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ABSTRACT

This paperdescribesan efficientmethodfor unsupervised
speaker adaptation.This methodis basedon (1) selecting
a subsetof speakerswho are acousticallyclose to a test
speaker, and(2) calculatingadaptedmodelparametersac-
cordingto thepreviouslystoredsufficientHMM statisticsof
theselectedspeakers’data.In thismethod,only afewunsu-
pervisedtestspeaker’s dataarerequiredfor theadaptation.
Also, by usingthesufficientHMM statisticsof theselected
speakers’ data,a quick adaptationcanbedone. Compared
with a pre-clusteringmethod,theproposedmethodcanob-
tain a moreoptimal speakerclusterbecausethe clustering
resultis determinedaccordingto testspeaker’sdataon-line.
Experimentresultsshowthat the proposedmethodattains
better improvementthan MLLR [1] from the speakerin-
dependentmodel. Moreover the proposedmethodutilizes
onlyoneunsupervisedsentenceutterance,while MLLR usu-
ally utilizesmorethantensupervisedsentenceutterances.

1. INTR ODUCTION

Variouskindsof speakeradaptationschemeshavebeenpro-
posed.A speakerdependent(-like) modelis trainedusinga
specificspeaker’sdataor speakers’datacloseto thespecific
speaker. For usinga lot of datafor training,it takesa lot of
time to makean acousticmodel. Therefore,this type of
modeladaptationis difficult to beusedin theon-lineadap-
tationmode.
Tosolvetheaboveproblem,pre-clusteringmethodhasbeen
proposed[2]. In this method,several speaker-dependent
modelsarepreparedbeforeadaptationmode. It takeslittle
timeto obtainanadaptedmodel,becausetheclosestmodel
for a testspeakeris just selectedontheadaptationmode.In
thismethod,it is importantto decidewhatkindsof speaker-
dependentmodelsareprepared.
MLLR [1] [6] [5] is a very popularschemeandit hasbeen
widely used. MLLR can obtain a large improvementof
therecognitionrateovera speaker-independentmodel.The
combinationof MLLR andthepre-clusteringmethod[2] is

alsoproposed.In general,to obtaina high improvement,
a lot of adaptationdatawith thephonemetranscriptionare
neededandit takestime for adaptation.
In this paper, a new adaptationmethodis proposed.This
methodis basedon (1) selectinga subsetof speakerswho
are acousticallyclose to a test speaker, and (2) calculat-
ing adaptedmodelparametersaccordingto the previously
storedsufficient HMM statisticsof the selectedspeakers’
data.In this method,only a few unsupervisedtestspeaker’s
dataare necessaryfor the adaptation.Also, by using the
sufficientHMM statisticsof the selectedspeakers,a quick
adaptationcan be done. Comparedwith a pre-clustering
method,the proposedmethodcan obtain a more optimal
clusterbecausethe clusteringresult is determinedaccord-
ing to the test speaker’s dataon-line. Experimentresults
showthat theproposedmethodattainsbetterimprovement
thanthoseof MLLR [1].

2. BY SUFFICIENT STATISTICS SPEAKER
ADAPTATION

The proposedmethodis describedin Fig.1. This adapta-
tion schemeconsistsof threesteps.In thefirst step,a setof
theparametersof sufficientHMM statisticsfor eachspeaker
arecalculatedandpre-stored.In the secondstep,a subset
of speakerswho areacousticallycloseto thetestspeakeris
selectedusingspeakermodelssuchasa Gaussianmixture
model. The GMM speakermodel is so simple that it can
performwell evenfor afew testspeaker’sdatawithout tran-
scription.In thethird step,anadaptedacousticmodelis cal-
culatedto combinethesufficientstatisticsfrom thespeakers
who areacousticallycloseto thetestspeaker.
In thispaper, speechdataaresampledat16kHzand16bits.
Twelfth-ordermel-frequencycepstrumcoefficients(MFCC)
arecalculatedevery10ms.Thecepstrumdifferences(delta-
MFCC)anddelta-powerarealsoused.Cepstrummeannor-
malization(CMN) is performedbasedon the whole utter-
anceaverage.
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Figure1: Blockdiagramof theproposedmethodbasedon speakerselectionandsufficientHMM statistics

2.1. Calculating sufficient HMM statistics

Sufficient HMM statisticsare the statisticalparametersof
theacousticmodel,suchasmeans,variancesandE-M counts
of hiddenMarkov models. The parametersarecalculated
for eachspeakerindividually. The sufficientHMM statis-
ticsareestimatedby oneiterationof theE-M algorithmus-
ing eachspeaker’s dataand a speaker-independentHMM
model.

