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ABSTRACT

An MCMC(Markov Chain Monte Carlo) algorithm
is proposed for nonlinear time series prediction with
Hierarchical Bayesian framework. The algorithm com-
putes predictive mean and error bar by drawing samples
from predictive distributions. The algorithm is tested
against time series generated by (chaotic) Rossler sys-
tem and it outperforms quadratic approximations pre-
viously proposed by the authors.

1. INTRODUCTION

Given data {z,}} , C IR, time series prediction prob-
lem amounts to making predictions of its future values
{l't}t>N~

In many time series prediction problems,

(i) monlinearity is behind time series data, and

(ii) data contains noise.
One way of approaching these problems is probabilis-
tic/statistical approach with “basis” functions such as
neural nets to fit time series data {z;}_, without over-
fitting.

Hierarchical Bayesian approach using model Markov
processes with neural net was previously proposed by
the authors [1]-[3]. In this approach, the goal is to eval-
uate predictive distribution for future values {z;}i>n.
Since evaluation of predictive distribution is difficult,
quadratic approximations (QAP) have been used so far
[11-{3].

This paper proposes a new scheme for time series
prediction problem via MCMC(Markov Chain Monte
Carlo) without QAP. For evaluation of predictive dis-
tribution for future values {x; };~ n, the proposed scheme
draws samples of future values from predictive distri-
bution. Using these samples, one can estimate

(i) predictive mean which is usually used as predic-
tion of future values, and

(ii) error bar (standard deviation) which shows un-
certainty of prediction.

In order to demonstrate validity of the proposed
scheme, it is applied to chaotic time series data gener-
ated by noisy Rossler system.

2. FORMULATION

Problem:
Given data set D := {z;}Y, c R , predict

{xt}tT=N+1 .
Hypothesis H

In a Bayesian framework, model specification con-
sists of the following.

1. Architecture:
Specification of basis function for data fitting,
e.g., three-layer perceptron with A hidden units
and a particular sigmoid function.

2. Likelihood:

P ({l't}i\;q—v{x‘rflv S ,$0} | ’lU,ﬁ,H)
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where f(-) is neural net output, w € RF the
weight parameters of a particular architecture, 8
(unknown) uncertainty levels, Zp(3) the normal-
ization constants, and 7 is embedding dimension
(the order of the dynamics) which is, in general,



unknown. Equation(1) looks at {z;} as a 7-th or-
der Markov process whose state transition prob-
ability density is given by the first two factors,
whereas the last factor is the initial state proba-
bility density.

3. Prior for (w, o, 3,H):
See [1]-[3].
The goal of the prediction problem is to evaluate
predictive distribution

P({ze}}i1 | D.H) =

][ Ptk 1wsm

xP(w,a, 3| D,H)dwdadf (3)

3. ALGORITHM

In order to draw samples from joint posterior of w and
(v, ), the scheme proposed in [5] consists of alternate
iterations of two different operations:

(A) Hyperparameter ('), 3)) updated via Gibbs
sampling[4].

(B) Weight parameter w(/) updated via Hybrid Monte
Carlo[5)].

At the end of jth iteration, (w?), al), 39)) is consid-

ered to be a sample from the joint posterior.

3.1. The Hybrid Monte Carlo
Consider the case where
Pw|D,a, B, H) x exp(—M (w)) (4)

for some “energy” function M (w). Let “Hamiltonian ”
function H(w, z) and “Kinetic energy ” function K(z)
be defined by

H(w,z) = M(w)+ K(z) (5)
k .2

K(z) = Y 5- (6)
i=1 v

The Hybrid Monte Carlo considers the Hamiltonian
dynamical system

dw; . 0OH %

dS - +azl(w7Z)_E (7)
dZi - oOH - _8M

s _8—wZ( ,2) = B, (w) (8)

where s is “time” of Hamiltonian dynamical system(7),(8).

A Hamiltonian dynamical system is volume preserving,

i.e., any Euclidean volume is preserved along trajecto-

ries;

d 9g(w,2z)\\ _
where g(-) represents the right hand side of (7) and (8).
Obviously, the density in question

P(w(s),z(s)) = %ezvp(—H (w(s),2(s)))  (10)

is absolutely continuous with respect to the Lebesgue
measure so that it is invariant under (7),(8);

//A P(w’z)d“’dz://AP(F‘S(u/,z’)) dw'dz' (11)

for any (Lebesgue measurable) subset A of R* x R¥,
where F° is the time s-map of the flow induced by
(7),(8). One of the important ideas behind this is the
fact that derivative information % can be incorpo-
rated so that random walk behavior can be avoided.
Since (7),(8) is a deterministic dynamical system, one
needs to perform other operations in order to ensure
ergodic sampling. The Hybrid Monte Carlo consists of

two steps:

(i) Deterministic transition via Hamiltonian dynam-
ical system (7),(8);

(ii) Stochastic transition via occasional updates of
initial condition for the auxiliary variable z;, 1 =
1,---,k, by performing sampling from Gaussian
distribution.

