithm

The modified Huber function p(e(n)) [13] and its corresponding
weight function q(e(n)) aregiven by

B(n)/2 O<|e(n)| <&

plem) = 5 £2/2  otherwise ' (14)
qemy = O<lml=E (15)
otherwise

where & is a threshold value, which is usuadly estimated
continuously. Actualy, the modified Huber function can be
viewed as a simplificaion of the Hampe's three parts
redescending M-estimate function wused in [1]. This



simplification, as we shall see later in this section, alows us to
utilize again the order and time update of R, (n)in (13). First of
al, let's consider that case where |e(n)| is larger than & . This

indicates that there might be an impulse in the input or desired
signals. Because q(e(n)) is equa to zero, (12) and (13) will be

simplified to R,,(n)=AR,(n-1) and P,,(n)=AP,,(n-1) . That
is, Ry,(n) and P, (n) are not updated but just multiplied by A .
When |e(n)| is less than or equal to &, no impulse is detected. In

this case, q(e(n)) is equa to one and (13) becomes identica to

(3). Therefore, the order and time updates in the PEF-LSL
agorithm can be performed, significantly reducing the arithmetic
complexity. Before proceeding to the detailed implementation,
let’s consider the estimation of the threshold parameter & in (15).

The solution to this problem has been addressed previously by
the authors in [1]. The error signa is modeled as a Gaussian
signal corrupted by additive impulse noise. Then, the threshold &

in (15) can be chosen as [1]
&= kzo’:e(n) ,
where k. is a constant and &Z(n) is the variance of the error

signal without the impulses. Because of the Gaussian assumption,
we have 99% confidence that there is an impulse in e(n) (and

hence d(n) and x(n) ) when [e(n)|>& with k =2576 [1].
Moreover, d.(n) can be in (16) can be estimated using the
following formula[1]:

6:(n) =A,62(n-1) +C (1-,)med(A(n)),

(16)

17)

where A/(n)={€’(n),---,e*(n-N, +1)} , N

» IS the length of the
estimation window, A, is the forgetting factor and

C=1.483(1+5/(N,, -1) is afinite sample correction factor ([14],

p.44). Due to the recursive nature of the estimation in (17), the
estimation window is of infinite length, giving rise to a more
stable estimation against impulse noise [1]. The tracking ability
of this estimation is also very good, as suggested by computer
smulations [1, 5]. Interested readers are referred to [1] for
details.

Due to the order recursion, the estimation error e(n) will be
avallable at the last stage of the ALLF, see Fig. 1, e(n)=g,,.(n) .
If |e(n)|>E , d(n) or x(n) are suspected to be corrupted by

impulses. In this case, as mentioned earlier, no updating will be
performed and the previous filtering parameters should be used
instead of those generated in the current iteration. However, when
x(n) is corrupted by an impulse, the case will become more
complicated. Although we can aso detect this impulse from
e(n) , replacing the filtering parameters by their values in the
previous iteration cannot effectively suppress the effect of this
impulse on the lattice parameters. If we replace both the lattice
and the filtering parameters by their values in the past iteration,
the exact order and time recursions of the PEF-LSL algorithm
will be damaged. Therefore, it is better to suppress the impulse in
x(n) before it enters the ALLF, following the method proposed
in [6]. Similar idea has aso been proposed by Kim [15], in which
the authors suggested a pre-filter to remove the impulsesin x(n) .
Following our work in [6], there is no need to add ancther pre-
filter since the lattice prediction part actualy implement the
prediction of x(n). As a result, impulse can be detected directly

from f,,(n) , and apredictor for x(n) can be formed asfollows

X() = 3 b (N Dk (n -1) . (18)

The corresponding threshold to detect the impulse in f, (n)

follows the same way as described in (16) and (17). Details of the
H-PEF-LSL agorithm are summarized in Table 1. This agorithm
can aso be view as an effective implementation of the RLM
algorithm in impulse noise environment, while preserving the
advantages of the lattice-based algorithms.

4.  SIMULATIONS

The performance of the proposed H-PEF-LSL algorithm is
evaluated and compared with the RLS, the RLM, and the PEF-
LSL agorithmsin impulse noise environment. The adaptive filter
shown in Fig. 1 is used to identify the unknown system w’,
which is a 9" order lowpass FIR filter with coefficients
w =[.2,-.4,.6,-.81-.8,.6-4,2]". To evauate its tracking ability
to sudden system change, w' is changed to -w', at n=3000. The
input signal x(n) is generated by passing a zero-mean, unit
variance white Gaussian process through a linear time-invariant
filter with coefficients [.3887,1,.3887] [8]. The output of the
unknown system d,(n) is corrupted by the additive noise n,(n) ,
which is modeled as the frequently used contaminated Gaussian
noise, n,(n) =ny(n) +b(ny,(n) [1, 2]. Infact, n,(n) and n,(n) are
independent identically distributed (i.i.d.) zero mean Gaussian
noises with variance o} and o} , respectively, b(n) is an i.i.d
Bernoulli random variable with occurrence probability
R(b(n)=1)=p,. The ratio y,, =0 /o2 =po’/c: determines the
impulsive characteristic of n,(n) . For fixed value of o?, the
larger the y,, , the more impulsive n,(n) becomes. The signal-to-
noise ratio a the system output is  defined
as SNR=10log,,(0; /07) , where o} is the variance of d,(n) .
Simulation parameters and the initial values for various

