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ABSTRACT

An MCMC(Markov Chain Monte Carlo) algorithm
is proposed for nonlinear time series prediction with
Hierarchical Bayesian framework. The algorithm com-
putes predictive mean and error bar by drawing samples
from predictive distributions. The algorithm is tested
against time series generated by (chaotic) Rössler sys-
tem and it outperforms quadratic approximations pre-
viously proposed by the authors.

1. INTRODUCTION

Given data {xt}N
t=0 ⊂ IR, time series prediction prob-

lem amounts to making predictions of its future values
{xt}t>N .

In many time series prediction problems,
(i) nonlinearity is behind time series data, and
(ii) data contains noise.
One way of approaching these problems is probabilis-
tic/statistical approach with “basis” functions such as
neural nets to fit time series data {xt}N

t=0 without over-
fitting.

Hierarchical Bayesian approach using model Markov
processes with neural net was previously proposed by
the authors [1]-[3]. In this approach, the goal is to eval-
uate predictive distribution for future values {xt}t>N .
Since evaluation of predictive distribution is difficult,
quadratic approximations (QAP) have been used so far
[1]-[3].

This paper proposes a new scheme for time series
prediction problem via MCMC(Markov Chain Monte
Carlo) without QAP. For evaluation of predictive dis-
tribution for future values {xt}t>N , the proposed scheme
draws samples of future values from predictive distri-
bution. Using these samples, one can estimate

(i) predictive mean which is usually used as predic-
tion of future values, and

(ii) error bar (standard deviation) which shows un-
certainty of prediction.

In order to demonstrate validity of the proposed
scheme, it is applied to chaotic time series data gener-
ated by noisy Rössler system.

2. FORMULATION

Problem:
Given data set D := {xt}N

t=0 ⊂ IR , predict
{xt}T

t=N+1 .

Hypothesis H
In a Bayesian framework, model specification con-

sists of the following.

1. Architecture:
Specification of basis function for data fitting,
e.g., three-layer perceptron with h hidden units
and a particular sigmoid function.

2. Likelihood:

P
({xt}N

t=τ , {xτ−1, . . . , x0} | w, β,H)

:=
N−τ∏
t=0

1
ZD(β)

exp (−βED(xt+τ | xt+τ−1, . . . , xt;w))

︸ ︷︷ ︸
noisy dynamics

× P (xτ−1, . . . , x0 | H)︸ ︷︷ ︸
initial state uncertainty

(1)

ED(xt+τ | xt+τ−1, . . . , xt;w)

:=
1
2
(xt+τ − f(xt+τ−1, . . . , xt;w))2 (2)

where f(·) is neural net output, w ∈ IRk the
weight parameters of a particular architecture, β
(unknown) uncertainty levels, ZD(β) the normal-
ization constants, and τ is embedding dimension
(the order of the dynamics) which is, in general,



unknown. Equation(1) looks at {xt} as a τ -th or-
der Markov process whose state transition prob-
ability density is given by the first two factors,
whereas the last factor is the initial state proba-
bility density.

3. Prior for (w, α, β,H):
See [1]-[3].

The goal of the prediction problem is to evaluate
predictive distribution

P ({xt}T
N+1 | D,H) =∫∫∫

P ({xt}T
N+1 | w, β,H)

×P (w,α, β | D,H)dwdαdβ (3)

3. ALGORITHM

In order to draw samples from joint posterior of w and
(α, β), the scheme proposed in [5] consists of alternate
iterations of two different operations:

(A) Hyperparameter (α(j), β(j)) updated via Gibbs
sampling[4].

(B) Weight parameter w(j) updated via Hybrid Monte
Carlo[5].

At the end of jth iteration, (w(j),α(j), β(j)) is consid-
ered to be a sample from the joint posterior.

