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ABSTRACT

Despitecontinuousprogressin robustautomaticspeech
recognitionin recentyearsacousticmismatchbetweentrain-
ing and test conditionsis still a major problem. Conse-
quently, largespeechcollectionsmustbeconductedin many
environments.An alternative approachis to generatetrain-
ing datasyntheticallyby filtering cleanspeechwith impulse
responsesand/oraddingnoisesignalsfrom the target do-
main. We comparetheperformanceof a speechrecognizer
trainedon recordedspeechin thetargetdomainwith a sys-
temtrainedon suitablytransformedcleanspeech.In order
to obtaincomparableresults,our experimentsarebasedon
two channelrecordingswith aclosetalkandadistantmicro-
phonewhichproducethecleansignalandthetargetdomain
signalrespectively. By filtering andaddingnoiseweobtain
error rateswhich areonly 10% higherfor naturalnumber
recognitionand30%higherfor acommandrecognitiontask
comparedto trainingwith targetdomaindata.

1. INTRODUCTION

A crucialfactorfor theperformanceof presentspeechrecog-
nition systemsis thattrainingandtestconditionsareacous-
tically similar. This meansthat training datacollections
mustbeconductedin every environmenta recognitionsys-
tem is supposedto operatein, e.g. car, office, telephone,
living room, etc. Evenworse,suchenvironmentsareusu-
ally parameterized,e.g. speedat which the car is driving,
reverberationtimeof theliving room,microphonedistance,
etc. As suchdatacollectionsarebothexpensiveandinflex-
ible we investigatemethodsto generatetraining datasyn-
theticallyby transformingcleanspeechundercertainmodel
assumptionsof the targetdomain.The transformationswe
investigateare convolution with an impulseresponseand
additionof a noisesignal. The impulseresponseand the
noisepowerspectrumhavebeenmeasuredin thetargetdo-
main.

In order to evaluatethis approach,time synchronous
recordingswith a high quality closetalk microphoneand

an inexpensive distantmicrophonehave beenmadein two
living rooms. A speechrecognitionsystemis trainedwith
varioustransformationsof the closetalk signalandtested
on thedistantmicrophonerecording.Therecognitionaccu-
racy is comparedwith asystemtrainedonthedistantmicro-
phonesignal(matchedscenario).Two recognitiontasksare
studiedwherethelexiconconsistseitherof naturalnumbers
or of commandphrases.

Thetransformationsof thecleansignalimprovetherecog-
nition accuracy significantlycomparedto a completemis-
matchscenarioandsometimesachieve theperformanceof
matchedtraining.Surprisingly, theinfluenceof addingnoise
is moredecisive than convolution with the target impulse
responsein our experiments.Further, asexperimentswith
whitenoiseindicate,thespectralshapeof thenoisehasless
influencethanweexpected.

The effect of variousadditive noisesignalson speech
recognitionaccuracy hasbeenstudiedin [5]. Transforming
cleanspeechby filtering, addingnoiseandMLLR adapta-
tion to hands-freemicrophonearrayapplicationshasbeen
investigatedin [1, 3, 4]. This paperis a follow-up of our
previouswork ontransformingcleanspeechto thecarenvi-
ronmentby addingwhitenoiseandrecordedcarnoise[2].

The concretemotivation for this work are large voca-
bulary conversationaluserinterfacesfor TVs, VCRs,audio
sets,etc. Suchapplicationsmustbe speaker independent
and require thereforelarge amountsof training material.
Moreover, several languagesneedto be supported,which
emphasizeseven morethe needfor alternative methodsto
generatethetrainingdata.

Thepaperis structuredasfollows: Section2 describes
therecordingconditions,speechdatabasesandtherecogni-
tion system.In Section3 wedescribevariouswayshow the
cleansignalwastransformedinto trainingdata. We inves-
tigateconvolutionswith measuredimpulseresponses,addi-
tion of whitenoiseandcolorednoisewhosespectrumcorre-
spondsto thetargetdomainnoiseandcombinationsthereof.
Theresultingrecognitionerrorratesarereportedin Section
4. Conclusionsaredrawn in Section5.



