

BAYESIAN MCMC NONLINEAR TIME SERIES PREDICTION

Y. Nakada, T. Kurihara and T. Matsumoto

Department of Electrical, Electronics and Computer Engineering
 Waseda University; CREST, JST
 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
 Tel/Fax: +81-3-5286-3377, E-mail: takashi@mse.waseda.ac.jp

ABSTRACT

An MCMC(Markov Chain Monte Carlo) algorithm is proposed for nonlinear time series prediction with Hierarchical Bayesian framework. The algorithm computes *predictive mean* and *error bar* by drawing samples from predictive distributions. The algorithm is tested against time series generated by (chaotic) Rössler system and it outperforms quadratic approximations previously proposed by the authors.

1. INTRODUCTION

Given data $\{x_t\}_{t=0}^N \subset \mathbb{R}$, time series prediction problem amounts to making predictions of its future values $\{x_t\}_{t>N}$.

In many time series prediction problems,

- (i) *nonlinearity* is behind time series data, and
- (ii) data contains *noise*.

One way of approaching these problems is probabilistic/statistical approach with “basis” functions such as neural nets to fit time series data $\{x_t\}_{t=0}^N$ without overfitting.

Hierarchical Bayesian approach using model Markov processes with *neural net* was previously proposed by the authors [1]-[3]. In this approach, the goal is to evaluate *predictive distribution* for future values $\{x_t\}_{t>N}$. Since evaluation of predictive distribution is difficult, quadratic approximations (QAP) have been used so far [1]-[3].

This paper proposes a new scheme for time series prediction problem via MCMC(Markov Chain Monte Carlo) without QAP. For evaluation of predictive distribution for future values $\{x_t\}_{t>N}$, the proposed scheme draws samples of future values from predictive distribution. Using these samples, one can estimate

- (i) *predictive mean* which is usually used as prediction of future values, and
- (ii) *error bar (standard deviation)* which shows uncertainty of prediction.

In order to demonstrate validity of the proposed scheme, it is applied to chaotic time series data generated by noisy Rössler system.

2. FORMULATION

Problem:

Given data set $D := \{x_t\}_{t=0}^N \subset \mathbb{R}$, predict $\{x_t\}_{t=N+1}^T$.

Hypothesis \mathcal{H}

In a Bayesian framework, model specification consists of the following.

1. Architecture:

Specification of basis function for data fitting, e.g., three-layer perceptron with h hidden units and a particular sigmoid function.

2. Likelihood:

$$\begin{aligned}
 & P(\{x_t\}_{t=\tau}^N, \{x_{\tau-1}, \dots, x_0\} \mid \mathbf{w}, \beta, \mathcal{H}) \\
 & := \underbrace{\prod_{t=0}^{N-\tau} \frac{1}{Z_D(\beta)} \exp(-\beta E_D(x_{t+\tau} \mid x_{t+\tau-1}, \dots, x_t; \mathbf{w}))}_{\text{noisy dynamics}} \\
 & \quad \times \underbrace{P(x_{\tau-1}, \dots, x_0 \mid \mathcal{H})}_{\text{initial state uncertainty}} \quad (1)
 \end{aligned}$$

$$\begin{aligned}
 & E_D(x_{t+\tau} \mid x_{t+\tau-1}, \dots, x_t; \mathbf{w}) \\
 & := \frac{1}{2} (x_{t+\tau} - f(x_{t+\tau-1}, \dots, x_t; \mathbf{w}))^2 \quad (2)
 \end{aligned}$$

where $f(\cdot)$ is neural net output, $\mathbf{w} \in \mathbb{R}^k$ the weight parameters of a particular architecture, β (unknown) uncertainty levels, $Z_D(\beta)$ the normalization constants, and τ is *embedding dimension* (the order of the dynamics) which is, in general,

unknown. Equation(1) looks at $\{x_t\}$ as a τ -th order Markov process whose state transition probability density is given by the first two factors, whereas the last factor is the initial state probability density.

3. Prior for $(\mathbf{w}, \boldsymbol{\alpha}, \beta, \mathcal{H})$:

See [1]-[3].