Actual implementation of this scheme is more com-
plicated than that described above, because a Hamilto-
nian dynamical system cannot be exactly simulated by
a computer so that perfect preservation H (w(s), z(s)) =
constant is not possible. In order to overcome this, the
Hybrid Monte Carlo considers the Leapfrog discretiza-
tion. Let A be the period of time over which the deter-
ministic transition via Hamiltonian dynamics is to be
performed, let ¢ > 0 be a step size for discretization,
and define L := A/e.

The Leapfrog discretization performs the following
step L times supposing that L is an integer:

s (s 4 5) =) - %% (@ (s)

This amounts to half step size (¢/2) approximation for
z; and full step size approximation for w;, and another



half step size approximation. Half step desretizations
are often used for numerical integration of differential
equations, e.g., Runge-Kutta.

3.2. Gibbs Sampling for Hyperparameters
Samples of hyperparameters are drawn by the usual

Gibbs sampling.

4. PREDICTION

The goal of the proposed scheme is to draw samples
from predictive distributions:

Yy~ PUed i | DH) (15)

In order to draw samples of future values {xﬁl) A
via (15), the proposed scheme proceeds in two steps:

(w.a,50) ~ Pw.. 8| DH)  (16)

(e ~ Pz} oy | w®, 80, 1) (17)

The scheme first draws samples (w(l), a®, ﬂ(l)) from
the posterior distributions (16) via MCMC described in
the previous section. Secondly, the scheme uses these
samples (w(l), al®, B(l)) to draw samples of future val-

wes {2}y
W ~ Plava |2 w50, H)
xg\lf)+2 ~ P(zny2 | w%)+1vw(l)vﬂ(l)a7'f)
; (18)
xg{) ~ P(zr | w(Tl)_l,'w(l),ﬂ(l),H)

Ty = ($t7$t—17 T 7$t—7+1)-

It follows from the Markov property
P({xt}z:N+1 | wvﬁv H)

T
= H P(xy | -1, w, 0, H) (19)

t=N+1

where

P(xt | wtflvwvﬂvH)

After drawing samples of future values {xil)}th Nils
predictive mean 7; and error bar o,, at t can be es-
timated as follows:

1 L
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where S is the number of samples.

5. DEMONSTRATION:CHAOTIC TIME

SERIES
T = —y—z+u
y = z+ay+uv? (23)
i = br—cztaz+vP

Equation (23) is the well-known Rdssler system with
noise processes (v}, 2, v}). To avoid technical difficul-
ties associated with stochastic process with continuous
parameters, let us consider the discrete version of (24):

Tt4+1)s — f(xt(;; Yis, Zt(i) + thé
Yr1)s = 9(Tes, Yes, 2es) + Vt26 (24)
2(t+1)s = h(mtéa Yts, Zté) + VE&

where f(-), g(+), h(-) represent a numerical integration
scheme , e.g., Runge-Kutta, with step size §, and I/ti(; ~
i.i.d.N(0,02),i=1,2,3.

Let {zts}i>0 be the observation. Figure. 2 shows
time series data {wis,}12) generated by discrete noisy
Rossler system (24), where § = 0.01, n = 70, and
o = 0.02, embedded into IR®. Observe that the magni-
tude of the right hand side of (24) is roughly § = 0.01
times that of (23).Therefore vis ~ N(0, (0.02)?) implies
that the noise process v/ in (23) is roughly 100 times
larger than that of (24). The value 7 stands for sam-
pling period. In general n and the order of Markov
process T needs to be estimated, however, in this paper
we assume 7 and 7(= 4) are already estimated [1]. This
data was used as the training data set and the scheme
dscribed in the previous section was applied. In order
to demonstrate validity of the proposed scheme, we pro-
vided 5 different test data sets, and for each test data
set predictive mean and error bar were estimated with
various model H. Let these 5 test data sets be denoted
test1,--- ,test5. For comparison proposes, QAP [1]-
[3] was also applied.

Figure. 3 shows the average of cumulative squared
errors for five data sets up to 80 step (T" = 80).This
indicates superiority of the prediction with MCMC.

Figure. 4 compares prediction capabilities of MCMC
and that of QAP with various models for test 1 where
the evolutions of cumulative squared errors

T

> (wion —T)?, T=1,---,80 (25)
t=0



Figure 1: Rossler system
at (a,b,c) = (0.36,0.4,4.5)

is shown.

Figure. 5 shows predictive mean and error bar of the

case (test 2, h = 4) which shows the best performance
with respect to cumulative squared errors at 80 step.
In this case, most of true values are within the range
Ty +10,,. The algorithm appears to be fully functional.
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Figure 2: Training data
(Noisy Rossler system)
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Figure 3: Average squared errors (up to 80 steps) for
various models with QAP and MCMC
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Figure 4: Evolutions of cumulative squared
errors (test 1)
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Figure 5: Predictive mean and error bar (test 2, h = 4)



