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ABSTRACT

Thispaperpresentsanalgorithmfor designinganFIR paraunitary
filter bankwhenoneor severalfilters aregiven. Thealgorithmis
basedon thepropertiesof thebalancedstate-spacerepresentation
of the polyphasematrix. We show that this representationmay
becomputedvia a singleRQ decomposition,thusgainingsignif-
icantefficiencewith respectto previouswork. Applicationof the
algorithmto signaladaptedfilter banksis alsodiscussed.

1. INTRODUCTION

We proposein this papera new algorithmfor computingthe fil-
tersof a paraunitaryFIR filter bank,givenoneor severalof them.
Someknown solutionsto this problem—namedparaunitaryem-
bedding,or completion—will beshortlyreviewed. Let � �	��

� be
the given filter (the caseof ����� initial filters will be treated
later),of order � ; we denote� ��������� � thecorrespondingvec-
tor of coefficients; let � be the numberof channelsof the filter
bank. We aim to find filters ��� ��
 � , !#"%$'&�� , with impulse
responses� � �)(*� , ( ",+�&-� , suchthatto obtainan � -channelpa-
raunitaryfilter bank.Wesupposethatthefiltersorderis amultiple
of � , i.e. �/.#�0"#� �)1 .#� � .

Thepolyphasedecompositionof �2� ��
 � is� � ��
 � " 34 5 6 � 
87:9
5 7 �<; � �>= 5 ��
 3 �@? (1)

Theassociatedpolyphasematrix isA ��
 � "CB � �>= 5 ��
 �ED �	= 5 6 �<F 3 ? (2)

Thefilter bankis paraunitaryif thepolyphasematrix
A ��
 � is pa-

raunitary, i.e.
A ��

� AHG ��
 7 � � "#I . Lookingonly at thefirst row ofA ��
 � , theprevious relationshows whataretheconditions� �J��
 �

mustfulfill in orderto bea valid datato thecompletionproblem.
A first algorithmfor paraunitarycompletionwasgivenin [1],

wherethepolyphasematrix wasparameterizedin lattice form. A
different approachwas proposedin [2]; it takes advantageof a
balancedstate-spacerepresentationof thepolyphasematrix; this is
alsothebasisof ouralgorithm,which improvesonseveralaspects
on [2]. Otherpapers,as[3] and[4], giveparameterizationsfor the
more theoreticalcasewhenthe filters � � ��
 � , !'"K$L&M� , may
have ordershigherthan � . Thelinearphasecaseis treatedin [4]
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and[5], thelaterpaperoffering alsoaninterestingview, basedon
thesingularvaluedecomposition(SVD), to our problem.

The currentpaperis structuredas follows. In the next sec-
tion, we review the ideasfrom [2] andprovide somedetailsnot
mentionedthere,mainly takenfrom [6]. In section3, we present
our algorithm; in very few words,our main contribution hereis
to compactthe balancingtransformationand an orthogonalma-
trix completion(donevia SVD in [2]), into a single QR factor-
ization; the algorithmprovidesalsoa lattice parameterizationof
the polyphasematrix. The casewhen �N�O� filters aregiven is
alsotreated.Finally, in section4, wediscusstheapplicationof our
algorithmto thecomputationof signaladaptedfilter banks.

2. THE STATE-SPACE APPROACH

Thealgorithmsuggestedin [2] usesa well known propertyof pa-
raunitarymatrices.Let P , Q , R , S bea minimal realizationof a
paraunitarymatrix

A ��
 � . Then,thereexistsa (nonsingular)trans-
formation T suchthatthematrixU T 7 � PVT T 7 � QR�T S W (3)

is orthogonal.Thenew state-spacerepresentationof
A ��
 � is called

balancedand T is the balancingtransformation. The transfor-
mation T may be computedby solving a Lyapunov equation,as
shown below.

