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ABSTRACT

This paperdealswith noisyphasemonocomponentsignalsin ad-
ditive noise. This model is more appropriatefor real world ap-
plicationsin particularfor radarandcommunications.The prob-
lemis introducedandamaximumlikelihoodsolutionis proposed.
Specifically, theCramèr-Raoboundis explicitly derivedandcom-
paredto thecaseof noisefreephase.

1. INTR ODUCTION

Non-stationarysignals,i.e. signalswhosespectralcontentvaries
with time, arevery commonin many signal processingapplica-
tions. Examplesinclude,but arenot limited to, communications,
sonar, radar, vibration,ultrasoundimaging,speechandbiological
signals.

Many methodsof analysisof non-stationarysignalsfocuson
nonparametrictime-frequency distributions.However thesesuffer
from the well known time-frequency resolutionproblemand an
alternative to alleviate this problemlies in the useof parametric
methods.

Monocomponentpolynomialphasesignals(pps),i.e. signals
whosephase

���
is modeledby a polynomial � �����	�
���
�� 
�� 


and
of constantamplitude � , have beenfirst studiedby Djurić and
Kay [1]. Later, Peleg, PoratandFriedlander[2, 3] introducedthe
so-calledpolynomialphasetransformasa tool for estimatingthe
parametersof pps.

Mostof thework citedaboveassumesthatthesignalphasefits
perfectlyto a polynomialof a certaindegree.However, in a prac-
tical situationthis is not trueanda propermodelshouldincludea
noisecomponenton thephase,i.e.����� � �������

(1)

sothatthereceivedsignalis� � � ������� �"!#%$'&)( # � #+*�,.-0/ ��1 �32
(2)

where
�4�

denotethenoiseonthephase,assumedto berealvalued.
Themotivationbehindthenoisecomponenton thephaselies

in thefollowing

1. Errorsduetoanimperfectphasemodelingbyacertainbasis
function.
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2. Phasenoisein real signalsources,mainly oscillatorphase
noise, thermalnoise,addedamplifier noiseprior or after
frequency multiplication[4].

3. Noisedueto theamplificationof thereceivedsignal.

The noisein signal sourcesis highly relevant in both radarand
communicationsystems.For instancein radarapplications,spuri-
ousanglemodulationof the transmitterwill be transferredto the
delayedreturnsfrom thegroundclutter. As a consequence,when
theDopplerfrequency differencebetweentargetandclutterequals
the offset frequency, the sidebandsfrom the large clutter return
mayobscurethetargetsignal.

Thispaperis concernedwith ananalysisof signalsof thetype
given in Equation(2). Section2 is dedicatedto themathematical
signal model as well as to the main assumptions;identifiability
issueswill alsobe addressed.Section3 discussesthe maximum
likelihoodestimationwhile in Section4 the Cramèr-Raobounds
are derived andcomparedto the noisefree phasecase. Finally,
Section5 concludesthispaper.

2. SIGNAL MODEL AND ASSUMPTIONS

This sectionpresentsthesignalmodelusedthroughoutthepaper.
Notationsandassumptionswill begiven.

2.1. Signalmodel

Theobservedsignalmodelconsideredin this paperis� �5� �6� ��� 7 -0*�,.-8/ ��1�� 2
(3)

where
� �	9 2;:;:�:;20<>=@?

denotesthediscretetimeindex. Thephase
functionis modeledby, � � � �A 
%��
 � 
�B � 
 2

(4)

wherethe parametersC � 
 2ED �F9 2;:G:;:�2 1IH
arereal valued,whileC B � 
 2JD �K9 2;:�:G:;2 1IH

is somearbitrary set of real valuedbasis
functions. A usualexampleis the polynomialbasisdiscussedin
Section1,where

B � 
 � � 

. Wewill denoteby L thereal

<NMPO 1Q� ?�R
matrix whoseentriesaregivenby

B � 

.

Unlessspecified,thenoises
� �

and
1 �

areassumedzeromean
normal stationaryandwhite. Furthermore,

1 �
is assumedto be

complex circular.



The estimationproblemconsideredin this papercanbe for-
mulatedasfollows: Givena finite sampleof � �

, estimatetheam-
plitudeof thesignal � andits phase,i.e. theparametersC � 
 2SD �9 2�:;:;:;2 1IH

. Thenoisesvariancescanalsobe includedinto thees-
timationprocesssincewe do not assumetheir knowledge. How-
ever, unlessin a detectioncontext thelatterarewhatis commonly
known asnuisanceparameters.

