

A NOVEL HEXAGON-BASED SEARCH ALGORITHM
FOR FAST BLOCK MOTION ESTIMATION

Ce Zhu, Xiao Lin, Lap-Pui Chau, Keng-Pang Lim, Hock-Ann Ang, Choo-Yin Ong

Centre for Signal Processing, School of Electrical & Electronic Engineering

Nanyang Technological University, Singapore 639798

ABSTRACT

In block motion estimation, search pattern with different shape
or size has very important impact on search speed and
distortion performance. In this paper, we propose a novel
algorithm using hexagon-based search (HEXBS) pattern for
fast block motion estimation. The proposed HEXBS algorithm
may find any motion vector with fewer search points than the
diamond search (DS) algorithm. The speedup gain of the
HEXBS method over the DS algorithm is more striking for
finding large motion vectors. Experimental results
substantially justify the fastest performance of the HEXBS
algorithm compared with several other popular fast algorithms.

1. INTRODUCTION

 Block-matching motion estimation is vital to many motion-
compensated video coding techniques/standards, which is
aimed to exploit the strong temporal redundancy between
successive frames. However, the motion estimation is quite
computational intensive and can consume up to 80% of the
computational power of the encoder if the full search (FS) is
used by exhaustively evaluating all possible candidate blocks
within a search window. Therefore, fast search algorithms are
highly desired to significantly speed up the process without
sacrificing the distortion seriously. Many computationally
efficient variants were developed, typically among which are
three-step search (TSS), new three-step search (NTSS) [1],
four-step search (4SS) [2], block-based gradient descent search
(BBGDS) [3] and diamond search (DS) [4] [5] algorithms.
 In TSS, NTSS, 4SS and BBGDS algorithms, square-shaped
search patterns of different sizes are employed. On the other
hand, the DS algorithm adopts a diamond-shaped search
pattern, which has demonstrated faster processing with similar
distortion in comparison with NTSS and 4SS. This inspires us
to investigate why diamond search pattern can yield speed
improvement over some square-shaped search patterns and
what is the mechanism behind. As a result, one may wonder
whether there is any other pattern shape better than diamond
for faster block motion estimation. In the following, we
propose a hexagon-based search algorithm that can achieve
substantial speed improvement over the diamond search
algorithm with similar distortion performance.

2. HEXAGON BASED SEARCH ALGORITHM

2.1 Hexagonal Search Pattern
 Ideally, a circle-shaped search pattern with a uniform
distribution of a minimum number of search points is desirable

to achieve the fastest search speed. Each search point can be
equally utilized with maximum efficiency. Referring to the
diamond search pattern [4] [5], we can see that the diamond
shape is not approximate enough to a circle, which is just 90
degree rotation of a square. Consequently, a more circle-
approximated search pattern is expected in which a minimum
number of search points are distributed uniformly. A hexagon
based search pattern is devised which is depicted in Fig. 1.
There are two different sizes of hexagonal search patterns, of
which the larger one consists of 7 check points marked as 1
with the center surrounded by 6 endpoints of the hexagon with
the two edge points (up and down) being excluded. Like the
shrunk diamond pattern, a smaller shrunk hexagonal pattern
covering 4 check points marked as 2 is inside the large one,
which is finally applied in the focused inner search. For the
larger hexagonal search pattern, we can see the 6 endpoints are
approximately uniformly distributed around the center with
similar distances to the center. Note that the hexagonal search
pattern also contains 2 fewer check points than the 9-point
diamond search pattern. In the search process, the large
hexagon-based search pattern keeps advancing with the center
moving to any of the six endpoints. Whichever endpoint the
center of the large search pattern moves to, there are always
three new endpoints emerging and the other 3 endpoints being
overlapped. Recall that in diamond search, 3 or 5 new points
appear each time the diamond moves in different directions, in
average 4 new points being evaluated for each move.

1

1 1

1

1 1 12

2

2

2

Fig. 1. Hexagon-based search (HEXBS): large (1)
and small (2) hexagonal patterns.

2.2 Algorithm Development

 With the designed hexagonal pattern, we develop the search
procedure as follows. In the first step, the large hexagonal
pattern with 7 check points is used for search. If the optimum
is found at the center, we switch to use the shrunk hexagonal
pattern including 4 check points for the focused inner search.
Otherwise, the search continues around the point with
minimum block distortion (MBD) using the same large
hexagonal pattern. Note that while the large hexagonal pattern
moves along the direction of decreasing distortion, only 3 new
non-overlapped check points will be evaluated as candidates
each time. Fig. 2 shows an example of the search path strategy
leading to the motion vector (+4, -4), where 20 (=7+3+3+3+4)
search points are evaluated in 5 steps sequentially. The
proposed hexagon-based search (HEXBS) algorithm can be
summarized in the following detailed steps.

Step i) Starting: The large hexagon with 7 check points is

centered at (0,0), the center of a predefined search
window in the motion field. If the MBD point is
found to be at the center of the hexagon, proceed to
Step iii) (Ending); otherwise, proceed to Step ii)
(Searching).

