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ABSTRACT

This paperdealswith noisy phasemonocomponergignalsin ad-
ditive noise. This modelis more appropriatefor real world ap-
plicationsin particularfor radarand communications.The prob-
lemis introducedanda maximumlik elihoodsolutionis proposed.
Specifically the CramérRaoboundis explicitly derivedandcom-
paredto the caseof noisefree phase.

1. INTRODUCTION

Non-stationarysignals,i.e. signalswhosespectralcontentvaries
with time, are very commonin mary signal processingapplica-
tions. Examplesnclude, but arenot limited to, communications,
sonar radar vibration, ultrasoundmaging,speectandbiological
signals.

Many methodsof analysisof non-stationarsignalsfocuson
nonparametritime-frequeng distributions. However thesesuffer
from the well known time-frequeng resolutionproblemand an
alternatve to alleviate this problemlies in the use of parametric
methods.

Monocomponenpolynomial phasesignals(pps),i.e. signals
whosephasep; is modeledoy a polynomialp; = >-7 a;t* and
of constantamplitude A, have beenfirst studiedby Djuric and
Kay [1]. Later, Pelay, PoratandFriedlandef2, 3] introducedthe
so-calledpolynomialphasetransformasa tool for estimatingthe
parametersf pps.

Mostof thework citedabore assumethatthesignalphasdits
perfectlyto a polynomialof a certaindegree. However, in a prac-
tical situationthisis nottrue anda propermodelshouldincludea
noisecomponenbnthephasej.e.

bt = pt + ve 1)

sothattherecevedsignalis
T = Al (Ei=oait®+vt) + g, 2)

wherev; denotethenoiseonthephaseassumedo berealvalued.
The motivation behindthe noisecomponenbn the phasdies
in thefollowing

1. Errorsduetoanimperfectphasanodelingby acertainbasis
function.
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2. Phasenoisein real signalsourcesmainly oscillatorphase
noise, thermalnoise, addedamplifier noise prior or after
frequeng multiplication[4].

3. Noisedueto theamplificationof therecevedsignal.

The noisein signal sourcesis highly relevant in both radarand
communicatiorsystemsFor instancen radarapplicationsspuri-
ousanglemodulationof the transmitteiwill betransferredo the
delayedreturnsfrom the groundclutter. As a consequencayhen
theDopplerfrequeny differencebetweertargetandclutterequals
the offset frequeny, the sidebanddrom the large clutter return
may obscurethetargetsignal.

This papetis concernedvith ananalysisof signalsof thetype
givenin Equation(2). Section2 is dedicatedo the mathematical
signal model as well asto the main assumptionsjdentifiability
issueswill alsobe addressedSection3 discusseshe maximum
likelihood estimationwhile in Section4 the CramérRaobounds
are derived and comparedo the noisefree phasecase. Finally,
Section5 concludeghis paper

2. SIGNAL MODEL AND ASSUMPTIONS

This sectionpresentghe signalmodelusedthroughoutthe paper
Notationsandassumptionsvill begiven.

2.1. Signalmodel

The obsered ssignalmodelconsideredn this paperis
Ty = Aej(w+v:) + Ny, (3)

wheret = 0,...,T—1 denoteshediscretdimeindex. Thephase
functionis modeledby;,

o = Z a;€ti, 4)
i=0

wherethe parameterda;, ¢ = 0,...,n} arerealvalued,while
{&ti, i = 0,...,n} is somearbitrary set of real valued basis
functions. A usualexampleis the polynomial basisdiscussedn
Sectionl, wheret:; = t*. Wewill denoteby ¢ therealT x (n+1)
matrix whoseentriesaregivenby &;;.

Unlessspecified the noisesv; andn; areassumederomean
normal stationaryand white. Furthermoremn; is assumedo be
comple circular.



The estimationproblemconsideredn this papercan be for-
mulatedasfollows: Givena finite sampleof z:, estimatethe am-
plitude of thesignal A andits phasej.e. theparameterda;, ¢ =
0,...,n}. Thenoisesvariancesanalsobe includedinto the es-
timation processsincewe do not assumeheir knonvledge. How-
ever, unlessin a detectioncontet the latterarewhatis commonly
known asnuisanceparameters.