3.1. The Hybrid Monte Carlo

Consider the case where

P (w | D,α, β,H) ∝ exp(−M (w)) (4)

for some “energy” functionM(w). Let “Hamiltonian ”
function H(w, z) and “Kinetic energy ” function K(z)
be defined by

H(w, z) := M(w) +K(z) (5)

K(z) :=
k∑

i=1

z2
i

2mi
(6)

The Hybrid Monte Carlo considers the Hamiltonian
dynamical system

dwi

ds
= +

∂H

∂zi
(w, z) =

zi

mi
(7)

dzi

ds
= − ∂H

∂wi
(w, z) = −∂M

∂wi
(w) (8)

where s is “time” of Hamiltonian dynamical system(7),(8).
A Hamiltonian dynamical system is volume preserving,

i.e., any Euclidean volume is preserved along trajecto-
ries;

d

ds

(
det

(
∂g (w, z)
∂ (w, z)

))
≡ 0 (9)

where g(·) represents the right hand side of (7) and (8).
Obviously, the density in question

P (w(s),z(s)) =
1
Z
exp (−H (w(s),z(s))) (10)

is absolutely continuous with respect to the Lebesgue
measure so that it is invariant under (7),(8);∫∫

A

P (w, z)dwdz =
∫∫

A

P
(
F−s(w′, z′)

)
dw′dz′ (11)

for any (Lebesgue measurable) subset A of IRk × IRk,
where F s is the time s-map of the flow induced by
(7),(8). One of the important ideas behind this is the
fact that derivative information ∂M

∂w can be incorpo-
rated so that random walk behavior can be avoided.
Since (7),(8) is a deterministic dynamical system, one
needs to perform other operations in order to ensure
ergodic sampling. The Hybrid Monte Carlo consists of
two steps:

(i) Deterministic transition via Hamiltonian dynam-
ical system (7),(8);

(ii) Stochastic transition via occasional updates of
initial condition for the auxiliary variable zi, i =
1, · · · , k, by performing sampling from Gaussian
distribution.

Actual implementation of this scheme is more com-
plicated than that described above, because a Hamilto-
nian dynamical system cannot be exactly simulated by
a computer so that perfect preservationH (w(s),z(s)) ≡
constant is not possible. In order to overcome this, the
Hybrid Monte Carlo considers the Leapfrog discretiza-
tion. Let ∆ be the period of time over which the deter-
ministic transition via Hamiltonian dynamics is to be
performed, let ε > 0 be a step size for discretization,
and define L := ∆/ε.

The Leapfrog discretization performs the following
step L times supposing that L is an integer:

ẑi

(
s+

ε

2

)
= ẑi(s)− ε

2
∂M

∂wi
(ŵ(s)) (12)

ŵi (s+ ε) = ŵi(s)− ε

mi
ẑi

(
s+

ε

2

)
(13)

ẑi (s+ ε) = ẑi

(
s+

ε

2

)
− ε

2
∂M

∂wi
(ŵ(s+ ε)) (14)

This amounts to half step size (ε/2) approximation for
zi and full step size approximation for wi, and another



half step size approximation. Half step desretizations
are often used for numerical integration of differential
equations, e.g., Runge-Kutta.

3.2. Gibbs Sampling for Hyperparameters

Samples of hyperparameters are drawn by the usual
Gibbs sampling.

4. PREDICTION

The goal of the proposed scheme is to draw samples
from predictive distributions:

{x(l)
t }T

t=N+1 ∼ P ({xt}T
t=N+1 | D,H) (15)

In order to draw samples of future values {x(l)
t }T

t=N+1

via (15), the proposed scheme proceeds in two steps:

(
w(l),α(l), β(l)

)
∼ P (w,α, β | D,H) (16)

{x(l)
t }T

t=N+1 ∼ P ({xt}T
t=N+1 | w(l), β(l),H) (17)

The scheme first draws samples
(
w(l),α(l), β(l)

)
from

the posterior distributions (16) via MCMC described in
the previous section. Secondly, the scheme uses these
samples

(
w(l),α(l), β(l)

)
to draw samples of future val-

ues {x(l)
t }T

t=N+1:

x
(l)
N+1 ∼ P (xN+1 | x

(l)
N ,w(l), β(l),H)

x
(l)
N+2 ∼ P (xN+2 | x

(l)
N+1,w

(l), β(l),H)
... (18)

x
(l)
T ∼ P (xT | x

(l)
T−1,w

(l), β(l),H)

xt := (xt, xt−1, · · · , xt−τ+1).

