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ABSTRACT

Despitecontinuougprogressn robustautomaticspeech
recognitionin recentyearsacoustianismatcrbetweertrain-
ing and test conditionsis still a major problem. Conse-
guently largespeecttollectionsmustbeconductedn mary
ervironments.An alternatve approachs to generatdrain-
ing datasyntheticallyby filtering cleanspeectwith impulse
responsesnd/oradding noisesignalsfrom the target do-
main. We comparethe performancef a speechrecognizer
trainedon recordedspeectin thetargetdomainwith a sys-
temtrainedon suitablytransformedtleanspeech.In order
to obtaincomparableesults,our experimentsaarebasedon
two channetecordingwith aclosetalk andadistantmicro-
phonewhich producethe cleansignalandthetargetdomain
signalrespectiely. By filtering andaddingnoisewe obtain
error rateswhich are only 10% higherfor naturalnumber
recognitionand30%higherfor acommandecognitiontask
comparedo trainingwith targetdomaindata.

1. INTRODUCTION

A crucialfactorfor theperformancef presenspeechecog-
nition systemsgs thattrainingandtestconditionsareacous-
tically similar.  This meansthat training data collections
mustbe conductedn every ervironmenta recognitionsys-
temis supposedo operatein, e.g. car, office, telephone,
living room, etc. Evenworse,suchervironmentsare usu-
ally parameterizede.g. speedat which the caris driving,
reverberatiortime of theliving room, microphonealistance,
etc. As suchdatacollectionsarebothexpensve andinflex-
ible we investigatemethodsto generatdraining datasyn-
theticallyby transformingcleanspeechundercertainmodel
assumptionsf the targetdomain. The transformationsve
investigateare convolution with an impulseresponseand
addition of a noisesignal. The impulseresponsendthe
noisepower spectrumhave beenmeasuredh thetargetdo-
main.

In orderto evaluatethis approach.time synchronous
recordingswith a high quality closetalk microphoneand

aninexpensve distantmicrophonehave beenmadein two
living rooms. A speechrecognitionsystemis trainedwith
varioustransformation®f the closetalk signalandtested
onthedistantmicrophonaecording.Therecognitionaccu-
ragy is comparedvith asystentrainedonthedistantmicro-
phonesignal(matchedscenario).Two recognitiontasksare
studiedwherethelexicon consistsitherof naturalnumbers
or of commandphrases.

Thetransformationsf thecleansignalimprovetherecog-
nition accuray significantlycomparedo a completemis-
matchscenarioandsometimeschieve the performanceof
matchedraining. Surprisinglytheinfluenceof addingnoise
is more decisve than corvolution with the targetimpulse
responsen our experiments.Further asexperimentswith
white noiseindicate the spectrashapeof the noisehasless
influencethanwe expected.

The effect of variousadditive noisesignalson speech
recognitionaccurag hasbeenstudiedin [5]. Transforming
cleanspeectby filtering, addingnoiseandMLLR adapta-
tion to hands-freemicrophonearray applicationshasbeen
investigatedn [1, 3, 4]. This paperis a follow-up of our
previouswork ontransformingcleanspeectio thecarervi-
ronmentby addingwhite noiseandrecordectcar noise[2].

The concretemotivation for this work are large voca-
bulary corversationaliserinterfacesfor TVs, VCRs,audio
sets,etc. Suchapplicationsmustbe spealer independent
and require thereforelarge amountsof training material.
Moreover, several languagesieedto be supportedwhich
emphasizesven morethe needfor alternatve methodsto
generateéhetrainingdata.

The paperis structuredasfollows: Section2 describes
therecordingconditions speectdatabasesandtherecogni-
tion system.n Section3 we describevariouswayshow the
cleansignalwastransformednto training data. \We inves-
tigatecorvolutionswith measuredmpulseresponsesaddi-
tion of white noiseandcolorednoisewhosespectruntorre-
spondgo thetargetdomainnoiseandcombinationghereof.
Theresultingrecognitionerrorratesarereportedn Section
4. Conclusionsaredrawvn in Section5.