The goal of the prediction problem is to evaluate predictive distribution

$$P(\{x_t\}_{N+1}^T | D, \mathcal{H}) = \iiint P(\{x_t\}_{N+1}^T | \mathbf{w}, \boldsymbol{\alpha}, \beta, \mathcal{H}) \times P(\mathbf{w}, \boldsymbol{\alpha}, \beta | D, \mathcal{H}) d\mathbf{w} d\boldsymbol{\alpha} d\beta \quad (3)$$

3. ALGORITHM

In order to draw samples from joint posterior of \mathbf{w} and $(\boldsymbol{\alpha}, \beta)$, the scheme proposed in [5] consists of alternate iterations of two different operations:

- (A) Hyperparameter $(\boldsymbol{\alpha}^{(j)}, \beta^{(j)})$ updated via Gibbs sampling[4].
- (B) Weight parameter $\mathbf{w}^{(j)}$ updated via Hybrid Monte Carlo[5].

At the end of j th iteration, $(\mathbf{w}^{(j)}, \boldsymbol{\alpha}^{(j)}, \beta^{(j)})$ is considered to be a sample from the joint posterior.

3.1. The Hybrid Monte Carlo

Consider the case where

$$P(\mathbf{w} | D, \boldsymbol{\alpha}, \beta, \mathcal{H}) \propto \exp(-M(\mathbf{w})) \quad (4)$$

for some “energy” function $M(\mathbf{w})$. Let “Hamiltonian” function $H(\mathbf{w}, \mathbf{z})$ and “Kinetic energy” function $K(\mathbf{z})$ be defined by

$$H(\mathbf{w}, \mathbf{z}) := M(\mathbf{w}) + K(\mathbf{z}) \quad (5)$$

$$K(\mathbf{z}) := \sum_{i=1}^k \frac{z_i^2}{2m_i} \quad (6)$$

The Hybrid Monte Carlo considers the Hamiltonian dynamical system

$$\frac{dw_i}{ds} = +\frac{\partial H}{\partial z_i}(\mathbf{w}, \mathbf{z}) = \frac{z_i}{m_i} \quad (7)$$

$$\frac{dz_i}{ds} = -\frac{\partial H}{\partial w_i}(\mathbf{w}, \mathbf{z}) = -\frac{\partial M}{\partial w_i}(\mathbf{w}) \quad (8)$$

where s is “time” of Hamiltonian dynamical system(7),(8). A Hamiltonian dynamical system is volume preserving,

i.e., any Euclidean volume is preserved along trajectories;

$$\frac{d}{ds} \left(\det \left(\frac{\partial g(\mathbf{w}, \mathbf{z})}{\partial (\mathbf{w}, \mathbf{z})} \right) \right) \equiv 0 \quad (9)$$

where $g(\cdot)$ represents the right hand side of (7) and (8). Obviously, the density in question

$$P(\mathbf{w}(s), \mathbf{z}(s)) = \frac{1}{Z} \exp(-H(\mathbf{w}(s), \mathbf{z}(s))) \quad (10)$$

is absolutely continuous with respect to the Lebesgue measure so that it is invariant under (7),(8);

$$\iint_A P(\mathbf{w}, \mathbf{z}) d\mathbf{w} d\mathbf{z} = \iint_A P(F^{-s}(\mathbf{w}', \mathbf{z}')) d\mathbf{w}' d\mathbf{z}' \quad (11)$$

for any (Lebesgue measurable) subset A of $\mathbb{R}^k \times \mathbb{R}^k$, where F^s is the time s -map of the flow induced by (7),(8). One of the important ideas behind this is the fact that *derivative information* $\frac{\partial M}{\partial \mathbf{w}}$ can be incorporated so that random walk behavior can be avoided. Since (7),(8) is a deterministic dynamical system, one needs to perform other operations in order to ensure ergodic sampling. The Hybrid Monte Carlo consists of two steps:

- (i) Deterministic transition via Hamiltonian dynamical system (7),(8);
- (ii) Stochastic transition via occasional updates of initial condition for the auxiliary variable z_i , $i = 1, \dots, k$, by performing sampling from Gaussian distribution.