2.2. Selectinga subsetof speakers

In thissection,aspeakerselectionusingGMM is discussed.
To obtain a good adaptedmodel, it is importantto select
a subsetof speakerswho are acousticallyclose to a test
speaker.
In this paper, for selectinga subsetof speakers,speaker
modelsconsistingof the64-Gaussianmixturemodel,which
is a phone-independentone-stateHMM, areused. As the
distancebetweenthetestspeaker’sdataandtheotherspeak-
ers’ ones,the GMM acousticlikelihood for the adaptation
datais used. Thesespeakermodelcanperformwell even
for a few testspeaker’s datawithout phonemetranscription
(in this paper, only oneunsupervisedsentenceutteranceis
usedfor adaptation).Using this measure,the speakersare
orderedaccordingto thesimilarity to the testspeaker. The
top N-nearestspeakersareselectedasa subsetof speakers
for calculatingtheadaptedacousticmodel.
Comparedwith pre-clusteringmethods,theproposedmethod

canobtainamoreoptimalcluster, whichis calledasasubset
of speakersin this paper, becausethesubsetis selectedac-
cordingto thetestspeaker’s adaptationdataandthecluster
canbemoreadaptablethanin thepre-clusteringmethod.

2.3. Calculating adaptedacousticmodels

Performanceevaluation is carriedout using the Japanese
dictationsystemJulius [4] with the 20k newspaperarticle
languagemodel.
Given someobservation from a test speaker, a subsetof
speakerswho are acousticallycloseto the test speakeris
selectedusing the above procedurein section2.2. In this
section,we discusshow to makeanacousticmodel,which
is adaptedto a testspeaker.
By introducing the conceptof sufficient HMM statistics,
it takesa little time to calculatean acousticmodel in the
adaptationprocedurebecausethesevaluescanbecalculated
beforeadaptationoff-line. In this method,insteadof us-
ing databaseitself, the sufficientHMM statisticsareused
in the adaptationprocedure. It requiresalmostno com-
putation to createan adaptedacousticmodel from these
parameters.This methodhasno inherentstructure’s limi-
tation of transformation-basedadaptationschemessuchas
MLLR [1] [5]. A speakeradaptedacousticmodel is cal-
culatedfrom the sufficient HMM statisticsof the selected
speakersusinga statisticalcalculationmethod. This pro-
cedureis equivalent to the one-iterationof HMM training
from thespeaker-independentmodel.



3. EXPERIMENT AL RESULTS AND DISCUSSION

Theexperimentalprocedureis summarizedbelow. Japanese
speechcorpuscollectedby AcousticalSocietyof Japan[3]
is usedin our experiments. Thisdatabaseconsistsof 306
speakersandeachspeakerutteredabout200sentences.
As anacousticmodel,two kindsof monophonemodelsand
PhoneticTied Mixture (PTM) model [4] are used. PTM
modelismadefromcontext-independentphonemodelswith
64mixturecomponentsperHMM stateby assigningdiffer-
ent mixture weightsaccordingto the sharedstatesof tri-
phones.PTM modelcanattainmuchbetterrecognitionrate
thanmonophonemodels. PTM HMMs have totally 2500
states.MonophoneHMMs of 43 phoneshave 3 statesand
eachstatehasamixtureof 16 or 64 Gaussians.
46 speakers’dataareusedfor testingdata,which arenot
includedin the training data. In the proposedmethod,an
adaptedmodelis calculatedwithoutusingtestspeaker’ssuf-
ficientstatistics.In theproposedmethod,oneunsupervised
sentenceadaptationutteranceis used.
The baselinespeaker-independentsystemshows the aver-
ageword error ratesof 18.5%(16 Gaussians),13.5%(64
Gaussians)for the monophonemodelsand 10.0%for the
PTM model. The resultsof the standardMLLR adapta-
tion [1] aredescribedin Table1.
In Fig.2, theresultsfor theproposedmethodaredescribed.
In thisexperiment,theeffectof thenumberof selectedspeak-
ers is investigated. From the figure, the minimum error
rate of 14.9% (16 Gaussians),10.9% (64 Gaussians)for
the monophonemodelsand8.3% for the PTM modelare
attained. The proposedmethodattainsbetterresultsthan
onesfor MLLR by ten adaptationsentenceutterances.As
for theadaptationtime,usingthePTM model,theproposed
methodwasroughly threetimesfasterthanMLLR by ten
sentenceadaptationutterances,andsixteentimesfasterthan
MLLR using the fifty sentenceutterancesin this experi-
ment.Theseresultsaresummarizedin Table1andFig.2.

