AN EFFICIENT ALGORITHM FOR FIR FILTER BANK COMPLETION

CorneliuPopeed, BogdanDumitrescd!, Boris Jora'

! Departmenbf ControlandComputers
"Politehnica” University of Bucharest
313Spl. Independeysi, 77206BucharestRomania
e-mail: popeea,bogdan,jora@luckchurpubro

ABSTRACT

This papemresentanalgorithmfor designingan FIR paraunitary
filter bankwhenoneor severalfilters aregiven. The algorithmis
basedon the propertiesof the balancedstate-spaceepresentation
of the polyphasematrix. We shaw that this representatiommay
be computedvia a single RQ decompositionthusgaining signif-
icantefficiencewith respecto previouswork. Application of the
algorithmto signaladaptedilter banksis alsodiscussed.

1. INTRODUCTION

We proposein this papera new algorithmfor computingthe fil-

tersof a paraunitaryFIR filter bank,givenoneor several of them.
Someknown solutionsto this problem—namedparaunitaryem-
bedding,or completion—will beshortlyreviewed. Let H;(z) be
the givenfilter (the caseof K > 1 initial filters will be treated
later),of order N'; we denoteh; € RN+ the correspondingec-
tor of coeficients; let m be the numberof channelsof the filter

bank. We aim to find filters Hi(z), K = 2 : m, with impulse
response# (i), 1 = 0 : N, suchthatto obtainanm-channelpa-
raunitaryfilter bank. We supposehatthefilters orderis amultiple
of m,i.e. N+1=m(n+1).

The polyphasaelecompositiorof Hy(z) is

m

Hk(z) = Zz_“_l)Hk,e(zm). (l)

£=1

Theassociategolyphasematrixis
E(z) = [Hk,e(z)]k,lezm- (2)

Thefilter bankis paraunitanyif the polyphasematrix E(z) is pa-
raunitaryi.e. E(z)ET (z~') = I. Looking only atthefirst row of
E(z), the previousrelationshawvs what arethe conditionsH; ()
mustfulfill in orderto beavalid datato the completionproblem.
A first algorithmfor paraunitarycompletionwasgivenin [1],
wherethe polyphasematrix wasparameterizeéh latticeform. A
differentapproachwas proposedin [2]; it takes advantageof a
balancedtate-spaceepresentatioof the polyphasematrix; thisis
alsothebasisof ouralgorithm,whichimproveson seseralaspects
on[2]. Otherpapersas[3] and[4], give parameterizationfor the
more theoreticalcasewhenthe filters H,(2), &k = 2 : m, may
have ordershigherthan N. Thelinear phasecaseis treatedin [4]
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and[5], thelater paperoffering alsoaninterestingview, basedn
thesingularvaluedecompositiof{SVD), to our problem.

The currentpaperis structuredasfollows. In the next sec-
tion, we review the ideasfrom [2] and provide somedetailsnot
mentionedthere,mainly taken from [6]. In section3, we present
our algorithm; in very few words, our main contribution hereis
to compactthe balancingtransformationand an orthogonalma-
trix completion(donevia SVD in [2]), into a single QR factor
ization; the algorithm provides also a lattice parameterizatiormf
the polyphasematrix. The casewhen K > 1 filters aregivenis
alsotreated Finally, in sectiord4, we discusgheapplicationof our
algorithmto the computatiorof signaladaptedilter banks.

2. THE STATE-SPACE APPROACH

Thealgorithmsuggestedh [2] usesawell known propertyof pa-
raunitarymatrices.Let A, B, C, D be aminimal realizationof a
paraunitarymatrix E(z). Then,thereexistsa (nonsingularkrans-
formationT" suchthatthe matrix

T AT T 'B
cT D ®)

is orthogonal Thenew state-spaceepresentationf E(z) is called
balancedand T is the balancingtransformation. The transfor
mationT may be computedby solving a Lyapunw equation,as
shown below.

In the completionproblem, this result may be usedfor the
first row only of E(z), whichis definedby thegivenfilter Hi(z).
Denotingit

El(z) = [Hu(z) HIQ(Z) e Hlm(z)], (4)

the paraunitarityconditionis E;(2) ET (27!) = 1. We associate
with E1(z) (whichis thetransfematrix of alinearsystemwith m
inputsandoneoutput)the obsenablestate-spacespresentation,

0 1 0
A=| 5)
00 1
0 0 0
hi(m) hi(m+1) hi(2m — 1)
h1 (2m) h1 (2m =+ 1) h1 (3m — 1)
B= : : : 6)
hi(nm)  hi(nm + 1) ha(IV)

Gi=[10 0] )



Dy = hi(0) ha(1) hi(m—1) | (8)
wherethe shift matrix A hasordern. Remarkthat (A4, B) is con-
trollable,asthelastrow of B is nonzergotherwise N would have
asmallervalue),i.e. therealizationis minimal.