Actual implementation of this scheme is more complicated than that described above, because a Hamiltonian dynamical system cannot be exactly simulated by a computer so that perfect preservation $H(\mathbf{w}(s), \mathbf{z}(s)) \equiv \text{constant}$ is not possible. In order to overcome this, the Hybrid Monte Carlo considers the Leapfrog discretization. Let Δ be the period of time over which the deterministic transition via Hamiltonian dynamics is to be performed, let $\epsilon > 0$ be a step size for discretization, and define $L := \Delta/\epsilon$.

The Leapfrog discretization performs the following step L times supposing that L is an integer:

$$\hat{z}_i \left(s + \frac{\epsilon}{2} \right) = \hat{z}_i(s) - \frac{\epsilon}{2} \frac{\partial M}{\partial w_i}(\hat{\mathbf{w}}(s)) \quad (12)$$

$$\hat{w}_i(s + \epsilon) = \hat{w}_i(s) - \frac{\epsilon}{m_i} \hat{z}_i \left(s + \frac{\epsilon}{2} \right) \quad (13)$$

$$\hat{z}_i(s + \epsilon) = \hat{z}_i \left(s + \frac{\epsilon}{2} \right) - \frac{\epsilon}{2} \frac{\partial M}{\partial w_i}(\hat{\mathbf{w}}(s + \epsilon)) \quad (14)$$

This amounts to half step size ($\epsilon/2$) approximation for z_i and full step size approximation for w_i , and another

half step size approximation. Half step descretizations are often used for numerical integration of differential equations, e.g., Runge-Kutta.

3.2. Gibbs Sampling for Hyperparameters

Samples of hyperparameters are drawn by the usual Gibbs sampling.

4. PREDICTION

The goal of the proposed scheme is to draw samples from predictive distributions:

$$\{x_t^{(l)}\}_{t=N+1}^T \sim P(\{x_t\}_{t=N+1}^T | D, \mathcal{H}) \quad (15)$$

In order to draw samples of future values $\{x_t^{(l)}\}_{t=N+1}^T$ via (15), the proposed scheme proceeds in two steps:

$$(\mathbf{w}^{(l)}, \boldsymbol{\alpha}^{(l)}, \beta^{(l)}) \sim P(\mathbf{w}, \boldsymbol{\alpha}, \beta | D, \mathcal{H}) \quad (16)$$

$$\{x_t^{(l)}\}_{t=N+1}^T \sim P(\{x_t\}_{t=N+1}^T | \mathbf{w}^{(l)}, \beta^{(l)}, \mathcal{H}) \quad (17)$$

The scheme first draws samples $(\mathbf{w}^{(l)}, \boldsymbol{\alpha}^{(l)}, \beta^{(l)})$ from the posterior distributions (16) via MCMC described in the previous section. Secondly, the scheme uses these samples $(\mathbf{w}^{(l)}, \boldsymbol{\alpha}^{(l)}, \beta^{(l)})$ to draw samples of future values $\{x_t^{(l)}\}_{t=N+1}^T$:

$$\begin{aligned} x_{N+1}^{(l)} &\sim P(x_{N+1} | \mathbf{x}_N^{(l)}, \mathbf{w}^{(l)}, \beta^{(l)}, \mathcal{H}) \\ x_{N+2}^{(l)} &\sim P(x_{N+2} | \mathbf{x}_{N+1}^{(l)}, \mathbf{w}^{(l)}, \beta^{(l)}, \mathcal{H}) \\ &\vdots \\ x_T^{(l)} &\sim P(x_T | \mathbf{x}_{T-1}^{(l)}, \mathbf{w}^{(l)}, \beta^{(l)}, \mathcal{H}) \end{aligned} \quad (18)$$