In the completionproblem, this result may be usedfor the
first row only of

A ��
 � , which is definedby thegivenfilter � �J��
 � .
Denotingit A � ��
 � "XB � �Y� ��

� � �*� ��
 �Z?[?[? � � 3 ��

�ED�\ (4)

theparaunitarityconditionis
A � ��
 � A G� ��
 7 � � "]� . We associate

with
A �J��
 � (which is thetransfermatrixof a linearsystemwith �

inputsandoneoutput)theobservablestate-spacerepresentation,

P^"`_aab +c� +
...

. . .+d+ �+d+ ?>?e? +
fhggi (5)

Qj" _aab � �J� � � � �J� �k.#� � ?[?[? � �J� $J�/l'� �� � � $J� � � � � $��C.#� �m?[?[? � � ��n �/l'� �
...

...
...� �	�)1 � � � �J�)1 �C.^� �o?[?[? � �	� � �

fhggi (6)

R � "qp �r+ ?[?>? +ts (7)



S � "up � �	� + � � �	� � �v?[?[? � �J� �/lL� � s (8)

wheretheshift matrix P hasorder 1 . Remarkthat � P \ Q � is con-
trollable,asthelastrow of Q is nonzero(otherwise,� wouldhave
a smallervalue),i.e. therealizationis minimal.

To find the balancingtransformation,we computethe (posi-
tive definite,since P is stable)solution w of the discretematrix
Lyapunov equation wx"yP0wHP G .zQ{Q G \ (9)

thenwefind theCholesky decompositionof thematrix w , i.e. | ��2}�~-} uppertriangular, suchthat |M| G "^w .
Now, thebalancedstate-spacerepresentationof thepolyphase

matrix
A �J��
 � is�P^�K| 7 � P�| \ �QX�K| 7 � Q \ �R � ��R � | ? (10)

In this form, following the result in the beginning of the section,
theparaunitarityof

A � ��
 � is expressedastheorthogonalityof the
rowsof the �)1 .#� �����)1 .�� � systemmatrix� � " U �P �Q�R � S � W \ (11)

i.e.
� � � G� "#I .
All the valid completionsof the filter bank are obtainedby

completingthematrix
� � with �zlZ� rows,suchthatanorthogonal

matrix � " U �P �Q�R S W (12)

of size �)1 .�� �����)1 .z� � is obtained,where�Rx" U �R ��R � W \ S/" U S �S � W ? (13)

Thevalid completionsmaybeparameterizedin theform� " U I } � � ++ � G WL�� \ (14)

where �� is a particularcompletion,e.g. obtainedvia theQR fac-
torizationof

� G� , and � is an arbitraryorthogonalmatrix of size� �uly� ���L� �uly� � . We remindthat in [2], the SVD wasused
to complete

� � ; however, a simpleQR factorizationis sufficient,
sincethe rows of

� � areorthogonal,i.e. thecompletionproblem
is well conditioned.

All the state-spacerepresentations� �P \ �Q \ �R \ S � of the form
(12)belongto paraunitarymatrices

A ��
 � expressedas(2). There-
fore, the coefficientsof the filters ��� ��

� , !�"O$�&:� , aredeter-
minedby computingtheMarkov coefficients S ,

�R �Q ,
�R �P �Q , . . . ,�R �P } 7 � �Q , sinceA ��
 � "^Sj. }4 � 6 � 
87

� �R �P � 7 ���Q \ (15)

andidentifyingappropriatelythetermsin (2) and(1).
If the matrix � is definedascontainingon columnsthe im-

pulseresponsesof thefilters, i.e.��"CB � � � ��?[?[? � 3 D�\ (16)

thenweremarkthattheparameterization(14)maybewrittenequally
well ��" �� U � ++�� W \ (17)

where �� containsthefilters givenby �� (andhasthegiven � � on
its first column).

Due to the form of P in (5), the Lyapunov equation(9) may
be solved by a simple recursion. However, we will show in the
next sectionthat it is possibleto computedirectly theorthogonal
completion(12) andtheCholesky factor | by a singleQR factor-
ization,startingfrom (5,6).