2. EXPERIMENT SETUP

2.1. Recording Environment

Therecordingsveremadein two differentroomswhichare
3m x 5mand2m x 3m largeand2.5mhigh. Both rooms
have areverberatiortime T60 of about0.44secondsit 500
Hz. Two synchronousecordingswith anear(0.4m)anda
far (2.5m)microphonehave beenmadeandtheimpulsere-
sponsedetweenspealer and the microphoneshave been
measuredseeFigure 1. The nearmicrophoneis a high
quality AKG C1000with an SPL Mike Man Model 9223
pre amplifier The far microphoneis a MWM MH118HC
with aRadioDesignLabsSTM-1 preamplifier The MWM
MH118HCis aninexpensve microphoneof thekind which
areusedin consumerproducts. A sampleutterancespo-
kenin room1 andrecordedoy bothmicrophoness plotted
in Figure2. Theimpulseresponseé room 1 are plotted
for both microphonepositionsin Figure3. For eachutter
ancethe SNR hasbeenestimatedusingan automaticsey-
menter TheresultingSNRhistogramdgor eachmicrophone
areplottedin Figure4. As expectedthe nearmicrophone
SNRis higherthanthefarmicrophoneSNR.Finally theav-
eragenoisepower spectrumhasbeenestimatedor the far
microphonédn bothrooms,seeFigure5.

The samplingrate was 32 kHz for the speechrecord-
ingsand44.1kHz for the measuremendf the impulsere-
sponsesAll experimentswerecarriedout on 8 kHz down
sampledsignals. The nearand the far microphonesignal
are denotedby z,, andzy, the correspondingmpulsere-
sponsedetweenspealer and microphonesare denotedby
hn, andhy respectiely.
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2.2. Speech Database

The recordeddatabasecomprises200 spealers (98 men,
102women)with anagerangingbetweenl0 and60 years.
The languageés native British English. Testswere carried
out on two sub corpora. The first corpuscontainsnatu-
ral numbersg.g. “two thousandandthree”, “seventeen”,
“eighty”, etc. andcomprises5288 utteranceg$3362train-
ing, 1926test, disjoint spealers). The lexicon consistsof
32words,whicharemodeledoy wholeword HMMs whose
lengthsrangefrom 10 to 51 states.This is a difficult task

becausenary wordssoundvery similar, e.g. “ninety” and
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Fig. 2. Recordingof the sameutteranceétwo thousandand
four” with nearmicrophon€left graph)andfarmicrophone
(right graph)in room1.
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Fig. 3. First200msof impulseresponsdrom spealer po-
sition to nearmicrophone(left graph)andfar microphone
(right graph)in room1.
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Fig. 4. UtterancebasedSNR histogramfor near micro-
phone(left graph)and far microphone(right graph) after
preemphasiaccumulateaverbothrooms.
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Fig. 5. Estimatedogarithmicnoisepower spectrumfrom
thefarmicrophondn room1 androom2. Thenoisepower
in thenearmicrophonds negligible.



“nineteen”. The seconccorpuscontaingypical commands
for consumerelectronicsdevices, e.g. “volume higher”,
“silent”, “channeldown”, etc. andcomprises9844 utter
anceq6281training,3563test). Thelexicon consistof 54
words, which are modeledby whole word HMMs whose
lengthsrangefrom 14 to 59 states.