$$\mathbf{x}_t := (x_t, x_{t-1}, \dots, x_{t-\tau+1}).$$

It follows from the Markov property

$$\begin{aligned} P(\{x_t\}_{t=N+1}^T | \mathbf{w}, \beta, \mathcal{H}) \\ = \prod_{t=N+1}^T P(x_t | \mathbf{x}_{t-1}, \mathbf{w}, \beta, \mathcal{H}) \end{aligned} \quad (19)$$

where

$$\begin{aligned} P(x_t | \mathbf{x}_{t-1}, \mathbf{w}, \beta, \mathcal{H}) \\ = \sqrt{\frac{\beta}{2\pi}} \exp\left(\frac{-\beta\{x_t - f(\mathbf{x}_{t-1}; \mathbf{w})\}^2}{2}\right) \end{aligned} \quad (20)$$

After drawing samples of future values $\{x_t^{(l)}\}_{t=N+1}^T$, predictive mean \bar{x}_t and error bar σ_{x_t} at t can be estimated as follows:

$$\bar{x}_t \approx \frac{1}{S} \sum_{l=1}^L x_t^{(l)} \quad (21)$$

$$\sigma_{x_t} \approx \sqrt{\frac{1}{S-1} \sum_{l=1}^L (x_t^{(l)} - \bar{x}_t)^2} \quad (22)$$

where S is the number of samples.

5. DEMONSTRATION:CHAOTIC TIME SERIES

$$\begin{cases} \dot{x} = -y - z + \nu_t^1 \\ \dot{y} = x + ay + \nu_t^2 \\ \dot{z} = bx - cz + xz + \nu_t^3 \end{cases} \quad (23)$$

Equation (23) is the well-known Rössler system with noise processes $(\nu_t^1, \nu_t^2, \nu_t^3)$. To avoid technical difficulties associated with stochastic process with continuous parameters, let us consider the discrete version of (24):

$$\begin{cases} x_{(t+1)\delta} = f(x_{t\delta}, y_{t\delta}, z_{t\delta}) + \nu_{t\delta}^1 \\ y_{(t+1)\delta} = g(x_{t\delta}, y_{t\delta}, z_{t\delta}) + \nu_{t\delta}^2 \\ z_{(t+1)\delta} = h(x_{t\delta}, y_{t\delta}, z_{t\delta}) + \nu_{t\delta}^3 \end{cases} \quad (24)$$

where $f(\cdot), g(\cdot), h(\cdot)$ represent a numerical integration scheme, e.g., Runge-Kutta, with step size δ , and $\nu_{t\delta}^i \sim i.i.d.N(0, \sigma^2), i = 1, 2, 3$.

Let $\{x_{t\delta}\}_{t \geq 0}$ be the observation. Figure 2 shows time series data $\{x_{t\delta\eta}\}_{t=0}^{499}$ generated by discrete noisy Rössler system (24), where $\delta = 0.01$, $\eta = 70$, and $\sigma = 0.02$, embedded into \mathbb{R}^3 . Observe that the magnitude of the right hand side of (24) is roughly $\delta = 0.01$ times that of (23). Therefore $\nu_{t\delta}^i \sim N(0, (0.02)^2)$ implies that the noise process ν_t^i in (23) is roughly 100 times larger than that of (24). The value η stands for sampling period. In general η and the order of Markov process τ needs to be estimated, however, in this paper we assume η and $\tau (= 4)$ are already estimated [1]. This data was used as the training data set and the scheme described in the previous section was applied. In order to demonstrate validity of the proposed scheme, we provided 5 different test data sets, and for each test data set predictive mean and error bar were estimated with various model \mathcal{H} . Let these 5 test data sets be denoted $test 1, \dots, test 5$. For comparison proposes, QAP [1]-[3] was also applied.

Figure. 3 shows the average of cumulative squared errors for five data sets up to 80 step ($T = 80$). This indicates superiority of the prediction with MCMC.