Fromtheresultsin Table1andFig.2,theproposedmethod
attainsbetterrecognitionratesthanthe onesfor MLLR by
ten adaptationsentenceutterances.The proposedmethod
is especiallyefficientunderthe conditionthat only a small
amountof adaptationdatais available. MLLR needsmore
thantensentenceutterancesfor adaptationto attainthegood
recognitionrate. And asfor adaptationtime, the proposed
methodis fasterthanMLLR for PTM. As the numberof
adaptationsentenceutterancesareincreased,thedifference
of the adaptationtime betweenthe proposedmethodand
MLLR becomeslargeandmorecritical.
In the proposedmethod,an unsupervisedadaptationsen-
tenceutteranceis used,but in MLLR morethanten super-
visedsentenceutterancesarerequired.Therefore,thepro-
posedmethodis moreuseful to reducea testspeaker’s ef-

Table1: Comparisonwith MLLR

method proposedmethod MLLR

unsupervised supervised
# of sentenceutterances 1 10 50

monophpone
model(16 14.9% 15.6% 13.8%

word Gaussians)
monophpone

error model(64 10.9% 12.6% 12.0%
Gaussians)

rate PTM (phonetic
tied mixture 8.3% 9.0% 7.6%

model)
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Figure2: Comparisonwith variousmodels

fort.
As for thenumberof selectedspeakers,from theresultsin
Fig.2,theoptimumnumberare20,40and80 for themono-
phonewith 16Gaussians,themonohonewith 64Gaussians
and PTM, respectively. The numberof selectedspeakers
becomeslarger, asthe model is morecomplicated.As for
recognitionrates,higherrecognitionratesareattainedasthe
modelis morecomplicated.
In Fig.4,theimprovementsof theaccuracyfor eachspeaker
are shown, where the resultsare the best onesfor PTM
in which 80 speakersareselectedfor the adaptation.The
horizontalaxis notestest speakerswho aresortedaccord-
ing to the word recognitionaccuracyof the pre-adaptation
(speaker-independent)model.Fromtheresults,thelow ac-
curacyspeakersarehighly improved.Theworstrecognition
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Figure3: Worderrorratefor theproposedmethod

rateis highly improved.

4. CONCLUSION

A new unsupervisedadaptationmethodis proposed.This
methodis basedon (1) selectinga subsetof speakerswho
are acousticallyclose to a test speaker, and (2) calculat-
ing adaptedmodelparametersaccordingto the previously
storedsufficientHMM statisticsof the selectedspeaker’s
data.In this method,only a few unsupervisedtestspeaker’s
dataarenecessaryfor the adaptation.By using the suffi-
cientHMM statisticsof theselectedspeaker’sdata,a quick
adaptationcan be done. Comparedwith a pre-clustering
method,the proposedmethodcan obtain a more optimal
clusterbecausetheclusteringresultis determinedaccording
to testspeaker’s dataon-line. Experimentresultsshowthat
theproposedmethodattainsbetterimprovementthanthose
of MLLR. Theproposedmethodis especiallyefficientun-
dertheconditionthatonly a smallamountof unsupervised
adaptationdatais available.
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