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ABSTRACT

Fourier transform can be generalized into the fractional Fourier
transform (FRFT), linear canonical transform (LCT), and simpli-
fied fractional Fourier transform (SFRFT). They extend the
utilities of original Fourier transform, and can solve many prob-
lems that can’t be solved well by original Fourier transform.

In this paper, we will generalize the cosine transform. We will
derive fractional cosine transform (FRCT), canonical cosine
transform (CCT), and simplified fractional cosine transform
(SFRCT). We will show they are very similar to the FRFT, LCT,
and SFRFT, but they are much more efficient to deal with the
even, real even functions. For digital implementation, FRCT and
CCT can save 1/2 of the real number multiplications, and SFRCT
can save 3/4. We also discuss their applications, such as optical
system analysis and space-variant pattern recognition.

I. INTRODUCTION

Fractional Fourier transform (FRFT) is defined as [1]:
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It is the generalization of Fourier transform (¢ = 772). It can be
used for many applications, such as optical system analysis, filter
design, phase retrieval, pattern recognition, edge detection, etc.
[2]. FRFT is a useful tool for signal processing.

FRFT can be further generalized into the linear canonical
transform (LCT) [3]. It is defined as:
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It satisfies the additivity property as below:
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The FREFT is the special case of LCT that {a, b, ¢, d} = {cosa,
sin@, —sind, cosq}:

O? (g(l)) - ej(p O;fos(p,sin @,—sin @,cos Q) (g(t)) ) (5)
And the Fresnel transform is the special case of LCT that {a, b, c,
d} = {1, Az/21 0, 1}. So LCT can be viewed as the generaliza-
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tion of FRFT and Fresnel transform. All the applications of
FRFT and Fresnel transform are also the applications of LCT,
and the LCT is more flexible for these applications.

Recently, in [4], we have introduced the simplified fractional
Fourier transform (SFRFT):
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The SFRFT is the special case of LCT that {a, b, ¢, d} = {cot@ 1,
-1, 0}. We have shown it has the same effects as FRFT, but
simpler for digital implementation. For many applications, such
as filter design, we can use SFRFT to substitute the FRFT.

In this paper, we will generalize the cosine transform (CT):

Go(w)= cTlgl)) = Jz (o) ml)@m . o)

Since cosine transform is much similar to Fourier transform, so,
as the Fourier transform can be generalized into FRFT, LCT,
SFRFT, we expect the cosine transform can also be generalized.
In this paper, we will introduce the fractional cosine transform
(FRCT), canonical cosine transform (CCT), and simplified frac-
tional cosine transform (SFRCT). We will show FRCT and CCT
is very efficient to deal with the even functions, and SFRCT is
very efficient to deal with the real, even functions. For all the
applications of FRFT and LCT, if the input is even function, we
can use FRCT and CCT instead of FRFT and LCT. And if the
input is real, even, we can use SFRCT instead of FRFT and LCT.

II. DERIVATION OF THE TRANSFORMS

We remember that the transform results of Fourier transform and
cosine transform has the relation as below:

Ge(w)=(Gr(w)+ G (-w))r2. (8)
So we can derive the fractional and canonical cosine transform
from the FRFT and LCT by the relations as below:

Ge()=(62()+a ()2, o)
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and change the range of integration from (—oo, ) into [0, ) . So
we can define the fractional and canonical transform as:
¢ Fractional cosine transform (FRCT):

G¢(s)=0¢(s()
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¢ Canonical cosine transform (CCT)
G ()= 0 (s()
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We can prove they all satisty the additivity property:
ot ot (l)=02 (0. w
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where {al, bl! Cq, dl}! {az, b2, C, dz}, {03, b3, C3, d3} Satisfy the
relation of Eq. (4). It is easy to recover the original function from
the transform results of SFRCT and CCT:
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In [5], they had introduced another type of FRCT. They de-
rived it by taking the real part of the kernel of FRFT. But for the
FRCT derived in [5], it is hard to recover the original function
from the transform result. This problem will not exist for the
FRFT and LCT defined as Eq. (11), (12).

If the input function g(¢) is even, then the transform result of
FRCT is the same as that of the FRFT, and the transform result of
CCT is the same as that of the LCT (g(#) is even):

0e(gl)=08(el). o (glt) =05 (g(r).16)

Although FRCT and CCT have additivity property, and have
well mathematical definition, but there is some problem. That is,
for the real input, the output will not be real function. We will
introduce another type of generalized cosine transform, i.e.,
simplified fractional cosine transform (SFRCT). For SFRCT, if
the input is real, the output is also a real function.