Figure. 4 compares prediction capabilities of MCMC and that of QAP with various models for $test 1$ where the evolutions of cumulative squared errors

$$\sum_{t=0}^T (x_{t\delta\eta} - \bar{x}_t)^2, \quad T = 1, \dots, 80 \quad (25)$$

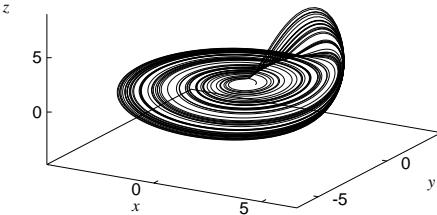


Figure 1: Rössler system
at $(a, b, c) = (0.36, 0.4, 4.5)$

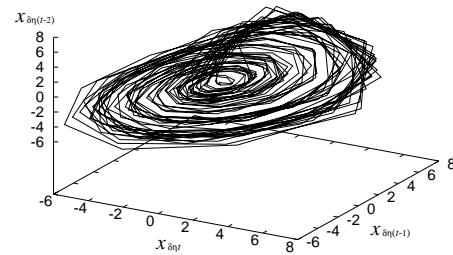


Figure 2: Training data
(Noisy Rössler system)

is shown.

Figure. 5 shows predictive mean and error bar of the case (*test 2, h = 4*) which shows the best performance with respect to cumulative squared errors at 80 step. In this case, most of true values are within the range $\bar{x}_t \pm 1\sigma_{x_t}$. The algorithm appears to be fully functional.

6. REFERENCES

- [1] T. Matsumoto, M. Saito, Y. Nakajima, J. Sugi, H. Hamagishi, "A Hierarchical Bayes Approach to Reconstruction and Prediction of Nonlinear Dynamical Systems", IEEE Workshop on Nonlinear Signal and Image Processing (NSIP '99) , vol. 1, pp.114 - 118, June 1999
- [2] T. Matsumoto, M. Saito, Y. Nakajima, J. Sugi, H. Hamagishi, "Reconstruction and Prediction of Nonlinear Dynamical Systems : A Hierarchical Bayes Approach with Nueral Nets", IEEE International Conference on Accoustics, Speech, and Signal Processing (ICASSP 99) ,vol. 2, p.1057 - 1060, March 1999
- [3] T. Matsumoto, M. Saito and J. Sugi, "Nonlinear Time Series Prediction Weighted by Marginal Likelihoods: A Hirarchical Bayesian Approach," the 1999 International Joint Conference on Neural Networks, Washington, D.C., USA, July 10-16, 1999.
- [4] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, "Markov Chain Monte Carlo in Practice, " Chapman & Hall, London, 1996.
- [5] R. M. Neal, "Bayesian Learning for Neural Networks," Springer-Verlag, New York, 1996.

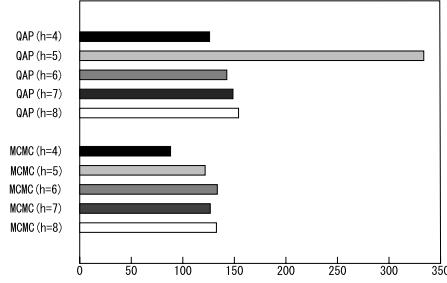


Figure 3: Average squared errors (up to 80 steps) for various models with QAP and MCMC

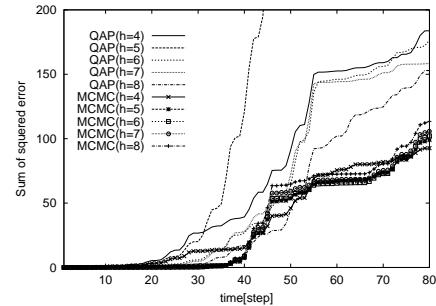


Figure 4: Evolutions of cumulative squared errors (*test 1*)

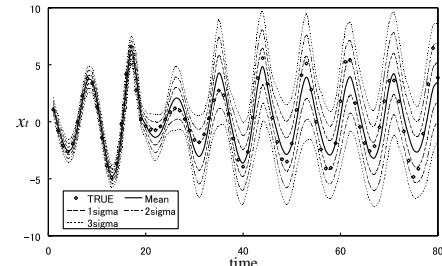


Figure 5: Predictive mean and error bar (*test 2, h = 4*)