2.3. Speech Recognition System

Thespeechiecognizeis acontinuousnixturedensitywhole
wordHMM systemwhoseparameterareestimatedy Viterbi
training. Eachmixture consistsof 8 Laplaciandensities
with a global diagonalcovariancematrix. As our intention
is to understandacousticeffects we refrainedfrom using
a languagemodel or a grammarduring recognition. The
signal analysisis asfollows: The obsened speechsignal
is preemphasizednd subdvided into overlapping,16 ms
spacedramesof 32 mslength. For eachframethe power
spectrumis estimatedhrougha Hammingwindowed FFT
followedby afilter bankwith 15 mel spacedriangularker-
nels. In orderto reducelow frequeng noisethefilter bank
cutsoff frequenciebelov 187Hz. The centerfrequeng of
theleft mostkernelis 312Hz. After adiscretecosinetrans-
form of thelogarithmicfilter bankoutputsl2 melfrequeny
cepstralcoeficientsare obtainedwhoselong term meanis
eliminatedby a first orderrecursve filter with a largetime
constantFinally, thefeaturevectoris augmentedby 12 co-
efficientsobtainedby linear regressionover two framesin
the pastandtwo framesin the future. No further stepsare
takenfor channekqualizatioror noisesuppression.

3. INVESTIGATED APPROACHESTO
SYNTHESIZE THE FAR MICROPHONE SIGNAL

In this sectionwe defineseven transformationsvhich we
appliedto the nearmicrophonesignalz,, in orderto gener
atetrainingmaterial:

(1) x,: Nearmicrophonesignal. This corresponds$o a
completemismatchscenario,which meansthat the
neamicrophoneecordingz,, is usedfor trainingand
thefar microphonerecordingz ¢ is usedfor testing.

(2) = * hy: Near microphonesignal filtered with the
transferfunctionfrom spealerto farmicrophoneThe
reverberatiorof the resultingsignalis similarto x .
Theoutputsignalhasbeenscaledsuchthatthespeech
enegy in eachutterances thesameasz ;. Themea-
surewe usedfor the speechenegy of an utterance
is the averageenegy in the 1500-3000Hzband of
the20%frameswith highestenegy. Perceptually2)
sounddike z; exceptfor additive noise.

(3) =, * hy x hy;': Like (2) but additionalinversefilter-
ing with the transferfunction from spealer to near

microphone.This is slightly moreaccuratghan(2),
however we could not hearary differencebetween
(2) and(3).

(4) zp*xhgxh,*+n.: Like(3) butadditionof astation-
ary noisesignaln. with the samepower spectrumas
thenoisesignalin z ;. Thenoisesignalhasbeengen-
eratedby estimatingthe averagenoise power spec-
trum of z; over the entiretraining corpus,seeFig-
ure5. Assumingzerophasea comple noisespec-
trum hasbeengeneratedvhich wasusedusedto fil-
ter white noise. The resultis a randomsignal with
the samepower spectrumasthe averagenoisesignal
in zy. Perceptuallyve did not realizeary difference
between(4) andzy.

(5) Tn x hy x h,' + ny,: Like (4) exceptthatthe added
noisesignalis white noisen,, with the samepower
asthenoisein z ;. Thedifferencein the background
noiseof (5) andz is clearlyaudible.

(6) =, + n.: Assumingthatthe impulseresponsesire
notgiven,theneamicrophonesignalis simplyadded
with anoisesignalasin (4). Beforeaddingthe noise
x, wasscaledasdescribedn (2).

(7) =, + ny: Like (6) exceptthatwhite noisehasbeen
used.

Theresultingsignalsaremoreor lesssimilar to the far
microphonesignalz ; dependingntheamountof informa-
tion usedromthetargetdomain.Options(2) to (5) presume
knowledgeof impulseresponsesOptions(4) and(6) pre-
sumethatthe averagenoisepower spectrumandthe speech
enegy in zy canbe estimated.Option (5) and (7) merely
requirethatthe speechenegy andaveragenoiseenegy in
xy aregiven.

4. EXPERIMENTAL RESULTS

Table1 and2 summarizehe speechrecognitionresultsfor
all combinationsof corporaandrooms. Apart from error
ratesonthefar microphonesignalz ; we measured@lsothe
error rateswhenthe testsignalsis generatedy the same
transformatiorof z,, asthetrainingsignal. The parameters
of the speectrecognizethave beenoptimizedfor the case
whentrainingandtestis doneon thetargetsignalz .