2.2. Noteon the identifiability of the model

Beforea completestudyof anestimationprocedure,onemustal-
wayscheckfor the identifiability of themodel.To show theiden-
tifiability, it is necessaryto addresstheuniquenessof thestochas-
tic decompositionof the observed signal. In other words, does
anotherdecompositionof � �

as(3) exist for a differentsetof pa-
rameters?Thisensuresaone-to-onemappingfrom theparameters
spaceto thedistributionsset.Let suchotherdecompositionof � �

,� � � �6�3��� 7 - *�, - / ��1 � � ��T%����� 7VU- *�, U- / �W1 T� (5)

where
1 T � 2 � T� have thesamedistribution as

� �
and

1 �
respectively

but differentvariances.
Applying the expectationoperatoron both sidesof (5) leads

to: X@Y � �+Z � �6� �G7 - �V[]\V^_ � � T � ��7VU- �V[]\�^_ U (6)

which impliesthat � ��7 - � � ��7VU- andthus � � � � T �a`@b)cedgf
. This

is the only uniquenessresult which can be obtainedconcerning
the phase. For the uniquenessof the signalphaseparametersit
is essentialto force the parametersto lie within a certainrange
which dependson the basisfunctionsusedto model the phase.
For instance,for a polynomialbasis,it is thenwell known, that
to guaranteetheuniquenessof thephaseparametersthesemustbe
restrictedin the range h � 
 hji fIk Dmln2@D �o9 2�?�2G:;:�:;2 1

. In the re-
mainderof thepaper, p will denotetherangeof parameterswhich
guaranteessuchuniqueness.

Now we turn to the identifiability of the signalamplitude � .
It is clearthat if no phasenoiseis present,qIr, � qIr, U �F9

, then� � � T . When q r,ts�u9
, we resortto thesecondordermomentof� �

,X>Y O � � = X@Y � � Z�R r Z � � r �3� r0v - Cw� [yx0\ ^_ = � [ r \ ^_ H� �zT r �3� r0v U- Cg� [yx0\�^_ U = � [ r \V^_ U H
(7)

Combiningthisequationwith (6) andaftersomealgebraicmanip-
ulationsoneobtains q5r, � q5r, U . Using the latter in (6) leadsto� � � T . Onecanalsodeduceimmediatelythat q r� � q r� U which
concludestheidentifiability issue.

3. THE MAXIMUM LIKELIHOOD ESTIMA TOR

Considerthemodelof equation(3) andcollect theobserved data
into { �n| / � C � 
 2 �~} 2;:;:;:G2 � | [ } H . Given the parametersvector� � O � 2 � 
 2;:;:G:;2 � � 2 qIr� 2 qIr, Rm����� ��� * M p M � * r , the like-
lihood function writes as � O { ��| / h � R ��� | [ }� ��
��5O � � h � R

sincethe
noises

� �
and

1 �
areassumedwhite. Moreover, since

� �
and

1 �
are

independent,�5O � � h � R ����� � ��� � �I= �t�G��� O � � �0R8��� , � � �I= �A 
%��
 � 
�B � 
 ��� � �

where
� , and

� � denoterespectively theprobabilitydensityfunc-
tionsof thephasenoise

� �
andtheadditive noise

1 �
,� � O���R � ?f q r� �G��� O0= h � h rq r� R�2����t�

(8)� , O���R � ?  dgf q , �G��� O0= � rd q r, R�2¡�t� �
(9)

Themaximumlikelihoodestimatorwritesthenas:¢� � O ¢� 2 ¢� 
 2;:;:;:;2 ¢� � 2 ¢q r� 2 ¢q r, R � �
argmax£w¤V¥�� O {¦�n| / h � R

(10)

This estimatorholds when the noisevariances,q r, and q r� , are
unknown. If theseareknown, thenthey aresimply replacedinto
thelikelihoodexpressionandthelatteris optimizedwith respectto
theremainingparameters.For instance,in someradarapplicationsq r� canbeassumedknown by estimatingthenoiselevel whenno
pulseis present.

