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ABSTRACT
This paper presents a new method for musical chord
recognition based on a model of human perception. We
classify the chords directly from the sound without the
information of timbres and notes. A wavelet-based
transform as well as a self-organized map (SOM) neural
network is adopted to imitate human ears and cerebra,

respectively. The resultant system can classify chords very

well even in a noisy environment.
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Fig.1 (a) Traditional chord recognition scheme.
(b) Model of human perception to sounds. (c)

Proposed system diagram.

Melodies, rhythms, and harmony are three fundamental
components of music. For harmony in music the chords play
an important role. Several chord recognition schemes have
been developed by treating chords as the combination of
discrete tones and recognizing them from the results of
polyphonic analysis based on music theory [1]~[3]. A typical

model of these scheme is shown in Fig.1(a). However, it does

not fit our daily experience, since human beings often
perceive chords as a whole with some readily recognized
characteristics (e.g. major or minor) before they could
accurately distinguish the individual notes composing the
sound (Fig.1b). With this in mind, here we propose a model
for direct chord identification in a multi-timbre environment
(Fig.1c). The chord characteristics are extracted as a
time-frequency map through a wavelet transform and then
directly sent to a neural-network chord-classification unit
without note identification. In next section, we will
introduce some basic properties of musical timbres and
chords. Implementation of the wavelet-transform and
neural-network units will be introduced in Sections 3 and 4,
respectively. Section 5 lists simulation results and gives

related discussions. Finally, in Section 6 we draw some

conclusions.

2. MUSICAL TIMBRES AND CHORDS
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Fig.2 The first sound of the 4" movement of
Beethoven’s 5" Symphony. (a) Time domain

signal. (b) Corresponding frequency spectrum.



Frequency | Equivalent Closest
(Hz) MIDI No. | MIDI Note
Fundamental| 65.4064 24.0000 C2
Frequency
1 partial 130.8128 36.0000 C3
2" partial | 196.2192 43.0196 G3
3" partial | 261.6256 48.0000 C4
4" partial | 327.0320 51.8631 E4
5™ partial | 392.4383 55.0196 G4
6" partial | 457.8447 | 57.6883 bB4
7" partial | 523.2511 60.0000 Cs
8" partial | 588.6575 | 62.0391 D5
9™ partial | 654.0639 63.8631 ES

Table 1. A list of partials and equivalent MIDI numbers
of C2.

Figure 2 (a) exhibits the first sound of the 4" movement of
Beethoven’s 5" symphony, consisting of 26 notes from 17

different kinds of instruments. It is hard for both human and
machine to recognize all composing notes since various
partials of various timbres overlap disorderly (Fig.2(b)).
However, when a person listens to it, the sound in Fig.2 is
with clear characteristic of a C major chord even though any
of its composing notes is hard to detect.

Let’s elaborate this point further. In frequency domain the

partials for a specified timbre appear at frequencies
approximately or equal to integer multiples of its fundamental
frequency. Table 1 lists frequencies of the partials for note C2.
Among these partials, some map exactly to octaves of the
fundamental frequency, while others map to non-integer
MIDI numbers. Here we let C4 = 262 Hz be the center C
whose MIDI note number is 48. The closest MIDI notes of
these partials are also listed. When a note of a timbre is
played, all of its partials contribute to the time-frequency map
and more or less hinder the recognition of notes.

As the number of notes and timbres increases, partials of all
composing notes overlap disorderly. Most of them, especially
those with a frequency/fundamental frequency ratio not equal
to power of 2 will violate the rule of chords in music theory.
This has been a serious problem in conventional polyphonic

recognition [4][5][6].

3. WAVELET TRANSFORM
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Fig.3 The time-frequency map of Figure 2.

This section shows the part of the system that simulates the
role of human cochlea of human beings. Various schemes can
be used for this goal, such as Short-time Fourier Transform
(STFT), constant-Q filters, Wigner- Ville distribution, etc. [7].
Here we adopt the wavelet transform scheme since it has a
“zooming” capacity over a logarithmic frequency range, and
its translation-invariant property can center the sampling
window properly in the time domain.