Accordingto ourresults additive noiseis moredecisie
thanconvolution with the tagetdomainimpulseresponse,
evenif the spectralshapeof the noiseis differentfrom the
targetdomain.Thelowesterrorrateswhich areabout10%
higherfor naturalnumbersand30% for commandphrases
relativetotrainingonz; areobtainedoy combiningfiltering
andaddingnoise.If z,, is useddirectly for trainingwithout
ary transformationtheerrorrateincreasedy 100%relative
for naturalnumbersand250%for commandphrases.



NaturalNumbers

| room1 | room2 [ room1+2 |
Trainingandtestonx ¢

I | 227 | 248 | 227 |
Trainingon transformede,,, testonz ¢
Tn 54.7 415 44.0
Ty * hy 45.4 36.1 36.0

Ty, x bl * hy 455 34.9 36.1
Tp*xhyt xhy +n. 30.5 22.5 24.7
Ty, x btk hy +ny, 28.3 30.2 27.3

Ty + N 42.6 26.2 28.6

Ty + Ny 37.2 34.4 32.4
Training andtestontransformeds,,

T 9.7 9.0 10.1

T * hy 15.7 19.2 17.3

T, xh, 1% hy 16.2 17.8 175

Tp*xhyt xhy +n. 17.0 19.1 18.1
Ty xh, L hy +my, 21.6 24.6 25.2
Ty + Ne 9.2 11.3 10.5
Ty + Ny 14.5 20.3 17.3

Table 1. Worderrorratesonthenaturalnumbercorpus.The
firstrow is thebaselinevherethefar microphoneecording
wasusedfor trainingandtesting.In theblock below trans-
formationsof the nearsignalz,, areusedfor training and
the far microphonerecordingz ¢ is usedfor testing. In the
lower block training andtestdataare obtainedby the same
transformationsf thenearsignalz, .

| Commandphrases || room1 [ room2 | room1+2 ]

Trainingandteston ¢

|y | 142 | 105 | 102 |
Training ontransformede,,, testonz ¢
T 455 36.6 36.4
T * hy 37.4 28.5 28.8
Tp*h, % hy 35.3 26.9 27.7
Tp*h, " xhy +n. 23.1 13.7 14.7
Tpxhtxhy+n, || 197 16.5 16.0
Tp + N 33.2 18.9 20.9
Ty + Ny 30.1 19.5 19.8
Training andtestontransformeds,,
Tn 2.6 2.2 1.9
Ty, *x hy 6.1 7.0 6.0
Tp*hy' % hy 7.0 7.0 6.0
Tp*xh,  xhy +n. 7.4 7.5 6.6
Ty x bl x hy +my, 9.6 12.8 10.3
T + N 3.0 3.0 24
Tp + Ny 5.1 7.3 5.3

Table 2. Sameresultsasin Table 1 but for the command
phrasesorpus.

5. CONCLUSION

We comparedhe recognitionaccurag of a systemtrained
in thetargetdomainwith onetrainedonsuitablytransformed
clean speech. Varioustransformationshave beenimple-
mentedwhich consistof corvolution with measuredm-
pulseresponsesndaddingwhite and colorednoise. The
experimentswere carriedout in two living roomson two
whole word recognitiontasks. Best resultswere usually
achievedby corvolutionwith theimpulseresponsdetween
spealerandtargetmicrophoneposition,inversecornvolution
with the impulseresponséetweenspealer and closetalk
microphonepositionandadditionof stationarynoisewhose
power spectrumhasbeenmeasuredn the target domain.
With this setupwe obtainerrorrateswhich are10% higher
comparedo matchedrainingfor naturalnumbersand30%
higherfor commandhrases.

Theapproactof usingtransformedleanspeectior train-
ing hasnot only the advantageof reducingthe effort for
datacollections. We hopeto improve the recognitionper
formanceby using the filtered signalfor Viterbi sggmen-
tation befoe the addition of noise. Further we intendto
usetransformedrainingmaterialwith differentinstance®f
the noiseprocessn orderto obtaina morerobustacoustic
model.
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