Considera new datavector, namelyC�{¦�n| / 20§ �n| / H"� C � 
 2 �I} 2;:G:;:;2 � | [ } 2 � 
 2 � } 2;:G:;:;2 � | [ } H
We refer to this vectoras the complete data while

§ ��| / is what
is commonlyknown as missing or unobserved data. This data
vectorcontainsboththesignalsamplesaswell asthenoisyphase
samples,thoughthe latter areactuallyunknown. The likelihood
associatedwith thecompletedatais seento be��¨ O {¦�n| / 28§ ��| / h � R �| [ }©� ��
 � ��� � �I= �N�G��� O � � �0R8��� , � � �I= �A 
%��
 � 
�B � 
 �

(11)

Thecompletedatalikelihoodcanthenbeeasilyseento belongto
theexponentialfamily. Furthermorewe have:� O { �n| / h � R � � � ¨ O { �n| / 28§ ��| / h � R�� � 
 � � }~ª;ªGª � � | [ } (12)

It iswell known thatthemaximumlikelihoodestimatesof the’nat-
ural’ parametersin anexponentialfamily areeasilycomputedby
the useof sufficient statistics.The naturalform of the likelihood
combinedwith theEM algorithmis usedin [5] to deriveapractical
estimatorof theparameters

�
.

Thescorefunctionsfor this estimationproblemaregivenby,«�¬ O { �n| / h � R« � 
 for
D � ?�2�:;:;:G2 1­�a®

, where
¬ O { �n| / h � R

is the log-

likelihood:
¬ O { ��| / h � R �°¯ b4± � O { �n| / 2 � R

. For each
� 


onecansee
that «�¬ O { ��| / 2 � R« � 
 � X�² | [ }A � ��
 « ¯ b�± �5O � � 2 ��� h � R« � 
 ³³³³ {´�n| / 2 �wµ

(13)

Hencethescoreof
�

is theconditionalexpectationof thecomplete
likelihoodscoregiventheobserveddata.Now observe that,¯ b�± �IO � � 2 ��� h � R � = ?q r� h � � = �N�G��� O � ��� R h r = ¯ b4± q r�= ?d q r, � ��� = �A 
���
 � 
 B � 
 � r = ?d ¯ b4± q r, (14)



From which it is straightforward to derive the scoreof the com-
pletedatalikelihoodandby the useof Eq. (13) the scoreof the
likelihood,«�¬ O { �n| / 2 � R« �'¶ � ?q r, | [ }A � ��
 B � ¶ X@Y � � h � �32 � Z�2�· �	9 2�:G:;:;2 1

(15)«�¬ O { �n| / 2 � R« � � =¸?q r� | [ }A � ��
 X@Y 1I¹� �3� v - �W1 � � [ � v - h � �32 � Z�2
(16)«�¬ O { �n| / 2 � R« q � � d <qIº�E» ?< | [ }A � ��
 X@Y h 1 � h r h � �.2 � Z¼= q r�5½ 2
(17)«�¬ O { �n| / 2 � R« q , � <q º, » ?< | [ }A � ��
 X@Y � r� h � � 2 �wµ = q r, ½ 2
(18)

4. CRAMÈR-RA O BOUNDS

The
D%�

-th entryof theFisherinformationmatrix ¾ O � R
is givenby:¿ 
 � O � R � = X�² « r ¬ O { �n| / 2 � R« � 
 « � � µ

(19)

For our problem,simplecomputationsshow thatX ² « r ¬ O { �n| / 2 � R« � 
 « � � µ � = ?q x, | [ }A � ��
 X@Y X@Y ��� h � � Z r Z B � 
 B � � (20)X�² « r ¬ O { �n| / 2 � R« � r µ � = dq x� | [ }A � ��
 X@Y X@Y À C 1 � � [ � v - H h � �ÁZ r Z (21)XÂ² « r ¬ O { ��| / 2 � R« � 
 « � µ � = d �q x� | [ }A � ��
 B � 
 X CgÃ�C X@Y 1 ¹� � � v - h � ��Z r H�H
(22)

Wewill only considertheCramèr-Raoboundfor theestimationof� andthephaseparametersandwe will assumethat thenuisance
parametersq r, and q r� areknown. To make somedevelopmentsto
equations(20-22)we needthefollowing lemma

Lemma 1 Let � �S� ��� � v - ��1��
, then for any stationary processÄ �

for which
X>Y Ä � h � � Z

exists,
X@Y Ä � h � � Z

is a stationaryprocess. As a
corollary the moments of

X@Y Ä � h � ��Z
are independent of

�
.