We remember that the SFRFT is the special case of LCT that
{a, b, c, d} = {cot@g 1, -1, 0}. So we will also derive the SFRCT
from the special case of CCT that {a, b, ¢, d} = {cot@ 1, -1, 0}.
We derive SFRCT as:

08 (¢0)) = Rely7 02 (g 1) )

and we suppose the input function g(¢) is real. So
e Simplified fractional cosine transform (SFRCT):

G (5)= 0% (2 ()
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And its inverse transform is:

g(t) = \/%sec(cot(pﬂz /2)I(:0 cos(st)GS(pc (s)ds . (19)

We note, for the SFRCT, if the input g(¢) is a real function, then
the transform result will also be real. But, not the same as the
cases of FRCT and CCT, the SFRCT don’t have additivity prop-
erty. As the FRCT defined in [5], the SFRCT also has the prop-
erty of real-input-real-output, and has no additivity property. But
there are some key differences. That is, it is easy to recover the
original function from the transform result of SFRCT, but this
work is hard to do for the FRCT defined in [5]. Besides, the
SFRCT will have much simpler digital implementation structure.

We can prove if the input g(¢) is a real, even function, then the

transform results of SFRCT and SFRFT will have the relation as:

G%.(5)=Rel7 2, )

For SFRFT, if the input is real, then the output is a complex
function, and the degree of freedom of the output is twice of the
input. It is over-determined. But for SFRCT, it preserves the real

if g(#) is real, even.  (20)

part of \/7 I:Gg’F (s) , and treats its imaginary part as redundancy.

And then, for real input, the output of SFRCT is also a real func-
tion, and the degrees of freedom of input and output are the same.
It is reasonable. So we can use SFRCT instead of SFRFT when
the input is a real, even function.

In [4], we have stated we can use SFRFT with parameter @in-
stead of FRFT with parameter @ and the LCT with a/b = cot¢ for
many applications. So together with the above conclusion, we
can conclude when the input g(¢) is a real, even function, we can
use SFRCT with parameter ¢ to substitute the FRFT with pa-
rameter @and the LCT with a/b = cot@ for many applications.

I1I. DIGITAL IMPLEMENTION

The most important advantage of FRCT, CCT, and SFRCT is
they are much simpler for digital implementation. We will
introduce their fast algorithms, and compare their complexities
with those of the FRFT and LCT. In [6], we have stated when we
choose the sampling intervals to satisfy AA; = 27B/P, (P is the
total number of sampling points), then we can use two chirp
multiplications and one DFT to implement the FRFT and LCT.
Eqch chirp multiplication requires 3P real number multiplica-
tions, and DFT require Pllbg,P real number multiplications. So
e Amount of real multiplications required for FRFT, LCT:

6P + Plbg,P. (21)

Then we discuss the digital implementation of FRCT. When
we implement FRCT, we first sample 7-axis and w-axis as below:

t=(ntnyd,, s=mtmyd, n,m=0,1,...,N-1, (22)
and substitute them into Eq. (11). If we choose the values of A,,
A, ny, my properly to make the term cos(cscgisf) in Eq. (11)
becomes the kernel of DCT. And then, we can use the fast algo-
rithm of DCT [7][8] together with the chirp multiplications to
implement the FRCT. The amount of real number multiplications
required for DCT is (We suppose the input is a real function):

o for 1 type DCT: 1 = N+ (N/2)(Ibg,N, (23)
o for 2", 3™ type DCT:  (V/2)dog,N, (24)
« for 4™ type DCT: N+ (N/2)Tbg,N. (25)
For example, if we choose A, A, ny, my as:
AD, = miSing(N-1),  ny=0,  my=0, (26)

then Eq. (11) becomes
2
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where g(0)=g(0)/2, g(n):e 2 g(nA,). (28)

We note, cos(7ann/(N-1)) is just the kernel of 1 type DCT. Thus,
we can follow the process as below to implement FRCT:



(1) Do the chirp multiplication as Eq. (28) to obtain g (m) .
(2) Then do the 1% type DCT for g (m) .
(3) Then multiply the outside chirp term in Eq. (27).
The 1% and 3" steps both requires N-points complex multiplica-
tions, and the 2™ step requires the 1% type DCT for complex
input (i.e., two 1* type DCT for real input). So if we choose A,
A, ny, my as Eq. (26), then the amount of real number multipli-
cations required for FRCT is:
6N + 2 + Nlbg,N. (29)
Since N is just the number of sampling points for ¢, s 2 0, (see Eq.
(24)), so N = P/2 (P is the total number of sampling points, in-
cluding positive axis and negative axis). So
e Amount of real multiplications required for FRCT, CCT:
6N+ 2+ Nlbg,N = 3P+ (P/2)logy(P/2). (30)
It is just about 1/2 of Eq. (21). So when we deal with the even
functions, it is much more efficient to use FRCT instead of FRFT,
and about half of real number multiplications can be saved.