2. EXPERIMENT SETUP

2.1. Recording Environment

Therecordingsweremadein two differentroomswhichare
3m � 5m and2m � 3m largeand2.5mhigh. Both rooms
havea reverberationtime T60of about0.44secondsat 500
Hz. Two synchronousrecordingswith a near(0.4m)anda
far (2.5m)microphonehave beenmadeandtheimpulsere-
sponsesbetweenspeaker and the microphoneshave been
measured,seeFigure 1. The nearmicrophoneis a high
quality AKG C1000with an SPL Mike Man Model 9223
pre amplifier. The far microphoneis a MWM MH118HC
with aRadioDesignLabsSTM-1preamplifier. TheMWM
MH118HCis aninexpensivemicrophoneof thekind which
are usedin consumerproducts. A sampleutterancespo-
kenin room1 andrecordedby bothmicrophonesis plotted
in Figure2. The impulseresponsesin room 1 areplotted
for bothmicrophonepositionsin Figure3. For eachutter-
ancethe SNR hasbeenestimatedusingan automaticseg-
menter. TheresultingSNRhistogramsfor eachmicrophone
areplottedin Figure4. As expected,thenearmicrophone
SNRis higherthanthefarmicrophoneSNR.Finally theav-
eragenoisepower spectrumhasbeenestimatedfor the far
microphonein bothrooms,seeFigure5.

The samplingratewas 32 kHz for the speechrecord-
ings and44.1kHz for the measurementof the impulsere-
sponses.All experimentswerecarriedout on 8 kHz down
sampledsignals. The nearand the far microphonesignal
aredenotedby ��� and ��� , the correspondingimpulsere-
sponsesbetweenspeaker andmicrophonesaredenotedby� � and

� � respectively.

xf

xn

fh

n

Near microphone 

h

2.5m

0.4m

Far microphone

Fig. 1. Synchronoustwo microphonerecording

2.2. Speech Database

The recordeddatabasecomprises200 speakers (98 men,
102women)with anagerangingbetween10 and60 years.
The languageis native British English. Testswerecarried
out on two sub corpora. The first corpuscontainsnatu-
ral numbers,e.g. “two thousandand three”, “seventeen”,
“eighty” , etc. andcomprises5288utterances(3362train-
ing, 1926test,disjoint speakers). The lexicon consistsof
32words,whicharemodeledby wholewordHMMs whose
lengthsrangefrom 10 to 51 states.This is a difficult task
becausemany wordssoundvery similar, e.g. “ninety” and
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Fig. 2. Recordingof thesameutterance“two thousandand
four” with nearmicrophone(left graph)andfarmicrophone
(right graph)in room1.
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Fig. 3. First 200msof impulseresponsefrom speaker po-
sition to nearmicrophone(left graph)andfar microphone
(right graph)in room1.
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Fig. 4. UtterancebasedSNR histogramfor nearmicro-
phone(left graph)and far microphone(right graph)after
preemphasisaccumulatedoverbothrooms.
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Fig. 5. Estimatedlogarithmicnoisepower spectrumfrom
thefarmicrophonein room1 androom2. Thenoisepower
in thenearmicrophoneis negligible.



“nineteen”. Thesecondcorpuscontainstypical commands
for consumerelectronicsdevices, e.g. “volume higher”,
“silent”, “c hanneldown”, etc. andcomprises9844utter-
ances(6281training,3563test).Thelexiconconsistsof 54
words, which aremodeledby whole word HMMs whose
lengthsrangefrom 14 to 59states.

