EMAP-BASED SPEAKER ADAPTATION WITH ROBUST CORRELATION ESTIMATION

Eugene Jon, Dong Kook Kim, and Nam Soo Kim

School of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

ABSTRACT

In this paper, we propose a method to enhance the perfor-
mance of the extended maximum a posteriori (EMAP) es-
timation using the probabilistic principal component analy-
sis (PPCA). PPCA is used to robustly estimate the correla-
tion matrix among separate hidden Markov model (HMM)
parameters. The correlation matrix is then applied to the
EMAP scheme for speaker adaptation. PPCA is efficient
to compute, and shows better performance compared to the
method previously used for EMAP. Through various exper-
iments on continuous digit recognition, it is shown that the
EMAP approach based on the PPCA gives enhanced perfor-
mance especially for a small amount of adaptation data.

1. INTRODUCTION

Due to recent advances, speaker independent (SI) contin-
uous speech recognition systems show improved perfor-
mance. But the performance still degrades for those speak-
ers who are not covered by the training data. Various
speaker adaptation methods have been studied to reduce
the performance gap between the Sl and speaker depen-
dent (SD) systems [1]. One of such methods is the max-
imum a posteriori (MAP) method [2] in which the a pri-
ori knowledge concerned with the recognition parameters
is used. An important advantage of the MAP approach
is that the adapted parameters converge to the SD models
when the adaptation data grows larger. However, the MAP
approach transforms only the observed parameters, which
makes MAP unsuitable for rapid speaker adaptation. For
that reason the extended MAP (EMAP) [3] approach was
proposed to enhance the performance of the MAP-based
method for sparse adaptation data. EMAP uses the corre-
lation among parameters to adapt unobserved parameters.
Principal component analysis (PCA) [4] is a method used
in numerous statistical applications to reduce the dimen-
sionality of a data set, while retaining the inherent variation.
This property of PCA is useful for rapid speaker adaptation,
since it can fully utilize a small amount of adaptation data.
With the incorporation of probability density models, PCA
becomes the probabilistic PCA (PPCA) [5] where the pa-
rameters can be easily obtained based on the given data set.

In this paper, we propose a rapid speaker adaptation
method which uses PPCA to compute the correlation matrix
for the EMAP approach. The performance of the proposed
approach is compared to the conventional EMAP algorithm
on various experiments, and gives better results.

2. OVERVIEW OF THE PROPOSED METHOD

The proposed adaptation approach is described as follows:
First, we use the data of each individual speaker to obtain
the PPCA parameters. This computation is done before the
adaptation process. Using the PPCA parameters we can
compute the correlation matrix needed for the EMAP adap-
tation. The correlation matrix and the adaptation speech
data are used for EMAP adaptation. Finally, using the
adapted model we run the speech recognition tests. The
block diagram of the proposed speaker adaptation method
is shown in Figure 1.

3. MAP ADAPTATION

The MAP estimation is a scheme that utilizes the prior in-
formation of the parameters to be estimated [6]. If O =
{01, ..., o1} isasequence of observations with a pdf P(O)
where L is the total number of frames and A is the parame-
ter set defining the distribution, given a sequence of training
data O, X is to be estimated. If X is assumed to be fixed but
unknown, the ML estimate for A is found by solving
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However, if A is assumed random with a a priori distribution
function P, (1)), then the MAP estimate for A is found by
solving
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Using Bayes theorem,
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Compared to ML estimation, the MAP estimation procedure
involves a prior distribution function P, () for the random
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Fig. 1. Speaker Adaptation Procedure

parameter A. It can also be seen that MAP estimation is
more robust for sparse adaptation data for this reason.

For the hidden Markov model (HMM) parameters the es-
timate of the mean is obtained by the following equation

L
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where k is the index of the Gaussian, p, is the prior mean of
the kth Gaussian, o is the observation vector of the ith frame
and ¢y, is the count of kth Gaussian among the [th frame of
the observation data. \We can observe that the mean is a
interpolation of the observation data and the prior data. We
can change the importance of the prior data by adjusting .
It can be seen from (4) that only the observed parameters
are adapted. For the unobserved parameters cy; is zero and
the estimated mean becomes the prior mean.