Step ii) Searching: With the MBD point in the previous search
step as the center, a new large hexagon is formed.
Three new candidate points are checked, and the
MBD point is again identified. If the MBD point is
still the center point of the newly formed hexagon,
then go to Step iii) (Ending); otherwise, repeat this
step continuously.

Step iii) Ending: Switch the search pattern from the large size
of hexagon to the small size of hexagon. The four
points covered by the small hexagon are evaluated
to compare with the current MBD point. The new
MBD point is the final solution of motion vector.

From the above procedure, it can be easily derived that the
total number of search points per block is

(,)HEXBS x yN m m =7+3×n+4 (1)

where (,)x ym m is the final motion vector found, and n is

the number of execution of Step ii).

2.3 Analysis of the HEXBS Algorithm

 In this subsection, we will examine the proposed HEXBS
algorithm as compared with the diamond search (DS)
algorithm in term of number of points evaluated to find same
motion vectors. For block motion estimation, computational
complexity can be measured by number of search points
required for each motion vector estimation. In contrast with the
HEXBS algorithm by which the number of search points used
is indicated in Equation (1), the diamond search method
requires the following number of search points per block

(,)DS x yN m m =9+M× n� +4 (2)

where M is either 5 or 3 depending on the search direction and
n� depends on the search distance. The n� in Equation (2) is

always greater than or equal to the n in Equation (1) for finding
a same motion vector (,)x ym m . Especially for locating

motion vectors in the direction of 1[tan (2)] kπ− ± ± , k=0,
1, it can be derived that the speed improvement rate (SIR) of
HEXBS over DS can be as high as over 80% in some
scenarios, where the SIR for locating a motion vector can be
obtained by

(9 4) (7 3 4) 100% (3)
7 3 4

M n nSIR
n

+ × + − + × += ×
+ × +

�

 By analyzing the minimum possible number of search points
of HEXBS and DS, we show in Fig. 3 the number of search
points saved by HEXBS as compared with DS for each motion
vector location within ±4 region. From the figure, we can see
that for the stationary and quasi-stationary motion vectors the
HEXBS algorithm has 2 fewer search points, while more
search points can be saved for locating medium to large motion
vectors beyond the ±1 region. For example, 7 search points
(block matches) can be saved by HEXBS for locating motion
vectors (±1, ±3), (±4, ±2), (±2, ±4) and (±2, ±5). In short, the
new HEXBS scheme can find any motion vector in motion
field with fewer search points than the DS algorithm.
Generally speaking, the larger the motion vector, the more
search points the HEXBS algorithm saves, which is justified
by the following experimental results.

0

1

2

3

4

5

6

7

-7

-6

-5

-4

-3

-2

-1

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1

1 1

1

4

43

4

5

5

5

1

2

352

1

3

2

1

Fig. 2. Search path example locating the motion vector (+4,
-4) by HEXBS. Note that a small HEXBS pattern is applied
in the final step after the best candidate search point at step
3 remains the best at step 4. Totally 20 (=7+3+3+3+4)
search points are evaluated in 5 steps.

3. EXPERIMENTAL RESULTS

 The experimental setup is as follows: the distortion
measurement of mean absolute difference (MAD) used, block
size of 16×16, and search window size of ±7. Five standard
video sequences "Salesman" (352×288, 448 frames),
"Coastguard" (352×240, 300 frames), "Tennis" (720×480, 39
frames), "Garden" (720×480, 98 frames) and "Football"
(720×480, 59 frames) were used, which vary in motion content
as well as frame size. We also produced a sequence
"DanceWolf" (720×480, 299 frames) from a film "Dance With
The Wolf" which contains large motion with horse racing, for
testing purpose.
 Average MAD values and the search point numbers are
summarized in Table I and Table II for different algorithms
including FS, NTSS, 4SS, DS and our proposed HEXBS,
respectively. (Note that the search point number per block for
the FS is fixed as 255 for all video sequences.) We can see
that the proposed HEXBS algorithm consumes the smallest
number of search points with marginal increase in MAD
compared with other fast algorithms. The number of search
points used by the HEXBS method is substantially smaller
than that by NTSS, 4SS or DS, nearly half the number of
NTSS. Here we mainly compare the DS with the proposed
HEXBS algorithm in terms of number of search point as well
as MAD. Table III tabulates the average speed improvement
rate (SIR) and average MAD increase in percentage of the
proposed HEXBS over DS. For "Salesman" sequence with
motion vectors limited within a small region around (0, 0), our
proposed HEXBS algorithm achieves 21.41% speed
improvement over DS. For "Coastguard" sequence with
medium motion, the SIR of HEXBS over DS is 27.58%. For

"Football" and "DanceWolf" which contain large motion, as
predicted in theory our HEXBS algorithm has obtained higher
speed improvement over DS, here more than 36%. The larger
the motion in a video sequence, the larger the speed
improvement rate of HEXBS over DS or the other fast
algorithms will be. On the other hand, the degradation in MAD
of HEXBS compared with DS is trivial, less than 1.7% or
smaller of MAD increase for all the video sequences in our
experiment. Fig. 4 plots a frame-by-frame comparison of MAD
and search point number per block respectively for the
different algorithms applied to "Garden" sequence. This figure
shows the similar MAD performance for all the methods
tested, while it clearly manifests the substantial superiority of
the proposed HEXBS algorithm to the other methods in terms
of number of search points used.