It follows from the Markov property

P ({xt}T
t=N+1 | w, β,H)

=
T∏

t=N+1

P (xt | xt−1,w, β,H) (19)

where

P (xt | xt−1,w, β,H)

=

√
β

2π
exp

(−β{xt − f(xt−1;w)}2

2

)
(20)

After drawing samples of future values {x(l)
t }T

t=N+1,
predictive mean xt and error bar σxt at t can be es-
timated as follows:

xt ≈ 1
S

L∑
l=1

x
(l)
t (21)

σxt ≈
√√√√ 1

S − 1

L∑
l=1

(
x

(l)
t − xt

)2

(22)

where S is the number of samples.

5. DEMONSTRATION:CHAOTIC TIME
SERIES




ẋ = −y − z + ν1
t

ẏ = x+ ay + ν2
t

ż = bx− cz + xz + ν3
t

(23)

Equation (23) is the well-known Rössler system with
noise processes (ν1

t , ν
2
t , ν

3
t ). To avoid technical difficul-

ties associated with stochastic process with continuous
parameters, let us consider the discrete version of (24):


x(t+1)δ = f(xtδ, ytδ, ztδ) + ν1

tδ

y(t+1)δ = g(xtδ, ytδ, ztδ) + ν2
tδ

z(t+1)δ = h(xtδ, ytδ, ztδ) + ν3
tδ

(24)

where f(·), g(·), h(·) represent a numerical integration
scheme , e.g., Runge-Kutta, with step size δ, and νi

tδ ∼
i .i .d .N(0, σ2), i = 1, 2, 3.

Let {xtδ}t≥0 be the observation. Figure. 2 shows
time series data {xtδη}499

t=0 generated by discrete noisy
Rössler system (24), where δ = 0.01, η = 70, and
σ = 0.02, embedded into IR3. Observe that the magni-
tude of the right hand side of (24) is roughly δ = 0.01
times that of (23).Therefore νi

tδ ∼ N(0, (0.02)2) implies
that the noise process νi

t in (23) is roughly 100 times
larger than that of (24). The value η stands for sam-
pling period. In general η and the order of Markov
process τ needs to be estimated, however, in this paper
we assume η and τ(= 4) are already estimated [1]. This
data was used as the training data set and the scheme
dscribed in the previous section was applied. In order
to demonstrate validity of the proposed scheme, we pro-
vided 5 different test data sets, and for each test data
set predictive mean and error bar were estimated with
various model H. Let these 5 test data sets be denoted
test 1, · · · , test 5. For comparison proposes, QAP [1]-
[3] was also applied.

Figure. 3 shows the average of cumulative squared
errors for five data sets up to 80 step (T = 80).This
indicates superiority of the prediction with MCMC.

Figure. 4 compares prediction capabilities of MCMC
and that of QAP with various models for test 1 where
the evolutions of cumulative squared errors

T∑
t=0

(xtδη − xt)2, T = 1, · · · , 80 (25)
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Figure 1: Rössler system
at (a, b, c) = (0.36, 0.4, 4.5)

is shown.
Figure. 5 shows predictive mean and error bar of the

case (test 2, h = 4) which shows the best performance
with respect to cumulative squared errors at 80 step.
In this case, most of true values are within the range
xt±1σxt . The algorithm appears to be fully functional.
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Figure 2: Training data
(Noisy Rössler system)

Figure 3: Average squared errors (up to 80 steps) for
various models with QAP and MCMC
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Figure 4: Evolutions of cumulative squared
errors (test 1)
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Figure 5: Predictive mean and error bar (test 2, h = 4)