Also, theMarkov coefficients(15)canbecomputedefficiently.
For this, it is sufficient to apply the inverseof the transform(10),
with theknown | . Weobtain P and Q asin (5,6)(nocomputation
required),and Rx� �R�| 7 � . Expressinginput-outputrelations,the
Markov coefficientsarecomputedusingthesame(15) (with tildes
removed),with thegreatadvantageof having P asin (5).

3. THE NEW COMPLETION ALGORITHM

Therelationsdefiningthestate-spacetransformation(10) maybe
written—usingalso(13)anddenoting� � the ! -th unit vector— in
theequivalentformU R � | S �P�| Q W " U � G � ++ | W U �R S�P �Q W \ (18)

wherethematrix �� " U �R S�P �Q W (19)

is orthogonal(asa simplepermutationof
�

).
However, thebalancingtransformation| dependsonly on P

and Q , asimmediatefrom (9). Therefore,we take from (18) only
thepartinvolving P and Q , i.e.p P�| Q s " p +d| s � \ (20)

where
�

is anorthogonalmatrix. As
�P and

�Q areuniquelydeter-
minedby P , Q and | , relation(18)shows thatthematrices

�
and��

have thelast 1 rowsequal,but otherwisemaybedifferent,i.e.�� " diag� ��� \ I } � � \ with orthogonal
��� ? (21)

We begin by analyzinghow
�

canbe computed.In relation
(20),thematrix

�
is orthogonalandthematrix B +M| D ����}�~ 9 3 � } ;

is right uppertriangular. Therefore,(20) representsanRQ factor-
ization. Dueto theform (5) of thematrix P , the left termin (20)
hastheform, e.g.for �]" n , 1 "y$ ,U +��d�v���+d+��v��� W \ (22)

wheretheelementsof | and Q aredenotedgenericallyby � and � ,
respectively. Correspondingly, thematrix

�
hasthestructure

_aaab
�� ���������� ���������� ��������+ �� � � �� ��+�+ �� �� ��

fhgggi ? (23)



Remarkthat thematrix
�P is in Schurform andall its eigenvalues

are zero, sincewe have hereFIR filters. To have the complete
pictureof (20),wenotethatp +d| s " U +�+�+��r�+�+�+�+r� W ? (24)

Thestructure(22)showsthattheRQfactorization(20)maybe
computedwithoutknowing | from thebeginning,although| ap-
pearsin whatisusuallyaconstantmatrixfor anRQfactorization—
the left term of (20). We denote ��"�B P�|#Q D andaim to find
Householderreflectors� } , . . . , � � suchthat�{� } ?[?[? � � (25)

is right uppertriangular, like in (24), computingalso | on thefly.
Therefore,wewill compute

�
from (20),as� "x� � ?[?[? � } ? (26)

As | is notknown, � is initializedwith B +VQ D . Thesuccessive
transformationsfrom (25) will be storedin place in � ; finally,� will be right uppertriangular, asin (24). The algorithmto be
presentedworkson therowsof � , from bottomto top.

Thelastrow in (22)dependsonly on Q , thatiswecancompute
a Householderreflector� } " diag� I } \ �� } �@\ with

�� } ��� 3 ~ 3 \ (27)

suchthat �{� } hasonly onenonzeroelementon its lastrow, i.e.� �)1¡\<1 .t�H& 1 .�� � �� } "#| �)1¡\<1:� � G } ? (28)

We have thus computedthe last row of | , which hasonly one
nonzeroelement,see(24).