4. EXTENDED MAP

Speaker adaptation using the MAP approach has the dis-
advantage of transforming only those parameters that are
observed. Typical speech recognition systems based on the
HMM use millions of parameters, which makes rapid adap-
tation through MAP practically impossible. The EMAP ap-
proach was developed in order to improve the MAP adap-
tation method particularly for fast speaker adaptation. The
EMAP method assumes that all the Gaussian distributions
are correlated, and uses the correlation information to trans-
form the unobserved parameters.

Letm = [m?, ..., m%]” be an augmented column vec-
tor, in which m represents the mean vector of the jth Gaus-
sian distribution with K being the total number of Gaus-
sians and 7' denoting the matrix transposition. We call this
augmented vector m, as the supervector since it consists of
all the Gaussian mean vectors. It is assumed that the in-
dividual mean vectors are correlated such that the a priori
probability density function (pdf) of m is given by

g(m) = N(my, So) 5)

where N (a, b) represents the normal distribution with mean
a and covariance b. In general, mq is obtained through
HMM training where the relevant parameters are estimated
based on a set of training data according to the ML crite-
rion. This process is explained extensively in [3] and only
the results will be shown here.

For simplicity, it is assumed that only a single observa-
tion sequence oy, 09, - - - ,0r, is used for adaptation, where
L represents the total number of frames. If the prior pdf
for the Gaussian mean vectors are given by (5), it could be
shown that according to the MAP criterion, the adapted su-
pervector, my is expressed as follows [3]:

g = S(S + SoC)"'mg + Se(S + CS)'CA  (6)

where S = diag(%4,--- , X k) with X, being the covari-
ance matrix of the jth Gaussian and C = diag(cy,- - ,ck)
inwhich ¢, = 31, e is the count of the kth Gaussian ob-
served among the adaptation data used. Furthermore, A =

L
((m)y .- (mp)Ty )T where (my) ary = S22
The right hand side of (6) can be interpreted as a linear
interpolation between the prior knowledge and the given
data. For effective computation, we express the mean shift
my — mg as a function of the ML mean shift A — m,.

Manipulating (6) we can obtain
ﬁlg — Mg = Sg(S-l—CSg)ilC(A—mo). (7)

Conventionally, the correlation matrix Sy in (7) is ob-
tained using the SD model parameters as follows:
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where my; is the supervector of the ith speaker with N,
being the total number of training speakers and mgy rep-
resents the Sl supervector consisting of all the SI Gaussian
mean vectors.



5. PROBABILISTIC PCA

PCA is awell established technique for dimension reduction
[4]. The main idea of PCA is to reduce the dimensionality
of a data set in which there are a large number of interrelated
variables, while retaining most of the variation. PPCA was
introduced by incorporating the concept of probability den-
sities in the PCA method. The most significant advantage
of PPCA over PCA is that the single PCA model can be ex-
tended to a mixture of such models, thus allowing nonlinear
projection of the data.

Here we review the concept and formulations for the
PPCA. Lety = [y1,%2,- - ,yp]T be an observation vec-
tor of dimension D. Assume that y is related to the latent
variable x = [z, 29, -- ,2p]T of dimension P(< D) by

y = Wx+py+e ©)

where W is a D x P parameter matrix that represents the
principal subspace of the observation data, y, is the mean
vector of y and ¢ is a Gaussian random noise independent
of x. Conventionally, the latent variable is defined to be an
independent Gaussian of unit variance such that

px) = @0 PPep(-xx). (10

The noise is also modeled by a Gaussian such that ¢ ~
N (0,0°T) where I is the D x D identity matrix. Based on
the above assumptions, the observation vector is also nor-
mally distributed according to

p(y) = (2n) P2z, |71/
) (12)
' eXp{—§(y — 1) Ty TNy — iy}

where Xy, = o?I + WWT. We can derive the conditional
pdf of y given x by

p(ylx) = (2m0®) P/
1 ) (12)
exp{—5ly — Wx — uy|’}.
Given an observation sequence Y = {yi1,y2, - ,yr},

the PPCA estimates the latent variable sequence X =
{x1,%2,--+,xr} and finds the optimal model parameters
A = {W, iy, 52} according to the ML criterion such that

A= argmax [log p(Y|\)] . (13)

However, since the latent variables {x;} are considered to
be hidden, it becomes extremely difficult to solve (13) di-
rectly. For that reason, the expectation maximization (EM)
algorithm is applied, which iteratively updates the parame-
ter values [5].