2.2. Note on the identifiability of the model

Beforea completestudyof an estimationprocedurepnemustal-
wayscheckfor theidentifiability of the model. To shav theiden-
tifiability, it is necessaryo addresshe uniquenessf the stochas-
tic decompositiorof the obsened signal. In otherwords, does
anotherdecompositiorof z; as(3) exist for a differentsetof pa-
rametershis ensures one-to-onemappingfrom the parameters
spaceo thedistributionsset. Let suchotherdecompositiorof x;,

T =A6J'(w+vt)+nt = Aleileitor) +n) (5)

wheren}, v; have the samedistribution asv; andn; respectiely
but differentvariances.
Applying the expectationoperatoron both sidesof (5) leads
to:
Elz] = Aei?te™% = Alei®ie (6)

whichimpliesthate’#* = ¢/# andthusy; = ¢} mod 2. This
is the only uniquenessesultwhich can be obtainedconcerning
the phase. For the uniquenes®f the signal phaseparameterst
is essentiako force the parametergo lie within a certainrange
which dependson the basisfunctionsusedto model the phase.
For instance for a polynomialbasis,it is thenwell known, that
to guarantegheuniquenessf the phaseparameterthesemustbe
restrictedin therange|a;| < «w/i!, ¢+ = 0,1,...,n. In there-
mainderof the paper will denotetherangeof parametersvhich
guaranteesuchuniqueness.

Now we turn to the identifiability of the signalamplitude A.
It is clearthatif no phasenoiseis presentg? = o2 = 0, then
A= A'. Wheng2 # 0, we resortto the secondordermomentof
Tt,

E[(ws — Blze])?] = A% {e % — e %)
_ A/2ej2¢; {6—403, _e—zaf,} @

Combiningthis equatiorwith (6) andaftersomealgebraiananip-
ulationsone obtainse? = o2,. Using the latter in (6) leadsto

A = A'. Onecanalsodeducémmediatelythato? = o2, which
concludegheidentifiability issue.

3. THE MAXIMUM LIKELIHOOD ESTIMATOR

Considerthe modelof equation(3) andcollectthe obsered data
into X = {xo,21,...,2zr_1}. Giventhe parametersector
6 = (A, a0,...,an,02,02)" € @ = Rt x Q x R*?, thelike-
lihood function writes as£(X ™|0) = 1=, p(x¢|6) sincethe
noisesv; andn; areassumeadavhite. Moreover, sincev; andn; are
independent,

p(zlf) = /an (-’L't - Aexp(]’@))m (aﬁt - iaifti>d¢t

=0

wherep, andp,, denoterespectrely the probability densityfunc-
tionsof the phasenoisev; andtheadditive noisen;,

Y SN C g
e = (), ze ®)

1 2
U
pv(u) = \/%U exp(—202),
v v

Themaximumlik elihoodestimatomwritesthenas:

u€R 9)

6= (A, do,... 4n,62,62)" = agmaxe(X™|9)  (10)
6co

This estimatorholds when the noisevariances,s2 and o2, are
unknavn. If theseareknown, thenthey aresimply replacednto
thelik elihoodexpressiorandthelatteris optimizedwith respecto
theremainingparametersk-or instancejn someradarapplications
o2 canbe assumednown by estimatingthe noiselevel whenno
pulseis present.

Consideranew datavector namely

s TT-1, 00, P15 .-, pr-1}

We refer to this vector as the complete data while $(T is what
is commonlyknowvn asmissing or unobserved data. This data
vectorcontainsboththe signalsamplesaswell asthe noisy phase
samplesthoughthe latter are actually unknavn. The likelihood
associatedvith the completedatais seento be

{X(T),¢(T)} = {.’I,‘(),.’I}l,. .

eC(X(T),‘P(T)W) =
T—1 n
n — Aexp(jbt) |po| ¢t — i&ti (11)
gp (-’L't P]t)P(t ;a t)

The completedatalik elihoodcanthenbe easilyseento belongto
theexponentialfamily. Furthermorewne have:

(xlp) = [ £XD,8018) doodér - dprs (12

It iswell known thatthemaximumlik elihoodestimate®f the’ nat-
ural’ parameterén anexponentialfamily are easilycomputedoy
the useof sufficient statistics. The naturalform of the likelihood
combinedwith theEM algorithmis usedin [5] to derive apractical
estimatorof the parameter§.

The scorefunctionsfor this estimationproblemaregiven by,

L(X™ .

w .,n + 3, where L(X(1)|9) is thelog-
likelihood: L(X (T|8) = log £(X‘??, §). For each¥; onecansee
that

fori =1,..