Several choices for the mother-wavelet I,U(t ) are available.
In this research we apply a complex Gabor mother-wavelet,
because it achieves the optimum of time and frequency

localization [8, Chap.4]

2
l,U(t): exp%%+ jwotE ey

where (4 is the frequency of the mother-wavelet before it is
scaled. In compliance with the musical requirement, we

define the scaled versions of the mother-wavelet as

Here the index k represents the corresponding MIDI note
number, u is the sampling time, and v = 12 equals to the
number of semitones in an octave. In order to relate k to
MIDI notes, we set () = 27T* 16.352(Hz) for k=0, which
is MIDI note CO with a fundamental frequency 16.352(Hz).
Using such wavelets, we can get the time-frequency map of

Fig.2 as shown in Fig.3.



4. CLASSIFICATION AND TRAINING
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Fig.4 Self-Organized Map (SOM) for the chord
classification. The horizontal axis refers to the tonality and
the vertical axis represents the chords style.

As mentioned in Section 2 a chord is often with disordered
partials such that the recognition of individual notes is very
difficult. The neural networks can naturally lever this
difficulty. Distinct chords present different characteristics in
the time-frequency map, and the neural network can learn to
classify them after training.

The neural network we adopt consists of a self-organized map
layer. Two kinds of information should be determined to
facilitate classification. One is the tonality, and the other is the
chord style. These two kinds of information are chosen as the
two dimensions of the self-organized map (SOM) shown in
Fig. 4. In the tonality axis (horizontal), one of adjacent notes
is dominant and the other is subdominant. In the chord style
axis (vertical), adjacent styles are with two shared notes
according to music theory. This configuration makes sure that

adjacent neurons on the map are with high similarity.

Before learning, the initial synaptic weights of each neuron on
the SOM are set according to music theory. Then a large
number of training data extracted from real sounds are input
to the network, and it starts to “experience” a chord. Since the
SOM will learn from training data without any supervised
information [9, Chap.9], the initial weights set above just give
the map a pre-knowledge of the chords so that the network
can converge more rapidly. Figure 5(a) shows a typical set of
initial weights.

Three essential processes in training are competition,

cooperation, and synaptic adaptation [9, Chap.9]. In the
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Fig.5 Weights of the C major’s neuron. The horizontal
axis is MIDI note numbers. (a) Initial weights assigned
according to music theory. (b) Final weights after

training.

competition process, only one neuron among the 48 ones
would be activated. In the cooperative process, the winning
neuron tends to excite the neurons in its immediate
neighborhood, which has a high similarity to the winning
neuron. Finally, in the adaptive process, weights of neurons
are gradually adjusted to fit the input patterns. Figure 5 (b)
shows a typical trained set of weights.
5. RESULTS AND DISCUSSIONS

For training, 480 sound samples of 48 different kinds of
chords have been used. The system then is ready for tested
with recorded music segments. The recognition rate is defined

as

. number of incorrectly classfied
Recognitio nrate =1 -

total number of measures

The trained network is tested with the 4" movement of
Beethoven’s 5™ Symphony conducted by Herbert von Karajan
and performed by Berliner Philharmoniker in 1984. Fractional
staff of the first 8 measures are shown in Fig.6 . According to
music theory, chords of the eight measures are C major,
Cmajor, Cmajor, Cmajor, Gmajor, Cmajor, Fmajor, Cmajor,
respectively. The recognized chords fit all the 8 chords. Hence

the recognition rate is 1 — 0/ 8 = 100%



Fig.6 The staff of Violins I and Basses of the first 8
measures of the 4™ mov. of Beethoven’s 5™ Symphony.

Amazingly, this recognition rate remains 100% even when we
add a while Gaussian noise into the sound signal with a 0 dB
signal-to-noise ratio (SNR). A recognition-rate to SNR plot as
well as the 95% confidence intervals is shown in Fig.7.
This result shows the robustness of the system. Under a loud
noise (SNR < -5dB), the recognition rate is kept at 75%, when
individual notes are nearly unrecognizable. Since most trained
humans can still tell such a sound as a faint impression of a
chord, we may say this system has a “chord hearing’
capability, which is similar to what a human being has.

6. CONCLUSIONS
We have developed a chord classification system using the
wavelet transform as the “ear” and an SOM neural network as
the “cerebrum.” This system is extensible since chords not
included can be easily added. With the capability of chord
identification, we can do polyphonic recognition more
accurately. This work can be an important building block in
automatic transcription systems in the future. Results show
that machine can directly “hear” the chords from a sound with
a high recognition rate even under a noisy situation, as human
beings do in a similar environment.
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