6. PROBABILISTIC PCA USED IN EXTENDED
MAP

Let the SD supervectors, my, - -- ,my,, shown in (8) be
considered as an observation sequence in the PPCA prob-
lem. Based on the latent variable model given in (9), we
can derive the correlation matrix from the parameters, W
and o computed in the previous section such that

So = o’I+ WWT, (14)

Substituting So in (7) with the right hand side of (14) will
yield

my —mg = (¢’I+ WWT)

(S+ C(’ T+ WWT))"'C(A — my). 19)

We can compute the above equation in a more efficient way
using the matrix inversion lemma. First we modify the term
inside the inversion bracket in (15).

S+ CE I+ WW)~! =D+ W W= (16)

where D = S + ¢2CI and W, = CW. Rearranging with
the matrix inversion lemma,

D+WWH=t =D ' -D'w,

A7)
I+ WD 'w)'wiDp 1
Using this method, we can expect two advantages compared
to the conventional EMAP approach. Since PPCA com-
presses the variation of the data to a smaller dimension,
it is suitable for adapting with sparse data. Also, the pro-
posed method can reduce the computational load. When
computing the adapted mean, the inversion part compro-
mises most of the computation load. In (17) a matrix of
dimension P x P should be inverted, which is quite smaller
compared to the inversion of the matrix of dimension D x D
in (7). Therefore we can expect a substantial computation
reduction.

7. EXPERIMENTS

Performance of the proposed method was evaluated with
speaker-independent continuous Korean digit recognition
experiments. Utterances from 105 speakers constructed the
training data and those from the other 35 speakers were used
for evaluation. Each speaker contributed 30~40 sentences
consisting of 3~7 digits.

The speech signal was sampled at 8 kHz and segmented
into 30 ms frames at 10 ms intervals with 20 ms overlaps.
Each speech frame was parameterized by a 24-dimensional
feature vector consisting of 12 mel-frequency cepstral coef-
ficients and their first-order time derivatives. 11 digits were
characterized by 7-state HMM’s, 3 silence HMM’s with a



Table 1. Word Recognition Rate (%) for SI, MAP, EMAP and EMAP based on PPCA(P).

Method | SI MAP EMAP PPCA(3) PPCA(5)
2 sent 886 89.0 89.7 90.0
Ssent | 875 888  89.8 90.5 90.6
10 sent 89.7 916 91.0 90.9

single state were used, and there were 2 Gaussian mixture
components for each state. In order to implement the EMAP
approach, the Gaussian means were augmented into a single
supervector. The supervectors were separately constructed
for the cepstrum and delta-cepstrum. Therefore, the dimen-
sion of a supervector was (11 x 7+ 3) x 2 x 12 = 1920.

In the recognition experiments, we drew 2, 5 and 10 sen-
tences from each target speaker for adaptation data, and 30
sentences were used for recognition tests. The adaptation
modes were supervised and static(batch). Dimensions for
the latent variables of the PPCA were set at 3, 5, 10, 20, 25,
30. The speech data used to compute the PPCA parameters
was the individual speech data of the 105 speakers which
were used as training data to compute the SI model.

Results were compared with those of the SI, MAP
adapted and EMAP adapted systems. These results are
shown in Table 1 where P represents the dimension of the
latent variable used for PPCA. Figure 2 shows that the pro-
posed method gives enhanced performance compared to the
conventional EMAP method especially for small amounts
of adaptation data. For 2 adaptation sentences the proposed
method shows 6.4% (P = 3) to 11.8% (P = 25) of re-
duction in word error rate (WER) compared to the original
EMAP scheme. As P grows larger the computation load in-
creases accordingly. However, the performance deteriorates
after P reaches an optimum value because the proposed sys-
tem converges to the original EMAP method. Therefore, a
value of P that can optimize the performance of the system
needs to be found. In this experiment P = 25 is sufficient
for small amounts of adaptation data.

8. CONCLUSIONS

We have proposed a novel approach to enhance the EMAP-
based speaker adaptation method by means of the PPCA
technique. Using the PPCA, we obtain a robust correlation
matrix which will be applied to the EMAP approach. The
proposed method leads to enhanced speaker adaptation per-
formance, especially for small amounts of adaptation data
and the computational load is somewhat reduced. For these
reasons, we can conclude that the proposed method is suit-
able for rapid speaker adaptation.

PPCA(10) PPCA(20) PPCA(25) PPCA(30)
90.0 90.1 90.3 90.2
90.6 90.9 91.0 90.9
91.5 91.8 91.8 91.9
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Fig. 2. Word Error Rate for Various Methods
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