AL(X™,0) _ [ dlogp(zs, $:10) | ()
a6 T ; — o6 8 (3)

Hencethescoreof 6 is theconditionalexpectatiorof thecomplete
likelihoodscoregiventhe obsered data.Now obsere that,

1 .
log p(zs, ¢1|6) = —— o — Aexp(jgn)|” — log o,

1 n 2 1 )
%07 (¢t - Zojaigm) — ;logay (14)



Fromwhich it is straightforvard to derive the scoreof the com-
plete datalikelihood and by the useof Eq. (13) the scoreof the
likelihood,

oL(x™ 9 1 «
Q _22 tkE,Utlxtv ) kZO,...,’fL (15)
t=0

8ak Ty
(T) 1 I=
aL(-};A 39) _2 ZE[n eJ¢i + e -””lqjt ] (16)
In =0
AL(X™ . 9) 2T (12 :
% F{T > Elnel’|z, 6] — ai}, 17
n t=0
OL(X™M,0) T [1=_ >
T - 0'_1:} f t=0 E[Ut |-'Et,9 — 0y () (18)

4. CRAMER-RA O BOUNDS

Theij-th entryof the Fisherinformationmatrix I(0) is givenby:

Jii(8) = —E[w]

96:00; (19)

For our problem,simplecomputationshav that

5 [62 L(X™), 9)]

da;da; ZE[E[vtlwt Jii€;  (20)

”to

B [02L(X(T>, 0)]

oAar | = o1 Z E[E[®{n.e "' }z.]"] (21)

”to

*L(X™,0)7] _
8@1614 -

—2A T-1 ;
D GiB{S{E[n{ e 2.]"}}
™ =0

(22)
Wewill only considerthe CramérRaoboundfor the estimationof
A andthe phaseparameterandwe will assumehatthe nuisance
parameters2 ando? areknowvn. To make somedevelopmentgo
equationg20-22)we needthefollowing lemma

Lemmal Letz; = Ae/?* + n., then for any stationary process
gq: for which E[q|z.] exists, E[q:|x¢] is a stationaryprocessAs a
corollary the moments of E[g|z+] are independent of ¢.

Proof: First noticethat Ae’** is stationarysincev, wasas-
sumedstationary Furthermoresincen; is stationaryGaussiarand
circular, sois n.e ¥t sincee™7¥! is a rotationin the comple
plane.Hencede’"t +nie ¥t = z.e 7%t is astationaryprocess.
Now, for ary randomprocessy:, E[q:|z:] = E[qt|xte_j“’*] since
multiplying by e~7#t representa rotationin the complex plane
whichis one-to-oneThus,if g is stationaryandsincez¢e 7%* is
stationarythen E[q;|z:] is stationary |
By noticing thatv:, ne ¢ arestationaryprocessesandby the
help of Lemmal, one deduceghat the conditionalmomentsin
(20-22)arestationaryprocessesT hereforetheir momentscanbe
factoredout of the sum. Now obsere that, by an integrationby
parts,we have

Elvi|ze] =

It ay] — 2 Ele ™% 2]} (29)

Moreover, by noticingthatz} E[e??* ] andz; E[e 7% |x:] have
the samedistribution, the previous equationdecome

-62L(X(T)a6)- — 44° J ot 2 =
B day | = o1 PN ') 3 ik
(24)
[02L(X™),0)] _ ATE[E[R{ne 1%*}|z:]*]
x|~ o7 (25)
[02L(x™,6)]
Bl =304 | =" (26)

We will denoteJ (o) thefollowing partitionedFisherinfor-
mationmatrix

2
| () | °
@7)

0 B [BL(X(T),G) aL(x(™) g) T]

da da

which canberewrittenas.J(a,) = E[E[k|z:)E[k|z:]!] with

k= (28)

nte_M"‘ + nZej"’flT
]%{m;em — zie TP }£’r

where1 denotethe T x 1 vectorwith all entriesequalto one,
noticethat1t1 = 7. Usingclassicainequalitieswe have

21t 0

J(Uv)SE[kkT]=[050 Q_A;sfs]ﬂ(m (29)

J(0) is the Fisherinformationmatrix whenno noiseis presenin
the phase seefor instance[2] for the polynomial basisfunction
case. Equation(29) leadsto a quite expectedresult: There is a
loss of information related to the presence of noise in the phase.
Theeffect of this would beto raisethe CramérRaoboundfor the
amplitudeandphaseparameters

J(on) ' > J(0) " (30)

Equality will hold when E[e??t|z;] £ e/%t. By examiningthe
joint densityfunction of z; and¢; onededuceghatfor ¢2 > 0,
¢§ mustbe certainandequalto ¢;. Hence equalityholdsonly for
Oy =

One may notice that for the caseof a noisy phase,the de-
couplingbetweerthe estimationof the phaseparameteraindthe
signalamplitudeis presered.