Similarly, we can also follow the process as above, and im-
plement the CCT by the DCT. Then the number of multiplica-
tions required is also the same as Eq. (30), and is about 1/2 of the
amount of real number multiplications required for LCT.

So FRCT and CCT are indeed efficient tools to process even
functions. We can use them instead of FRFT and LCT for many
of the applications of FRFT and LCT when the input is even.

Then we discuss the case of SFRCT. We also sample z-axis
and w-axis as Eq. (22). If we choose A, A, ng, mg properly, then
cos(s?) term in Eq. (18) will become the kernel of DCT of type 1,
2, 3, or 4, and then we can implement SFRCT by the fast algo-
rithm of DCT of type 1, 2, 3, or 4.

For example, we can choose

AJD, = 1T(N-1), ny=0, my=0, (32)
then Eq. (20) becomes:

G ((m+my)n, )= \/7 A, z cosB—E@ () (32)

Ozt(p n*e %(nA,). (33)

So we can implement the SFRCT of type 1 by the multiplication
of cos(cotqﬂizA,z/Z) and the 1* type DCT. Since the input g(nh)
is real, so Eq. (33) is the product of two real functions. It requires

where §(0) =# , §(nAl ) = COSD

N real number multiplications. And since the input of the 1™ type
DCT is also a real function, so from Eq. (23), the on step require
1-N+(N/2)dbg,N real number multiplications. So
¢ Amount of real multiplications required for SFRCT:

1+ (N2)Ibg,N = (P/4)Ibg,(P/2). (34)
We also use the fact that N (the number of sampling points used
for DCT, i.e., the sampling points for # > 0, as Eq. (22)) is about
half of P (total number of sampling points) for SFRCT. Eq. (34)
is not only much less than the complexities of FRFT and LCT
(see Eq. (21)) (about 1/4), but also less than the complexities of
FRCT and CCT (see Eq. (30)) (about 1/2).

So when the input function is real and even, it is much more
efficient to use the SFRCT to process these functions than using

the FRFT and LCT.

IV. APPLICATIONS

The applications of FRCT, CCT, and SFRCT can be summarized
briefly. That is, FRFT and CCT can replace the FRFT and
LCT when the inputs are even functions, and SFRCT can re-
place FRFT and LCT when the inputs are real, even functions.

From Eq. (16), the transform results of FRCT and CCT are
the same as those of FRFT and LCT when the inputs are even.
Form Eq. (20), we know for real, even inputs, SFRCT with pa-
rameter @has very close relation with the SFRFT with parameter
@ and hence has very close relation with the FRFT with pa-
rameter @ and LCT with a/b = cot@ And together with the dis-
cussion about digital implementation in Sec. 3, we can conclude:

(1) When the input is even, we can use FRCT and CCT instead
of FRFT and LCT, and there are about half of real number
multiplications can be saved.

(2) When the input is real and even, we can use SFRCT instead
of FRFT and LCT, and there are about 3/4 of real number
multiplications can be saved.

So the most important utility of FRCT, CCT, and SFRCT is
they can substitute the FRFT and LCT when the input is even.
Thus, the applications of FRCT, CCT, SFRCT are the same as the
applications of FRFT and LCT. The applications of FRFT and
LCT are filter design, optical system analysis, radar system
analysis, solving differential equations, phase retrieval, multi-
plexing, space-variant pattern recognition, edge detection, etc.
They are also the applications of FRCT, CCT, and SFRCT.

We will give two examples, one is optical system analysis,
and the other is space-variant pattern recognition.

t
input focal lengfth = f;, 21(1;1?1; )
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Fig. 1 Optical system with one spherical lens, two free spaces.