As clearfrom (22), therow 1 lt� of � containstherow 1 of| , which is now available,thuswe set � �)1 l^� \¢1:� �`| �)1¡\<1:� .
Then,we updatethe row 1 lx� of � with the previous reflector� } , i.e.� �)1 lz� \¢1 .#�£& 1 .¤� � �¥� �)1 lz� \¢1 .t�H& 1 .¤� � �� } (29)

We notice that the element � �)1 lX� \¢1 .,� � will no more be
touchedby the RQ factorization,andthus � �)1 lx� \¢1 .^� � "| �)1 l'� \¢1:� . We now computethereflector� } 7 � " diag� I } 7 �[\ �� } 7 �>\ � � (30)

suchthat the row 1 l,� of � hasthe necessaryzero elements,
obtainingalsothenext diagonalelementof | , i.e.� �)1 lL� \<1 & 1 .��/l'� � �� } 7 � "^| �)1 lL� \¢1 l'� � � G } ? (31)

For eachrow ! , the algorithm follows the samepatternas
above. First,therow !¦.§� of | (moreprecisely, | � !¦.§� \ !¨.©�H& 1:� ,
computedat the previous iteration) is insertedin row ! of � , as� � ! \ !Z.X��& 1:� . Then, the row ! of � is updatedwith all the
previousreflectors.Finally, therow is broughtto thedesiredzero
structurevia anappropriatereflectorhaving thestructure� � " diag� I � \ �� � \ I } 7 � �@? (32)

Thealgorithmis summarizedin Fig. 1. Thenumberof operations
of this algorithmis exactly thesameasfor anusualRQ factoriza-
tions. (Theorderof theoperationsis changedwith respectto the

mostusedform of RQ factorization,whereall leadingrows are
updatedimmediatelyafterthecomputationof a reflector.)

Thealgorithmin Fig. 1 providestheorthogonal
�

from (20),
in theform (26). Noticethat thefirst columnof

�
is � � . We now

wantto compute
��

asin (18), i.e. to ensure
�R � asin (10). TheRQ

factorizationfrom thealgorithmin Fig. 1 maybecontinuedwith
thereflector � � suchthatU R � | S �P�| Q W � G � � " U«ª G+d| W � � " U � G � ++ | W \

(33)
where

ª G " p � G � | S � s � G
. As it shouldnot touch | , the

reflector � � for which
ª G � � "k� G � musthave thestructure(21),

i.e. � � " diag� �� � \ I } � . It resultsthattherightmost 1 elementsofª
arealreadyzeroaftertheRQfactorizationandupdateof theex-

tra row p R � | S � s (this conditionmaybeusedalsoto check
theparaunitarityof thegivenfilter � �	��
 � ). Wehavethusobtained
thematrix

��
from (19), in theform�� "¬� �	� "¬� � � �:?[?>? � } \ (34)

wherethe reflectorshave thestructure(32), confirmingthestruc-
tureof

�
suggestedin (23).

A lattice representationof thepolyphasematrix
A ��

� results

from (34), in conjunctionwith thestate-spacerepresentation(19).
It is interestingto noticethatasimilar latticehasbeenproposedin
theearlypaper[7,Fig.6],usingonly theoreticaldevelopmentsand
without indicatinganalgorithmfor its computation;also,Givens
rotationswereusedinsteadof Householderreflectors.Dueto the
lack of space,we leave the interestedreaderto fill in the details,
with thehelpof [7].

Thecaseof �N�O� givenfilters is a simpleextensionof the
case�%"­� , dueto thefact that thecompletionis essentiallyde-
terminedby asinglefilter (whichdeterminesuniquelythematrices�P and

�Q ). Denote® � "�B � �:?[?e? �°¯ D thematrix of thegiven im-
pulseresponses.If this is a valid setof filters, then ® G� ® � "^I (as
well, for a paraunitaryfilter bank, � G ��"^I ). Let �� bethefilter
bankobtainedby the algorithmdescribedin this section,starting
from � � . We mustthuscomputethe matrix � from (17), where�q"±B ® � ® �@D , and ® � is thedesiredcompletion.Equivalently, we
mustcomputeamatrix � � ��� 3 ~ 9 ¯ 7 �<; with orthogonalcolumns
suchthat ® � " �� U � ++�� � W ? (35)

This is anoverdeterminedsystemwhosesolutionisU � ++�� � W " � �� G �� �@7 � �� G ® � " �� G ® �	? (36)

Thematrix � � is completedto orthogonality(via QRfactorization)
in �²"«B � � � �³D and the completion ® � resultsfrom (17). The
freedomin choosing® � is reflectedby thefreedomin completing� with � � .