4. CONCLUSIONS
 We have developed a novel fast algorithm using hexagon-
based search pattern in block motion estimation, which
demonstrates significant speedup gain over the diamond-based
search and other fast search methods while maintaining similar
distortion performance. The proposed HEXBS consistently has
a faster search performance than DS regardless of no-, small-,
medium- or large-motion. In other words, the new hexagon-
based search scheme may find any motion vector in motion
field with fewer search points than the DS algorithm.
Generally speaking, the larger the motion vector, the more
significant the speedup gain for the new method will be. The
experimental results have verified the statement and
convincingly demonstrated the superiority of the proposed
HEXBS to the other fast methods in terms of using the
smallest number of search points with marginal increase in
distortion.

REFERENCES

[1] R. Li, B. Zeng, and M. L. Liou, "A new three-step

search algorithm for block motion estimation," IEEE
Transactions on Circuits & Systems for Video
Technology, vol. 4, pp. 438-442, Aug. 1994.

[2] L. M. Po and W. C. Ma, "A novel four-step search
algorithm for fast block motion estimation," IEEE
Transactions on Circuits & Systems for Video
Technology, vol. 6, pp. 313-317, June 1996.

[3] L. K. Liu and E. Feig, "A block-based gradient descent
search algorithm for block motion estimation in video
coding," IEEE Transactions on Circuits & Systems for
Video Technology, vol. 6, pp. 419-423, Aug. 1996.

[4] Shan Zhu, Kai-Kuang Ma, "A new diamond search
algorithm for fast block-matching motion estimation,"
IEEE Transactions on Image Processing, vol. 9, no. 2,
pp. 287-290, Feb. 2000.

[5] Jo Yew Tham, Surendra Ranganath, Maitreya
Ranganath, and Ashraf Ali Kassim, "A novel
unrestricted center-biased diamond search algorithm for
block motion estimation," IEEE Transactions on
Circuits & Systems for Video Technology, vol. 8, no. 4,
pp. 369-377, Aug. 1998.

4 66 4 4 2 2 2 46 60

1

2

3

4

5

6

7

-7

-6

-5

-4

-3

-2

-1

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

5 5767

55 5 7 4 6 4 7 55 5

52 5 2 7 1 7 2 2

2 77 2 5 2 4 2 5

4 44 4 2 2 2 2 2

5 5767

4 44 4 2 2 2 2 2

2 77 2 5 2 4 2 5

52 5 2 7 1 7 2 2

55 5 7 4 6 4 7 55 5

Fig. 3. Number of search points saved by HEXBS as
compared to DS for each motion vector location.

TABLE I. Average MAD per pixel for different methods and different video sequence
 Salesman Coastguard Tennis Garden Football DanceWolf
FS 2.772 5.040 7.152 6.162 8.092 2.848
NTSS 2.776 5.081 7.587 6.510 8.350 2.887
4SS 2.807 5.132 7.540 6.702 8.500 2.910
DS 2.802 5.095 7.629 6.732 8.480 2.901
HEXBS 2.821 5.168 7.745 6.845 8.599 2.944

Table II. Average number of search points per block for different methods and different video sequence
 Salesman Coastguard Tennis Garden Football DanceWolf
NTSS 18.084 21.358 22.713 27.481 23.813 23.960
4SS 17.355 19.687 19.855 21.661 20.559 20.586
DS 13.065 16.365 16.909 20.750 19.020 18.855
HEXBS 10.761 12.827 13.005 15.375 13.910 13.816

Table III. Average speed improvement rate (SIR) and average MAD increase in percentage of our HEXBS over DS
 Salesman Coastguard Tennis Garden Football DanceWolf
Avg. SIR (%) 21.41 27.58 30.02 34.96 36.74 36.47
Avg. MAD increase (%) 0.68 1.43 1.52 1.68 1.40 1.48

Fig. 4. Performance comparison of NTSS, 4SS, DS and the proposed HEXBS for "Garden" sequence in terms of
average MAD per pixel and the average number of search points per block, respectively.

0 10 20 30 40 50 60 70 80 90 100
Frame Number

4

5

6

7

8

9

10

11

12

13

Av
er

ag
e

 M
AD

 P
er

 P
ix

el

HEXBS
DS
4SS
NTSS

"Garden" Sequence

0 10 20 30 40 50 60 70 80 90 100
Frame Number

12

14

16

18

20

22

24

26

28

30

32

Se
ar

ch
 P

oi
nt

s
 P

er
 B

lo
ck

HEXBS

DS

4S S

NTS S

