
  

A  NOVEL  HEXAGON-BASED  SEARCH  ALGORITHM   
FOR  FAST  BLOCK  MOTION  ESTIMATION 

 
Ce Zhu, Xiao Lin, Lap-Pui Chau, Keng-Pang Lim, Hock-Ann Ang, Choo-Yin Ong 

 
Centre for Signal Processing, School of Electrical & Electronic Engineering 

Nanyang Technological University, Singapore 639798 
 
 

ABSTRACT 
 
In block motion estimation, search pattern with different shape 
or size has very important impact on search speed and 
distortion performance. In this paper, we propose a novel 
algorithm using hexagon-based search (HEXBS) pattern for 
fast block motion estimation. The proposed HEXBS algorithm 
may find any motion vector with fewer search points than the 
diamond search (DS) algorithm. The speedup gain of the 
HEXBS method over the DS algorithm is more striking for 
finding large motion vectors. Experimental results 
substantially justify the fastest performance of the HEXBS 
algorithm compared with several other popular fast algorithms.  
 
 

1. INTRODUCTION 
 
   Block-matching motion estimation is vital to many motion-
compensated video coding techniques/standards, which is 
aimed to exploit the strong temporal redundancy between 
successive frames. However, the motion estimation is quite 
computational intensive and can consume up to 80% of the 
computational power of the encoder if the full search (FS) is 
used by exhaustively evaluating all possible candidate blocks 
within a search window. Therefore, fast search algorithms are 
highly desired to significantly speed up the process without 
sacrificing the distortion seriously. Many computationally 
efficient variants were developed, typically among which are 
three-step search (TSS), new three-step search (NTSS) [1], 
four-step search (4SS) [2], block-based gradient descent search 
(BBGDS) [3] and diamond search (DS) [4] [5] algorithms. 
   In TSS, NTSS, 4SS and BBGDS algorithms, square-shaped 
search patterns of different sizes are employed. On the other 
hand, the DS algorithm adopts a diamond-shaped search 
pattern, which has demonstrated faster processing with similar 
distortion in comparison with NTSS and 4SS. This inspires us 
to investigate why diamond search pattern can yield speed 
improvement over some square-shaped search patterns and 
what is the mechanism behind. As a result, one may wonder 
whether there is any other pattern shape better than diamond 
for faster block motion estimation. In the following, we 
propose a hexagon-based search algorithm that can achieve 
substantial speed improvement over the diamond search 
algorithm with similar distortion performance.  
 
 

2. HEXAGON BASED SEARCH ALGORITHM 
 
2.1  Hexagonal Search Pattern  
   Ideally, a circle-shaped search pattern with a uniform 
distribution of a minimum number of search points is desirable 

to achieve the fastest search speed. Each search point can be 
equally utilized with maximum efficiency. Referring to the 
diamond search pattern [4] [5], we can see that the diamond 
shape is not approximate enough to a circle, which is just 90 
degree rotation of a square. Consequently, a more circle-
approximated search pattern is expected in which a minimum 
number of search points are distributed uniformly. A hexagon 
based search pattern is devised which is depicted in Fig. 1. 
There are two different sizes of hexagonal search patterns, of 
which the larger one consists of 7 check points marked as 1 
with the center surrounded by 6 endpoints of the hexagon with 
the two edge points (up and down) being excluded. Like the 
shrunk diamond pattern, a smaller shrunk hexagonal pattern 
covering 4 check points marked as 2 is inside the large one, 
which is finally applied in the focused inner search. For the 
larger hexagonal search pattern, we can see the 6 endpoints are 
approximately uniformly distributed around the center with 
similar distances to the center. Note that the hexagonal search 
pattern also contains 2 fewer check points than the 9-point 
diamond search pattern. In the search process, the large 
hexagon-based search pattern keeps advancing with the center 
moving to any of the six endpoints. Whichever endpoint the 
center of the large search pattern moves to, there are always 
three new endpoints emerging and the other 3 endpoints being 
overlapped. Recall that in diamond search, 3 or 5 new points 
appear each time the diamond moves in different directions, in 
average 4 new points being evaluated for each move.  
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Fig. 1. Hexagon-based search (HEXBS): large (1) 
and small (2) hexagonal patterns. 