_ It is usefulto definea relatve Fisherinformation matrix as
J(a») = J(0)~'J(ov) which preseres the symmetryand the
non-ngative definitenes®sf J (o). Thechoiceof this representa-
tion is motivatedby the factthatwe comparehe achievableaccu-
rag in estimatingthe signalparametersvhenno noiseis present
with the oneobtainedwvhena noiseof variances? is presenin the
phase.This matrix canbe easilyseento beindependenfrom the
choiceof the basisfunctionsmodelingthe phasein fact

J(ov) = 7
E[ER{nie™ " }|z:]’] 0

0 BlES{z; L] CY



For smallvaluesof o2, it is possibleto usea Taylor expansion
of matrix elementsarounds? = 0,

%E[E[m{nteﬂ%}m]z’] =1-02+0(}) (32

242

2 * e
BB =1 - (14

oz +0(oy)  (33)

which leadsto the Taylor expansionof J (o),

1

0
J(UU) =In41 — 0'12; [0 (1 + 2_14;)In + O(Uﬁ) (34)

This expressiorshaws, quite surprisingly thatthe relative lossof

information on the phaseparametersiueto o2, is proportional
to the SNR as definedby A%/a2. For large valuesof the SNR
the relative Fisherinformationmatrix decreaseguickly wheno?2

increases.

Figure1 shavs thevalueof =% E[E[z;e’?* — z1e ™79 |z,]’]
for differentvaluesof the SNR. This correspondgo the relative
Fisherinformationmatrix for the phasgparametersThis decrease
doesnotmeanthatwhenthe SNRis low we have betterestimates.
It only saysthatthehigherthe SNRis, thehigheris ourlossof pre-
cisionwhenthereis somenoiseonthephasecomparedo thecase
of noisefreephase Forinstanceif noadditive noiseis presenti.e.
SNR=0, thentheFisherinformationmatrix .7 (0) tendstowardin-
finity anda smallamountof phasenoisemakesI (o) finite which
translatesnto a curve equalto 1 ate2 = 0 and0 wheno? > 0.

To obtainclosedform expressiongor the CramérRaobound,
oneneeddo invertthematrix £' ¢ which depend®n the choiceof
the basisfunctions. This taskcanbe simpleif, for instanceone
usesorthogonalbasisfunctions. By orthogonal,it is meantthat

Il ety = 0 1 €%, Vi, j and,obviously, £1¢ is diag-
onal. This hasthe adwantageof providing decouplecdestimatef
thephaseparameteraswell assimplifying estimationprocedures
which arebasedn the methodof leastsquares.

For non-orthogonabasisfunctionsthe task of inverting this
matrix, evennumerically canbevery comple. For example,with
the polynomial basisfunctionsthe matrix ¢*¢ is ill-conditioned
thuspreventingthe useof numericalproceduresPeley and Porat
[2] proposethe useof anasymptotic(large T') expressiorfor its
inverse.

5. CONCLUSION

In this paperwe presented moregeneralmodelfor constaneam-
plitude monocomponengignals. The novelty liesin theintroduc-
tion of a noisecomponentn the phasewhich is highly relevant
in mary radarand communicationgpplications.We shaved the
identifiability of the signalmodelfor the caseof Gaussiarphase
noisewith ary variance.For othernoisedistributionsidentifiabil-
ity is not guaranteedt depend®n the shapeof the characteristic
functionof thenoise.We derivedexplicit formulasfor the Cramér
Raolower boundon the varianceof the estimatedsignalparame-
tersfor a generalbasisfunction specification. Theseboundsare
comparedo thenoisefree caseanda quantitatve loss of informa-
tion is derived. It is shavn thatfor a fixed phasenoisevariance,
the loss of informationincreaseavhenthe SNR increases.This
canbejustified by thefactthatat very low SNR, estimatiorerrors
areduemainly to theadditive noise.
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Fig. 1. Decreasef therelative Fisherinformationmatrix for the
phaseparametersvhenthe SNRincreases
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