To find the balancingtransformationwe computethe (posi-
tive definite, since A is stable)solution P of the discretematrix
Lyapuna equation

P=APAT + BBT, (9)

thenwefind the Cholesly decompositiorof thematrix P, i.e. L €
R™*™ uppertriangular suchthat LLT = P.

Now, thebalancedstate-spaceepresentationf the polyphase
matrix B (z) is

A« L "AL, B+ L 'B, C, + C:\L. (10)

In this form, following the resultin the beginning of the section,
the paraunitarityof E1 (z) is expressedisthe orthogonalityof the
rows of the (n + 1) x (n + m) systemmatrix

A B
S1 = |: él Dy :|1 (11)

i.e. Slsf =1.
All the valid completionsof the filter bank are obtainedby
completingthe matrix.S; with m— 1 rows, suchthatanorthogonal

matrix o
A B
s[4 7] w2
of size(n + m) x (n + m) is obtainedwhere
= (ol | D1
o-[&]o-[B]
Thevalid completionamaybe parameterizeth theform
| Iny1 O 4
S = [ 0 VT ] S, (14)

whereS is a particularcompletion,e.g. obtainedvia the QR fac-
torizationof ST, andV is an arbitrary orthogonalmatrix of size
(m —1) x (m — 1). Weremindthatin [2], the SVD wasused
to completeS:; however, a simple QR factorizationis sufficient,
sincethe rows of S; areorthogonal,i.e. the completionproblem
is well conditioned. o

All the state-spaceepresentation§A, B, C, D) of the form
(12) belongto paraunitarymatricesE(z) expresse@s(2). There-
fore, the coeficientsof thefilters Hy(2), k = 2 : m, aredeter
minedby computingthe Markov coeficients D, CB, CAB, ...,
CA"'B, since

E(z)=D+ Z 2 'CATB, (15)
=1
andidentifying appropriatelythetermsin (2) and(1).
If the matrix H is definedas containingon columnsthe im-
pulseresponsesf thefilters, i.e.

H=[hhs ... k), (16)

thenweremarkthattheparameterizatio(il4) maybewrittenequally
well
~ 1 0
aoal) 0] @)
whereH containsthe filters givenby s (andhasthegivenh, on
its first column).

Dueto the form of A in (5), the Lyapunw equation(9) may
be solved by a simple recursion. However, we will shav in the
next sectionthatit is possibleto computedirectly the orthogonal
completion(12) andthe Cholesly factor L by a single QR factor
ization, startingfrom (5,6).

Also, theMarkov coeficients(15) canbecomputecefficiently.
For this, it is sufiicient to apply the inverseof the transform(10),
with theknown L. We obtain A and B asin (5,6) (no computation
required)andC + CL~'. Expressingnput-outputrelationsthe
Markov coeficientsarecomputedusingthe same(15) (with tildes
removed),with the greatadvantageof having A asin (5).

3. THENEW COMPLETION ALGORITHM

Therelationsdefiningthe state-spacé&ransformation(10) may be
written—usingalso(13) anddenotinges. the k-th unit vector— in
theequialentform

CiL Di| | € o C D
[AL B]_[O LHA ] (18)
wherethe matrix _
=_| C D
o-[4 2] @

is orthogonalasa simplepermutatiorof S).

However, the balancingtransformation. dependsonly on A
and B, asimmediatefrom (9). Therefore we take from (18) only
thepartinvolving A andB, i.e.

[AL B|=[0 L ]Q, (20)

whereQ is anorthogonamatrix. As A and B areuniquelydeter
minedby A, B andL, relation(18) shavs thatthe matrices) and
Q have thelastn rows equal,but otherwisemaybe different,i.e.