  

2.2  Algorithm Development 
  
   With the designed hexagonal pattern, we develop the search 
procedure as follows. In the first step, the large hexagonal 
pattern with 7 check points is used for search. If the optimum 
is found at the center, we switch to use the shrunk hexagonal 
pattern including 4 check points for the focused inner search. 
Otherwise, the search continues around the point with 
minimum block distortion (MBD) using the same large 
hexagonal pattern. Note that while the large hexagonal pattern 
moves along the direction of decreasing distortion, only 3 new 
non-overlapped check points will be evaluated as candidates 
each time. Fig. 2 shows an example of the search path strategy 
leading to the motion vector (+4, -4), where 20 (=7+3+3+3+4) 
search points are evaluated in 5 steps sequentially. The 
proposed hexagon-based search (HEXBS) algorithm can be 
summarized in the following detailed steps. 
 
Step i) Starting: The large hexagon with 7 check points is 

centered at (0,0), the center of a predefined search 
window in the motion field. If the MBD point is 
found to be at the center of the hexagon, proceed to 
Step iii) (Ending); otherwise, proceed to Step ii) 
(Searching). 

Step ii) Searching: With the MBD point in the previous search 
step as the center, a new large hexagon is formed. 
Three new candidate points are checked, and the 
MBD point is again identified. If the MBD point is 
still the center point of the newly formed hexagon, 
then go to Step iii) (Ending); otherwise, repeat this 
step continuously. 

Step iii) Ending: Switch the search pattern from the large size 
of hexagon to the small size of hexagon. The four 
points covered by the small hexagon are evaluated 
to compare with the current MBD point. The new 
MBD point is the final solution of motion vector.  

 
From the above procedure, it can be easily derived that the 
total number of search points per block is  

( , )HEXBS x yN m m =7+3×n+4                   (1) 

where ( , )x ym m  is the final motion vector found, and n is 

the number of execution of Step ii).  
  
2.3  Analysis of the HEXBS Algorithm 
 
   In this subsection, we will examine the proposed HEXBS 
algorithm as compared with the diamond search (DS) 
algorithm in term of number of points evaluated to find same 
motion vectors. For block motion estimation, computational 
complexity can be measured by number of search points 
required for each motion vector estimation. In contrast with the 
HEXBS algorithm by which the number of search points used 
is indicated in Equation (1), the diamond search method 
requires the following number of search points per block  

( , )DS x yN m m =9+M× n� +4                   (2) 

where M is either 5 or 3 depending on the search direction and 
n�  depends on the search distance. The n�  in Equation (2) is 

always greater than or equal to the n in Equation (1) for finding 
a same motion vector ( , )x ym m . Especially for locating 

motion vectors in the direction of 1[tan ( 2)] kπ− ± ± , k=0, 
1, it can be derived that the speed improvement rate (SIR) of 
HEXBS over DS can be as high as over 80% in some 
scenarios, where the SIR for locating a motion vector can be 
obtained by  

(9 4) (7 3 4) 100%                          (3)
7 3 4

M n nSIR
n

+ × + − + × += ×
+ × +

�

    
    By analyzing the minimum possible number of search points 
of HEXBS and DS, we show in Fig. 3 the number of search 
points saved by HEXBS as compared with DS for each motion 
vector location within ±4 region. From the figure, we can see 
that for the stationary and quasi-stationary motion vectors the 
HEXBS algorithm has 2 fewer search points, while more 
search points can be saved for locating medium to large motion 
vectors beyond the ±1 region. For example, 7 search points 
(block matches) can be saved by HEXBS for locating motion 
vectors (±1, ±3), (±4, ±2), (±2, ±4) and (±2, ±5). In short, the 
new HEXBS scheme can find any motion vector in motion 
field with fewer search points than the DS algorithm. 
Generally speaking, the larger the motion vector, the more 
search points the HEXBS algorithm saves, which is justified 
by the following experimental results.  
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Fig. 2. Search path example locating the motion vector (+4, 
-4) by HEXBS. Note that a small HEXBS pattern is applied 
in the final step after the best candidate search point at step 
3 remains the best at step 4. Totally 20 (=7+3+3+3+4) 
search points are evaluated in 5 steps. 