algorithms are shown in Fig. 2. For illustration purpose, from
n=1 to 1700, n,(n) =n,(n) is used. Whereas from n=1701 to
2650, ny(n)=n,(n) +b(ny,(n) with p =0.005 and r, =300 is
used. To visuaize clearly the effect of impulses in d(n), their
locations generated by b(n) are fixed and marked in Fig. 2 but
their amplitudes are varied according to n,(n) , which is
generated statistically independent in each run. Also in order to
visualize the effect of the impulse in the input signal, one impulse
located at n=500 is added to the filter input signal. The MSE
results averaged over 200 independent runs are plotted in Fig. 2.
From the Fig. 2, we have the following observations. (1) the
performances of the H-PEF-LSL and the RLM agorithms are
very close to each other; (2), The RLS and the PEF-LSL
agorithms are significantly degraded by the impulses. The effect
of asingle impulse in d(n) and x(n) will last for more than 250
and 800 iterations for the RLS and the PEF-LSL agorithms,
respectively; (3) the performance of the RLM and the H-PEF-
LSL agorithms is very robust to the impulsesin d(n) and x(n);
(4) the initial convergence, steady state-error, and the tracking
ability to the system sudden change of the H-PEF-LSL agorithm
are comparable to other algorithms considered.

5. CONCLUSION

A Huber Prior Error-Feedback Least Squares Lattice (H-PEF-
LSL) agorithm for robust adaptive filtering in impulse noise
environment is presented. It minimizes the modified Huber M-
estimator based cost function, instead of the conventional least
squares based cost function. In additional to improved robustness



to impulse, the simple modified Huber M-estimate cost function
aso alows us to perform the time and order recursive updates in
the conventionad PEF-LSL agorithm so that the arithmetic
complexity can be significantly reduced to O(M) . The new
agorithm can aso be viewed as an efficient implementation of
the recursive least M-estimate (RLM) algorithm recently
proposed by the authors [1], which has a complexity of O(M?) .
Simulation results show that the proposed H-PEF-LSL agorithm
is more robust than the conventiona PEF-LSL agorithm in
suppressing the adverse influence of the impulses at the input and
desired signals with small additional computational cost. Its
initial convergence, steady state error, and tracking ability to
sudden system change are comparable to the RLM algorithm.

fo(n)

n.(n)

%(n) % x(n)
N

N4(n)

O

Fig. 1 Adaptive Lattice ladder Filter (ALLF) Structure

MSE results by 200 independent runs
20 T T T T T

(1) PEF-LSL (square)
15 (2) HPEF-LSL (bold diamond) 1
impulse in x(n) (3) RLM (circle)

(4) RLS (x sign)

system change

Of impulses in d(n) { Bl

MSE dB

1500 2000 2500 3000 3500
n iterations

0 500 1000

Fig. 2. The MSE performance of the various agorithms in
impulse noise. (1) PEF-LSL (sguare); (2) H-PEF-LSL
(bold diamond); (3) RLM (triangle); (4) RLS (x
sign). M =9, =001, N,=N,=5 (for H-PEF-LSL),

A=A, =099, SNR=30dB, 62(0)=d?(0), 62(0)= f2(0),
N, =13 (for RLM), R™*(©0) =1 (for RLSand RLM).
Table 1. TheHuber PEF-LSL algorithm

fn(N) = fa(n) +ky (N =Db, 4 (N -1,

b,(n) =b,(n—-1) +k%(n -1 f,,,(n) (M=1toM +1),

K (M) = Ky (N =1) =¥, s (0 =Dy, 4(n 1) f,,(N)/Eqy(n -1,
kn(n) =kn(n=1) =¥y (n - f (Wb, (N)/E,(N),

V(N =2) = ¥ a(N =1 = o ,(n -Db 4 (n -D)/Eq(n D) ;

Filtering(n>0, m=1---M +1)

&(n-D=e,,(n-1) -w,,(n-2b,,(n 1),

W (N=1) =W, (N =2) +,,,(n -1, (0 De,(n L)/ Ep(n D),
&n(N) = €,4(N) =W,y (N =1)b,,,(n) ,

A(N) =[€.a(n), - & .a (N =N, +1)], (if n=1, A()=0,,,)

82(n) =A,62(n-1) +C,(L-A,)med(A(n)), &, =kT,(n),

if |ey..(n)]>¢&,. then w, (n-1) =w, ,(n-2), e,(n)=d,(n) end.

Initidlizations (n=0): E/,,(0)=E2, (-1 =5, y,(0) =1,
kiw (0) =k (0) =0, Wy, (0)=0.C, =1.483(1+5/(N, -1)),
C, =1.483(1+5/(N, -1))

Lattice prediction: (n>0, m=1---M ), y,(n-1) =1, e(n)=d(n),
A(n)=[ (), fa(n=N +D], (if n=1, A (1)=0,, )

61 ()=A,67(n=1) +C, (1 -A,)med(A () , & =k (n)

if |f, (M|>&, . then x(n) = 3%, (n -1k (n -1) end,

fo (n) =y () =x(n) , Eg (n) = Eg(n) = AE, (n 1) +x*(n) ,

Ena() =AEqL(n =D +y,,(n -1 f 1),

Ena(n=1) =AEq(n =2) +Y,4(n -DbiL(n -1),
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