Q = diag(Qo, I,)Q, with orthogonalQ. (21)

We beagin by analyzinghow @ canbe computed.In relation
(20), thematrixQ is orthogonakndthematrix[0 L] € R™*(™+m)
is right uppertriangular Therefore(20) representsin RQ factor
ization. Dueto theform (5) of the matrix A, the left termin (20)
hastheform, e.g.form = 3,n = 2,

0 ¢ b b b
[Oobbb]’ (22)

wheretheelementof L and B aredenotedyenericallyby £ andb,
respectiely. Correspondinglythe matrix Q hasthestructure

é & d d d
¢ & d d d
¢ & d d d (23)
0 a b b b
0 0 b b b



Remarkthatthe matrix 4 is in Schurform andall its eigervalues
are zero, sincewe have hereFIR filters. To have the complete
pictureof (20), we notethat
0 0 0 ¢ ¢
[OL]_OOOOK. (24)

Thestructurg(22) shovsthattheRQfactorization(20) maybe
computedwithoutknowing L from the beginning, althoughL ap-
peardn whatis usuallyaconstanmatrixfor anRQfactorization—
the left term of (20). We denoteG = [AL B] andaim to find
Householdereflectorsl,, ..., U1 suchthat

GU,...U; (25)

is right uppertriangular like in (24), computingalso L on thefly.
Thereforewe will compute@ from (20), as

Q=U:...Un (26)

As L is notknown, G is initialized with [0 B]. Thesuccessie
transformationsrom (25) will be storedin placein G; finally,
G will beright uppertriangular asin (24). The algorithmto be
presenteavorksontherows of G, from bottomto top.

Thelastrow in (22) depend®nly on B, thatis we cancompute
aHouseholdereflector

U, = diag(I», U,), with U, € R™*™, 27)
suchthat GU,, hasonly onenonzercelemenonits lastrow, i.e.
G(nyn+1:n+m)U, = L(n,n)el. (28)

We have thus computedthe last row of L, which hasonly one
nonzercelementsee(24).

As clearfrom (22),therow n — 1 of G containstherow n of
L, whichis now available,thuswe setG(n — 1,n) < L(n,n).
Then,we updatetherow n — 1 of G with the previous reflector
U,,ie.

Gn—1,n+1:n4+m)« Gn—-1,n+1:n+m)U, (29)

We notice that the elementG(n — 1,n + m) will no more be
touchedby the RQ factorization,andthusG(n — 1,n + m) =
L(n — 1,n). We now computethereflector

Up_1 = diag(In_l,Un_l,l) (30)

suchthattherow n — 1 of G hasthe necessaryero elements,
obtainingalsothe next diagonalelementof L, i.e.

Gn—1,n:n4+m-1)Un1=Ln-1,n—1)er. (31)

For eachrow k, the algorithm follows the samepatternas
above. First,therow k+1 of L (moreprecisely L(k+1, k+1 : n),
computedat the previous iteration)is insertedin row &k of G, as
G(k,k + 1 : n). Then,therow k of G is updatedwith all the
previousreflectors.Finally, the row is broughtto the desiredzero
structurevia anappropriateeflectorhaving the structure

Ux :diag(Ik,ﬁk,In,k). (32)

Thealgorithmis summarizedn Fig. 1. Thenumberof operations
of this algorithmis exactly the sameasfor anusualRQ factoriza-
tions. (The orderof the operationds changedwith respecto the

mostusedform of RQ factorization,whereall leadingrows are
updatedmmediatelyafterthe computatiorof areflector)

Thealgorithmin Fig. 1 providesthe orthogonal@ from (20),
in theform (26). Notice thatthefirst columnof @ is e1. We now
wantto compute) asin (18),i.e. to ensureC; asin (10). TheRQ
factorizationfrom the algorithmin Fig. 1 may be continuedwith
thereflectorUy suchthat

C1L D1 T wT 6? 0
[AL B ]QUO:[O L]UO:[ 0 L]’
(33)
wherew? = [ eIl D, ]QT. As it shouldnottouch L, the
reflectorUp for whichw” Uy = e] musthave the structure(21),
i.e. Up = diagUo, I,). It resultsthattherightmostn elementf
w arealreadyzeroafterthe RQ factorizationrandupdateof the ex-
trarow [ CiL D, | (thisconditionmaybeusedalsoto check
theparaunitarityof the givenfilter H;(z)). We have thusobtained
thematrix Q from (19),in theform

Q:UOQ:U0U1---Un7 (34)

wherethe reflectorshave the structure(32), confirmingthe struc-
ture of Q suggestedh (23).