  

 
3. EXPERIMENTAL  RESULTS 

 
   The experimental setup is as follows: the distortion 
measurement of mean absolute difference (MAD) used, block 
size of 16×16, and search window size of ±7. Five standard 
video sequences "Salesman" (352×288, 448 frames), 
"Coastguard" (352×240, 300 frames), "Tennis" (720×480, 39 
frames), "Garden" (720×480, 98 frames) and "Football" 
(720×480, 59 frames) were used, which vary in motion content 
as well as frame size. We also produced a sequence 
"DanceWolf" (720×480, 299 frames) from a film "Dance With 
The Wolf" which contains large motion with horse racing, for 
testing purpose.  
    Average MAD values and the search point numbers are 
summarized in Table I and Table II for different algorithms 
including FS, NTSS, 4SS, DS and our proposed HEXBS, 
respectively. (Note that the search point number per block for 
the FS is fixed as 255 for all video sequences.)  We can see 
that the proposed HEXBS algorithm consumes the smallest 
number of search points with marginal increase in MAD 
compared with other fast algorithms. The number of search 
points used by the HEXBS method is substantially smaller 
than that by NTSS, 4SS or DS, nearly half the number of 
NTSS. Here we mainly compare the DS with the proposed 
HEXBS algorithm in terms of number of search point as well 
as MAD. Table III tabulates the average speed improvement 
rate (SIR) and average MAD increase in percentage of the 
proposed HEXBS over DS. For "Salesman" sequence with 
motion vectors limited within a small region around (0, 0), our 
proposed HEXBS algorithm achieves 21.41% speed 
improvement over DS. For "Coastguard" sequence with 
medium motion, the SIR of HEXBS over DS is 27.58%. For 

"Football" and "DanceWolf" which contain large motion, as 
predicted in theory our HEXBS algorithm has obtained higher 
speed improvement over DS, here more than 36%. The larger 
the motion in a video sequence, the larger the speed 
improvement rate of HEXBS over DS or the other fast 
algorithms will be. On the other hand, the degradation in MAD 
of HEXBS compared with DS is trivial, less than 1.7% or 
smaller of MAD increase for all the video sequences in our 
experiment. Fig. 4 plots a frame-by-frame comparison of MAD 
and search point number per block respectively for the 
different algorithms applied to "Garden" sequence. This figure 
shows the similar MAD performance for all the methods 
tested, while it clearly manifests the substantial superiority of 
the proposed HEXBS algorithm to the other methods in terms 
of number of search points used. 
 

4. CONCLUSIONS  
    We have developed a novel fast algorithm using hexagon-
based search pattern in block motion estimation, which 
demonstrates significant speedup gain over the diamond-based 
search and other fast search methods while maintaining similar 
distortion performance. The proposed HEXBS consistently has 
a faster search performance than DS regardless of no-, small-, 
medium- or large-motion. In other words, the new hexagon-
based search scheme may find any motion vector in motion 
field with fewer search points than the DS algorithm. 
Generally speaking, the larger the motion vector, the more 
significant the speedup gain for the new method will be. The 
experimental results have verified the statement and 
convincingly demonstrated the superiority of the proposed 
HEXBS to the other fast methods in terms of using the 
smallest number of search points with marginal increase in 
distortion. 
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Fig. 3. Number of search points saved by HEXBS as
compared to DS for each motion vector location. 



  

TABLE I. Average MAD per pixel for different methods and different video sequence  
 Salesman Coastguard Tennis Garden Football DanceWolf 
FS 2.772 5.040 7.152 6.162 8.092 2.848 
NTSS 2.776 5.081 7.587 6.510 8.350 2.887 
4SS 2.807 5.132 7.540 6.702 8.500 2.910 
DS 2.802 5.095 7.629 6.732 8.480 2.901 
HEXBS 2.821 5.168 7.745 6.845 8.599 2.944 
 
Table II. Average number of search points per block for different methods and different video sequence  
 Salesman Coastguard Tennis Garden Football DanceWolf 
NTSS 18.084 21.358 22.713 27.481 23.813 23.960 
4SS 17.355 19.687 19.855 21.661 20.559 20.586 
DS 13.065 16.365 16.909 20.750 19.020 18.855 
HEXBS 10.761 12.827 13.005 15.375 13.910 13.816 
 
Table III. Average speed improvement rate (SIR) and average MAD increase in percentage of our HEXBS over DS 
 Salesman Coastguard Tennis Garden Football DanceWolf 
Avg. SIR  (%) 21.41 27.58 30.02 34.96 36.74 36.47 
Avg. MAD increase  (%) 0.68 1.43 1.52 1.68 1.40 1.48 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Performance comparison of NTSS, 4SS, DS and the proposed HEXBS for "Garden" sequence in terms of 
average MAD per pixel and the average number of search points per block, respectively. 
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