2.3. Speech Recognition System

Thespeechrecognizerisacontinuousmixturedensitywhole
wordHMM systemwhoseparametersareestimatedbyViterbi
training. Eachmixture consistsof 8 Laplaciandensities
with a globaldiagonalcovariancematrix. As our intention
is to understandacousticeffects we refrainedfrom using
a languagemodel or a grammarduring recognition. The
signalanalysisis as follows: The observed speechsignal
is preemphasizedandsubdivided into overlapping,16 ms
spacedframesof 32 ms length. For eachframethe power
spectrumis estimatedthrougha HammingwindowedFFT
followedby a filter bankwith 15melspacedtriangularker-
nels. In orderto reducelow frequency noisethefilter bank
cutsoff frequenciesbelow 187Hz. Thecenterfrequency of
theleft mostkernelis 312Hz. After adiscretecosinetrans-
form of thelogarithmicfilter bankoutputs12melfrequency
cepstralcoefficientsareobtainedwhoselong termmeanis
eliminatedby a first orderrecursive filter with a largetime
constant.Finally, thefeaturevectoris augmentedby 12co-
efficientsobtainedby linear regressionover two framesin
thepastandtwo framesin the future. No furtherstepsare
takenfor channelequalizationor noisesuppression.

3. INVESTIGATED APPROACHES TO
SYNTHESIZE THE FAR MICROPHONE SIGNAL

In this sectionwe defineseven transformationswhich we
appliedto thenearmicrophonesignal � � in orderto gener-
atetrainingmaterial:

(1) � � : Nearmicrophonesignal. This correspondsto a
completemismatchscenario,which meansthat the
nearmicrophonerecording� � is usedfor trainingand
thefarmicrophonerecording� � is usedfor testing.

(2) � �
	 � � : Near microphonesignal filtered with the
transferfunctionfromspeakerto farmicrophone.The
reverberationof the resultingsignalis similar to ��� .
Theoutputsignalhasbeenscaledsuchthatthespeech
energy in eachutteranceis thesameas ��� . Themea-
surewe usedfor the speechenergy of an utterance
is the averageenergy in the 1500–3000Hzbandof
the20%frameswith highestenergy. Perceptually(2)
soundslike � � exceptfor additivenoise.

(3) � ��	 � �
	 ������ : Like (2) but additionalinversefilter-
ing with the transferfunction from speaker to near

microphone.This is slightly moreaccuratethan(2),
however we could not hearany differencebetween
(2) and(3).

(4) � ��	 � ��	 ������������ : Like (3) but additionof astation-
ary noisesignal ��� with thesamepower spectrumas
thenoisesignalin � � . Thenoisesignalhasbeengen-
eratedby estimatingthe averagenoisepower spec-
trum of � � over the entire training corpus,seeFig-
ure 5. Assumingzerophase,a complex noisespec-
trum hasbeengeneratedwhich wasusedusedto fil-
ter white noise. The result is a randomsignalwith
thesamepower spectrumastheaveragenoisesignal
in ��� . Perceptuallywe did not realizeany difference
between(4) and ��� .

(5) � ��	 � ��	 ������������ : Like (4) exceptthat theadded
noisesignal is white noise ��� with the samepower
asthenoisein � � . Thedifferencein thebackground
noiseof (5) and � � is clearlyaudible.

(6) ��� ��� � : Assumingthat the impulseresponsesare
notgiven,thenearmicrophonesignalis simplyadded
with a noisesignalasin (4). Beforeaddingthenoise
� � wasscaledasdescribedin  "!�# .

(7) � � ����� : Like (6) exceptthat white noisehasbeen
used.

Theresultingsignalsaremoreor lesssimilar to the far
microphonesignal��� dependingontheamountof informa-
tion usedfromthetargetdomain.Options(2) to (5) presume
knowledgeof impulseresponses.Options(4) and(6) pre-
sumethattheaveragenoisepowerspectrumandthespeech
energy in � � canbe estimated.Option (5) and(7) merely
requirethat thespeechenergy andaveragenoiseenergy in
� � aregiven.

4. EXPERIMENTAL RESULTS

Table1 and2 summarizethespeechrecognitionresultsfor
all combinationsof corporaandrooms. Apart from error
rateson thefarmicrophonesignal � � wemeasuredalsothe
error rateswhenthe testsignalsis generatedby the same
transformationof � � asthetrainingsignal.Theparameters
of the speechrecognizerhave beenoptimizedfor the case
whentrainingandtestis doneon thetargetsignal ��� .