Proof: First noticethat ��� � , - is stationarysince
���

wasas-
sumedstationary. Furthermoresince

1 �
is stationaryGaussianand

circular, so is
1�� � [ ��7 - since � [ �G7 - is a rotation in the complex

plane.Hence��� � , - �Å1 � � [ ��7 - � � � � [ �G7 - is astationaryprocess.
Now, for any randomprocessÄ �

,
X@Y Ä � h � �+Z � X>Y Ä � h � � � [ ��7 - Z since

multiplying by � [ ��7 - representa rotation in the complex plane
which is one-to-one.Thus,if Ä �

is stationaryandsince� � � [ ��7 - is
stationarythen

X@Y Ä � h � ��Z
is stationary.

By noticing that
� �

,
1 � � [ � v - arestationaryprocesses,andby the

help of Lemma1, one deducesthat the conditionalmomentsin
(20-22)arestationaryprocesses.Thereforetheir momentscanbe
factoredout of the sum. Now observe that, by an integrationby
parts,wehaveX@Y � � h � �+Z � � ��qIr,q r� C � ¹� X@Y �3� v - h � �+Z'= � � X@Y � [ � v - h � ��Z H

(23)

Moreover, by noticingthat � ¹� X@Y � � v - h � � Z
and � � X@Y � [ � v - h � � Z

have
thesamedistribution,thepreviousequationsbecomeX�² « r ¬ O { �n| / 2 � R« � 
 « � � µ �ÇÆ �"rq x� X@Y X@Y Ã�C � ¹� �3� v - H h � �+Z r Z | [ }A � ��
 B � 
�B � �

(24)X ² « r ¬ O { �n| / 2 � R« � r µ � Æ < X>Y X@Y À C 1�� � [ � v - H h � � Z r Zq x� (25)X�² « r ¬ O { �n| / 2 � R« � 
 « � µ �È9
(26)

We will denote
¿ O q , R

the following partitionedFisherinfor-
mationmatrixÉÊÊË X ² �SÌ4Í ��ÎzÏnÐ'Ñ8Ò £ /Ì4Ó � r µ ÔÔ X�² Ì4Í ��Î ÏnÐ'Ñ Ò £ /Ì4Õ Ì4Í � Î Ï Ð�Ñ Ò £ /ÌgÕ � µ Ö ××Ø (27)

which canberewritten as
¿ O q , R � X@Y X@Y Ù h � �+Z X@Y Ù h � ��Z � Z

withÙ �ÛÚ 1�� � [ � v - ��1 ¹� � � v -�Ü �� Ó\ ^! C � ¹� � � v - = � � � [ � v - H L �0Ý (28)

where Ü denotethe
<ÇM°?

vector with all entriesequal to one,
noticethat Ü � Ü � <

. Usingclassicalinequalitieswehave¿ O q , R i X>Y Ù~Ù � Z � Ú r\ ^! Ü � Ü ÔÔ r Ó ^\ ^! L � L Ý � ¿ O 9 R
(29)¿ O 9 R

is theFisherinformationmatrix whenno noiseis presentin
the phase,seefor instance[2] for the polynomialbasisfunction
case. Equation(29) leadsto a quite expectedresult: There is a
loss of information related to the presence of noise in the phase.
Theeffect of this would beto raisetheCramèr-Raoboundfor the
amplitudeandphaseparameters¿ O q , R [ }zÞ ¿ O 9 R [ }

(30)

Equality will hold when
X@Y � � v - h � � Z a.e.� � � v - . By examining the

joint densityfunctionof � �
and

� �
onededucesthat for q r�¦ß 9

,� �
mustbecertainandequalto � �

. Hence,equalityholdsonly forqIr, �	9
.

One may notice that for the caseof a noisy phase,the de-
couplingbetweenthe estimationof thephaseparametersandthe
signalamplitudeis preserved.