4. SIGNAL ADAPTED FILTER BANKS

An applicationof thecompletionalgorithmgiven in theprevious
sectionis at thecomputationof signaladaptedfilter banks,assug-
gestedin [8]. Let ´ � ! � , !Z"^+§& � , betheautocorrelationsequence
of thefilter bankinputsignalandµy" Toep� ´ � + �@\ ´ � � �@\[?[?e?[\ ´ � � �¢�



0. Initialize � � �£& 1¡\¢1 .^�£& 1 .�� � "yQ , with Q asin (6), and � � �£& 1¶\ �H& 1:� "^+ .
1. For !Z" 1 &¨lH�H&¨� (computerow ! of � )

1.1. If !�· 1
1.1.1.Insertpreviousrow of | in currentrow of � : � � ! \ !£.#�H& 1:� �%� � !£.#� \ !£.z�C.^�£& 1 .z� �
1.1.2.For ( " 1 &¨lH�H&
!£.#� (updatecurrentrow with all previousreflectors)

1.1.2.1. � � ! \¢( .#�£& ( .�� � ��� � ! \¢( .#�H& ( .�� � �� �
1.2. Computereflector

�� � ��� 3 ~ 3 suchthat � � ! \ !£.#�H&¸� � �� � is zeroexceptingthelastelement
Output: |�"y� � �H& 1¡\¢1 .#�H& 1 .�� � uppertriangular,

� G "x� } ?[?[? � � , with �¹� asin (32).

Fig. 1. AdaptedRQ factorizationalgorithmfor computing| and
�

from (20).

thecorrespondingToeplitzmatrix. For ananalysisfilter bankde-
finedby (16), theenergy of thesignalsat theoutputof eachfilter� � ��
 � is º �� "y� G � µH� � . Thecodinggainof thefilter bankis�H» � � � " �3t¼ 3 � 6 � º ��½Y¾ 3 � 6 � º ��J¿ 9 �<À 3 ; " �½¢¾ 3 � 6 � º ���¿ 9 �<À 3 ; ? (37)

We want to designa (paraunitary)filter bank � suchthat the
codinggain is maximized.This is anonconvex optimizationprob-
lem, for which thereis no algorithmto ensureoptimality of the
solution. The heuristicproposedin [8] is to designfirst the filter� � maximizing º �� , i.e. anoptimumcompactionfilter; to this pur-
pose,weproposedanefficientalgorithmin [9], basedonsemidef-
inite programming,alwaysensuringoptimality, at relatively low
cost.

Then, the other filters are found. Computationally, this is
cheaperthanfinding thefirst filter. Supposethat,startingwith the
optimal � � , thealgorithmin theprevioussectioncomputesacom-
pletionsuchthat �� is paraunitaryandhas � � on thefirst column.
Then,all thevalid completionsaregivenby (17). Denoting�µx" �� G µ �� \ (38)

it resultsfrom theoptimality of � � that�µx" diag� º �� \ µ �>�@? (39)

(Otherwiseº �� couldbeincreasedvia anorthogonaltransform,asµ is positive definite.) Now, thefilter bankoptimizing(37) given� � is definedby � from theeigendecomposition� G �µÁ�x"#Â \ (40)

with diagonalÂ . It resultsthat � G µ�� is diagonal.Theproof of
thesefactsmaybefoundin [6].

Thistwo-stepalgorithmisnotgiving theoptimumcodinggain,
but oftena very goodapproximation.Experimentaldataarepre-
sentedin [6], availablealsoon theweb.
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