Accordingto ourresults,additivenoiseis moredecisive
thanconvolution with the targetdomainimpulseresponse,
even if thespectralshapeof thenoiseis differentfrom the
targetdomain.Thelowesterrorrates,whichareabout10%
higherfor naturalnumbersand30%for commandphrases
relativeto trainingon � � areobtainedbycombiningfiltering
andaddingnoise.If � � is useddirectly for trainingwithout
any transformation,theerrorrateincreasesby100%relative
for naturalnumbersand250%for commandphrases.



NaturalNumbers room1 room2 room1+2

Trainingandteston ���
� � 22.7 24.8 22.7

Trainingon transformed��� , teston ���
� � 54.7 41.5 44.0
� ��	 � � 45.4 36.1 36.0
��� 	 ������ 	 � � 45.5 34.9 36.1
� ��	 ������ 	 � � �$��� 30.5 22.5 24.7
��� 	 ������ 	 � � �$� � 28.3 30.2 27.3
� � �$��� 42.6 26.2 28.6
� � �$��� 37.2 34.4 32.4

Trainingandteston transformed� �
��� 9.7 9.0 10.1
� ��	 � � 15.7 19.2 17.3
� ��	 ������ 	 � � 16.2 17.8 17.5
��� 	 ������ 	 � � �$� � 17.0 19.1 18.1
� ��	 ������ 	 � � �$��� 21.6 24.6 25.2
��� �$� � 9.2 11.3 10.5
� � �$��� 14.5 20.3 17.3

Table 1. Worderrorratesonthenaturalnumbercorpus.The
first row is thebaselinewherethefarmicrophonerecording
wasusedfor trainingandtesting.In theblockbelow trans-
formationsof the nearsignal ��� areusedfor training and
the far microphonerecording� � is usedfor testing. In the
lower block trainingandtestdataareobtainedby thesame
transformationsof thenearsignal � � .

Commandphrases room1 room2 room1+2

Trainingandteston � �
��� 14.2 10.5 10.2

Trainingon transformed� � , teston � �
��� 45.5 36.6 36.4
� ��	 � � 37.4 28.5 28.8
��� 	 ������ 	 � � 35.3 26.9 27.7
� ��	 ������ 	 � � �$��� 23.1 13.7 14.7
� ��	 ������ 	 � � �$��� 19.7 16.5 16.0
��� �$� � 33.2 18.9 20.9
� � �$��� 30.1 19.5 19.8

Trainingandteston transformed���
� � 2.6 2.2 1.9
��� 	 � � 6.1 7.0 6.0
� ��	 ������ 	 � � 7.0 7.0 6.0
� ��	 ������ 	 � � �$��� 7.4 7.5 6.6
��� 	 ������ 	 � � �$� � 9.6 12.8 10.3
� � �$��� 3.0 3.0 2.4
��� �$� � 5.1 7.3 5.3

Table 2. Sameresultsas in Table1 but for the command
phrasescorpus.

5. CONCLUSION

We comparedtherecognitionaccuracy of a systemtrained
in thetargetdomainwith onetrainedonsuitablytransformed
clean speech. Various transformationshave beenimple-
mentedwhich consistof convolution with measuredim-
pulseresponsesandaddingwhite andcolorednoise. The
experimentswerecarriedout in two living roomson two
whole word recognitiontasks. Best resultswere usually
achievedby convolutionwith theimpulseresponsebetween
speakerandtargetmicrophoneposition,inverseconvolution
with the impulseresponsebetweenspeaker andclosetalk
microphonepositionandadditionof stationarynoisewhose
power spectrumhasbeenmeasuredin the target domain.
With this setupwe obtainerrorrateswhich are10%higher
comparedto matchedtrainingfor naturalnumbersand30%
higherfor commandphrases.

Theapproachof usingtransformedcleanspeechfor train-
ing hasnot only the advantageof reducingthe effort for
datacollections. We hopeto improve the recognitionper-
formanceby using the filtered signal for Viterbi segmen-
tation before the additionof noise. Further, we intend to
usetransformedtrainingmaterialwith differentinstancesof
thenoiseprocessin orderto obtaina morerobustacoustic
model.
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