It is useful to definea relative Fisherinformation matrix asà¿ O q , R � ¿ O 9 R [ } ¿ O q , R
which preserves the symmetryand the

non-negative definitenessof
¿ O q , R

. Thechoiceof this representa-
tion is motivatedby thefactthatwe comparetheachievableaccu-
racy in estimatingthesignalparameterswhenno noiseis present
with theoneobtainedwhenanoiseof varianceq r, is presentin the
phase.This matrix canbeeasilyseento beindependentfrom the
choiceof thebasisfunctionsmodelingthephase,in factà¿ O q , R � dq r� M² X@Y X@Y À C 1 � � [ � v - H h � �ÁZ r Z ÔÔ X@Y X@Y Ã�C � ¹� � � v - H Z r Z ¾ � µ

(31)



For smallvaluesof qIr, , it is possibleto useaTaylorexpansion
of matrix elementsaroundq r, �È9

,dq r� X>Y X@Y À C 1�� � [ � v - H h � � Z r Z � ?�= q r, ��á O q x, R
(32)dq r� X@Y X@Y Ã�C � ¹� � � v - H Z r Z � ?�=ÂO0? � d � rq r� R q r, ��á O q~x, R
(33)

which leadsto theTaylorexpansionof
à¿ O q , R

,¿ O q , R � ¾ � * } = q r, Ú ? 99 O0? � r Ó ^\ ^! R ¾ � Ý �âá O q x, R
(34)

This expressionshows, quitesurprisingly, that therelative lossof
information on the phaseparametersdue to q r, , is proportional
to the SNR asdefinedby �6r k qIr� . For large valuesof the SNR
therelative Fisherinformationmatrix decreasesquickly when q r,
increases.

Figure1 shows thevalueof [ }r \ ^! X>Y X@Y � ¹� � � v - = � � � [ � v - h � �+Z r Z
for differentvaluesof the SNR. This correspondsto the relative
Fisherinformationmatrix for thephaseparameters.Thisdecrease
doesnotmeanthatwhentheSNRis low wehave betterestimates.
It only saysthatthehighertheSNRis, thehigheris ourlossof pre-
cisionwhenthereis somenoiseonthephasecomparedto thecase
of noisefreephase.For instance,if noadditivenoiseis present,i.e.
SNR=ã , thentheFisherinformationmatrix

¿ O 9 R
tendstowardin-

finity andasmallamountof phasenoisemakes ¾ O q , R
finite which

translatesinto a curve equalto
?

at q r, �	9
and

9
when q r, ß 9

.
To obtainclosedform expressionsfor theCramèr-Raobound,

oneneedsto invert thematrix L � L whichdependsonthechoiceof
the basisfunctions. This taskcanbe simple if, for instance,one
usesorthogonalbasisfunctions. By orthogonal,it is meantthat� | [ }� ��
 B � 
�B � � ��ä 
 � � | [ }� ��
 B r� 
 2�å]Dm2+�

and,obviously, L � L is diag-
onal. This hastheadvantageof providing decoupledestimatesof
thephaseparametersaswell assimplifying estimationprocedures
whicharebasedon themethodof leastsquares.

For non-orthogonalbasisfunctionsthe taskof inverting this
matrix,evennumerically, canbeverycomplex. For example,with
the polynomial basisfunctionsthe matrix L � L is ill-conditioned
thuspreventingtheuseof numericalprocedures.Peleg andPorat
[2] proposethe useof an asymptotic(large

<
) expressionfor its

inverse.

5. CONCLUSION

In this paperwe presenteda moregeneralmodelfor constantam-
plitudemonocomponentsignals.Thenovelty lies in theintroduc-
tion of a noisecomponentin the phasewhich is highly relevant
in many radarandcommunicationsapplications.We showed the
identifiability of the signalmodelfor the caseof Gaussianphase
noisewith any variance.For othernoisedistributionsidentifiabil-
ity is not guaranteed,it dependson theshapeof thecharacteristic
functionof thenoise.Wederivedexplicit formulasfor theCramér-
Raolower boundon thevarianceof theestimatedsignalparame-
ters for a generalbasisfunction specification.Theseboundsare
comparedto thenoisefreecaseandaquantitative loss of informa-
tion is derived. It is shown that for a fixed phasenoisevariance,
the lossof information increaseswhenthe SNR increases.This
canbejustifiedby thefactthatat very low SNR,estimationerrors
areduemainly to theadditive noise.
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Fig. 1. Decreaseof the relative Fisherinformationmatrix for the
phaseparameterswhentheSNRincreases
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