A lattice representatiorof the polyphasematrix E(z) results
from (34), in conjunctionwith the state-spaceepresentatiofl9).
It is interestingto noticethata similar lattice hasbeenproposedn
theearly paper{7,Fig.6], usingonly theoreticaldevelopmentsand
without indicatingan algorithmfor its computation;also, Givens
rotationswereusedinsteadof Householdereflectors.Dueto the
lack of spacewe leave the interestedreaderto fill in the details,
with the helpof [7].

Thecaseof K > 1 givenfilters is a simple extensionof the
caseK = 1, dueto thefactthatthe completionis essentiallyde-
terminedby asinglefilter (which determinesiniquelythematrices
A andB). DenoteF; = [h;: ... hk] the matrix of the givenim-
pulseresponsedf thisis avalid setof filters, then L Fy = I (as
well, for a paraunitaryfilter bank, HT H = I). Let H bethefilter
bankobtainedby the algorithmdescribedn this section,starting
from h1. We mustthuscomputethe matrix V' from (17), where
H = [Fy F], andF; is thedesiredcompletion.Equivalently, we
mustcomputeamatrixV; € R™*¥~1) with orthogonatolumns
suchthat

=11 0
F1—H[O V1]' (35)
Thisis anoverdeterminedystemwhosesolutionis
L0 gt BTR - BT (36)
0 W ’

Thematrix V1 is completedo orthogonality(via QR factorization)
in V = [V1 V,] andthe completionF> resultsfrom (17). The
freedomin choosingF is reflectedby the freedomin completing

4. SIGNAL ADAPTED FILTER BANKS

An applicationof the completionalgorithmgivenin the previous
sectionis atthecomputatiorof signaladaptedilter banks,assug-
gestedn [8]. Letr(k), k = 0 : N, betheautocorrelatiorsequence
of thefilter bankinputsignalandR = Toep(r(0), (1), ...,7(V))



1.Fork=mn:—1:1(computerow k of G)
11lfk<n

0. Initialize G(1 : n,n+ 1 : n + m) = B, with B asin (6),andG(1: n,1: n) = 0.

1.1.1.Insertpreviousrow of L in currentrow of G: G(k,k+1:n) «< G(k+1,k+m+1:n+m)
1.1.2.Fori=n: —1:k+ 1 (updatecurrentrow with all previousreflectors)
1.121.G(k,i+1:i+m) < Gk,i+1:i+m)U;
1.2. Computereflectorl, € R™*™ suchthatG(k,k + 1 : m)f]k is zeroexceptingthelastelement
Output: L = G(1 : n,n + 1 : n + m) uppertriangular Q7 = U, ..

. U1, with Uy, asin (32).

Fig. 1. AdaptedRQ factorizationalgorithmfor computingL and@ from (20).

the correspondingioeplitzmatrix. For ananalysisfilter bankde-
fined by (16), the enegy of the signalsat the outputof eachfilter
Hy(z) is o2 = h¥ Rhy. Thecodinggain of thefilter bankis

Dk Tk _ 1
(H;nzl 0'1%)(1/m) (H;cnzl U,%)(l/m)

We wantto designa (paraunitaryilter bank H suchthatthe
codinggainis maximized.Thisis anoncotvex optimizationprob-
lem, for which thereis no algorithmto ensureoptimality of the
solution. The heuristicproposedn [8] is to designfirst the filter
ha maximizingo?, i.e. anoptimumcompactiorfilter; to this pur-
pose we proposedanefficientalgorithmin [9], basedn semidef-
inite programming,always ensuringoptimality, at relatively low
cost.

Then, the other filters are found. Computationally this is
cheapethanfinding thefirst filter. Supposehat, startingwith the
optimalhy, thealgorithmin the previoussectioncomputesacom-
pletionsuchthat H is paraunitaryandhash; on thefirst column.
Then,all thevalid completionsaregivenby (17). Denoting

G.(H) =

(37

R=H"RH, (38)
it resultsfrom the optimality of A, that
R = diag(o?, Rs). (39)

(Otherwises? couldbeincreasedsia anorthogonalransform,as
R is positive definite.) Now, thefilter bankoptimizing (37) given
hi is definedby V' from the eigendecomposition

VTRV = A, (40)

with diagonalA. It resultsthat HT RH is diagonal. The proof of
thesefactsmaybefoundin [6].

Thistwo-stepalgorithmis notgiving theoptimumcodinggain,
but often a very goodapproximation.Experimentaldataare pre-
sentedn [6], availablealsoontheweh
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