For the optical system as Fig. 1, the relation between the input
and output can be expressed as by LCT

L(pg)= e 17 KD (p, )k D (g, ) fi (v, ey
(35)
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and ¢ is some constant phase, k=277, and
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In the case that the input is even for both x-axis and y-axis:

Jilx, y) =fl(=x, ), Jix, y) =fix, =), (38)
then we can use the CCT with the same parameters to substitute
the LCT for both x-axis and y-axis, and change Eq. (35) as:

Lolp.a)=e? 7 KD (p, KD (g, ) (5, )y
(39)



where ¢ is some constant phase, the values of {a, b, ¢, d} are the
same as Eq. (36), and Kc(a’b’c’d)(p, x) is the kernel of CCT:

) 42
i =P 55
Kot (psx):\/jinbe 37 cos(px/b)e 2 . (40)

The value of f,(p, ¢) calculated from Eq. (39) is the same as the

value of f,(p, q) calculated from Eq. (35), but the complexity of
digital implementation of Eq. (39) is much less, because the
complexity of CCT is only about 1/2 of the complexity of LCT.

Then we will discuss the application of space-variant pattern
recognition. In [9], they had illustrated how to use FRFT for
space-variant pattern recognition. They use fractional correlation:

=)= 04, (x(0) () = FTLx L () (5)] (1)
where X1 (s)=0%(x(0). Y£(s)=0f0). @1

Then we can choose x(?) as the reference pattern, and choose y(7)
as the input object. And then, we can use the inequality as below:
Max(|z(¢)|) > threshold (42)
to determine whether the input object matches the reference

pattern. Eq. (42) will be satisfy only when

()= x(t-1,), and Jfo| < R. 43)
If the input object doesn’t match the reference pattern, or the
difference of locations is too large, then Eq. (42) will not satisfy,
and the input object will not be recognized as the desired pattern.
So FRFT can be used for space-variant pattern recognition.

In fact, if the reference pattern is real and even, we can use
SFRCT instead of FRFT for the application of space-variant
pattern recognition. In this case, Eq. (41) is changed as below:

2(1)= 0l Gy () = CTIX G () (5] @9

whee X2()=0%60). 72()=0%0). o

Although the input object y(f) may not be an even function, but
we can prove this won’t cause any problem when we use SFRCT
instead of FRFT for y(¢) in this application. Then, we can also
use the inequality of Eq. (42) to determine whether the input
matches the reference pattern. We find, as the case when we use
FRFT, Eq. (43) is still the condition that Eq. (42) is satisfied. We
can use ¢ to control the value of R. If [tang] is large, then R is also
large (when ¢ = 172, R — ). If [tang| is small, then R is small.

We give an example as below. We choose the reference:

x(t)=N(t/1.6), (45)
and plot it in Figs. 2(a), 3(a). Then we choose the inputs as:

Fig. 2(b): y(t) =x(t—=2), Fig.3(b): y(t) = x(¢t —14).(46)
Then we choose ¢ = 772, and calculate z(7) by Eq. (44), and plot
lz(#)| in Figs. 2(c), 3(c). Since in this case, the value of R in Eq.
(43) is infinite, so no matter how large the displacement is, the
value of Max(|z(¢)[) will not be attenuated. Then we choose g =
0.4571 and plot |z(#)| in Figs. 2(d), 3(d). In this case, the value of
R in Eq. (43) is finite. So even when the input is same as the
reference, but if the displacement is too large, as the case of Fig.
3 (t, = 14), the value of Max(|z(¢#)|) will be attenuated.

Thus, when [tang| — o, we do the space-invariant pattern
recognition. When [tang| is finite, we do the space-variant pattern
recognition. This is the same as the case when we use FRFT [9],
but the complexity of computation is much less (just about 1/4).

o
o o [
o
o o [

o

10 20
(a) reference pattern

o

10 20
(b) inputobject, t0=2

o o
o N >

o o
o N >

o

10 20 0 10 20
(c) correlation for q=pi/2 (d) correlation for q=0.45pi

Fig. 2 Space-variant pattern recognition, displacement = 2.
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(c) correlation for g=pi/2 (d) correlation for q=0.45pi

Fig. 3 Space-variant pattern recognition, displacement = 14.

V. CONCLUSION

In this paper, we have introduced the fractional, canonical, and
simplified fractional cosine transforms (FRCT, CCT, SFRFT).
The complexities of FRCT and CCT are 1/2 of those of the FRFT
and LCT, and the complexity of SFRCT is 1/4 of those of the
FRFT and LCT. We can use FRCT and CCT to replace FRFT
and LCT when the input is even, and use SFRCT to replace
FRFT and LCT when the input is real and even.

We have also derived the fractional, canonical, and simplified
fractional sine and Hartley transforms in [10].
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