COMPUTATIONALLY EFFICIENT DOA ESTIMATION BASED ON LINEAR PREDICTION
WITH CAPON METHOD
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ABSTRACT

Of the several methods for estimating the direction of multi-
ple signals with an array antenna, superresolution direction-
of-arrival (DOA) estimation techniques, such as MUSIC and
ESPRIT, have been in the spotlight. Although the perfor-
mance of these techniques is reliable, their computational
costs are considerable.

We propose a new DOA estimation technique using the
linear prediction (LP) method in conjunction with the Capon
method. In our proposed technique, the LP method is used
to estimate the true and spurious DOAs, and the true DOAs
can be selected by evaluating the relative signal powers ob-
tained by Capon method. To estimate the number of true
DOAs, we apply the values of Capon’s array output power
to the decision criterion, such as minimum description length
(MDL). Simulation results showed that the proposed tech-
nique gives a maximum of about eighty-percent in compu-
tational cost reduction compared with MUSIC and that the
technique accurately estimated the DOAs.

1. INTRODUCTION

Wireless communication systems having intelligent base sta-
tions equipped with array antennas have been studied in
recent years to find ways to make efficient use of the fre-
quency band. It has been found that array signal processing
has a lot of merits, such as interference canceling, adaptive
beamforming, direction-of-arrival (DOA) estimation, time-
of-arrival (TOA) estimation, and space diversity[1]-[3]. DOA
estimation is a particularly important technique that can be
used to determine the signal angle profile and to form the
most suitable antenna directivity in a multipath environment.
The superresolution DOA estimation schemes based on
the eigenvalue decomposition, such as MUSIC and ESPRIT,
have been proposed up to now[4, 5], have significantly high
computational costs. Thus, the construction of a digital sig-
nal processor (DSP) unit in an intelligent base station is by
no means an economical matter. Future wireless communi-
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cation systems will require computationally efficient DOA
estimation schemes in order to reduce the costs of hardware.

We propose a new DOA estimation technique that does
not require the eigenvalue decomposition. The proposed
technique uses the merits of both the LP and Capon meth-
ods[6, 7]. After the problem statement presented in Section
2, we briefly explain the DOA estimation procedure used
in the LP method in Section 3. In Section 4, we explain
how to detect only the true DOAs from the estimated DOAs
using the Capon method. We also present in this section an-
other estimation procedure used when the antenna elements
of the array are uniformly spaced. The simulation results
of detection probability of the number of signals and root
mean square error (RMSE) of a DOA estimate are presented
in Section 5. In addition, we also present a comparison of
computational cost for our proposed technique and MUSIC.

2. PROBLEM STATEMENT

We consider a linear array of M isotropic antenna elements,
as shown in Fig. 1, and N (N < M) narrowband signals
{si(t); i=1,---, N}, which are zero mean and mutually
uncorreated, impinging from distinct unknown directions
{6;}. Then, the array observation vector y(¢) can be ex-
pressed as

y(t) = As(t) +n(t) )
= [yl(t)7 7yM(t)]Ta
where
A = J[a(61), - ,a(0n)] 2)
s(t) [s1(8), -+, sn(®)]” 3)
n(t) = (), - nu®)". )

In the above equations, A is a matrix of the steering vectors,
s(t) is a signal vector, n(t) is an additive white noise vec-
tor which is uncorrelated with s(t), and a(6;) is a steering
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Fig. 1. Array antenna geometry.

vector in the direction 6; expressed as

. o ) o
a(ez) = []_7ejkd2 sm917_ . 7e]k:dM sm&l]

)
where k = 27 /\ is the phase constant, ) is the signal wave-
length, d; is the distance between the first antenna element
and the i-th antenna element, and the superscript 7" denotes
the transpose.

3. DOA ESTIMATION

The merits of the LP method are its high-resolution spatial
spectrum and low computational cost. Here, we briefly de-
scribe the estimation procedure.

For the array observation vector, we can form a covari-
ance matrix

R = E[yt)y" (1)
= AE[s(t)s"(t)] A" + E [n(t)n" ()]
= ASAY 15701y, (©6)

where FE [-] denotes the expectation operator, superscript H
denotes the Hermitian transpose, S is a signal covariance
matrix, o2 is the noise variance, and Is is the M x M
identity matrix. In practice, R is unknown and an estimate
R is obtained from L snapshots of y(£) and given by

. 1
R =

&~

L
> yy™ (). (7)
=1

Let wy, p denote the weight vector in the LP method: it can
be written as
R'T T
wLP=W=[1,w27'“7wM] ) ®)
where
T =[1,0,---,0]" )

is the M x 1 constant vector. Using wyp and the mode
vector a(#), the spatial spectrum Py, p(6) is defined by

1
Prp(f) = ——— . (10)
lwip a(6)]
Note that the Prp(f) has K (N < K < M — 1) spec-
trum peak directions {; ; i =1,--- , K} that include N
true signal directions and K — N spurious directions. Esti-
mating the number of signals is important in practice.

4. ESTIMATION OF THE NUMBER OF SIGNALS

We estimate the number of signals using the Capon method,
which is based on the minimum variance technique. Capon’s
spatial spectrum C'() is given by

1
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Although the resolution of C() is not so high and the
computational cost is high, C'() is in proportion to the array
output power and its dynamic range is nearly the product of
the maximum signal-to-noise ratio (SNR) of the impinging
signals and M. Thus, C'(6;) (= p;) is considered to be the
relative power of a signal impinging from 6;. For K spec-
trum peak directions of Pr,p(6), {p;} is given by

1
aH(Hi)Rfla(Qi)’
for i=1,---,K. (12)

pi=C(0;) =

When the number of signals is N, {p;} have the following
relation:

pL> > PN > PNyl = =pi =07, (13)

From (13) , we can estimate N immediately, however, it is
unadvisable to determine N by comparing {p;} to a thresh-
old value when the SNR is low. Generally, an objective
judgement criterion, such as Akaike information criteria
(AIC) or minimum description length (MDL), is used for
the estimation of N[8]. Since rank(AS A ) is N, the eigen-
values {)\; ; i = 1,--- , M} of R have the following rela-
tion:
)\1Z...ZAN>)\N+1:...:)\K:...:)\M:C,?'
(14

Here, we describe the relation between {p;} and {\;}.
Eg =Jeq,--- ,en] denotes the signal subspace matrix and
{e;; i =1,---, N} are the signal eigenvector. Since F
spans the same signal subspace as A, there must exist a
unique nonsingular N x N matrix @, that is

A=EsQ 15)



or
N
= nien (16)
n=1

where {¢;; ; i,j=1,--- ,N} are elements of Q. Using
{\;} and {e;}, R™" can be rewritten as

WA
=> Eemeﬁ. (7)
m=1
Therefore, from (12), (16) and (17)
1
—_— = aH(b’i)R_la(b‘i)
bi
N Mo N
n=1 m=1 n=1
o Jgnil”
= 25 (18)
n=1
that is

_ % T \—

pT=(Q'0Q) A7, (19)
where superscript * denotes the complex conjugate, ® de-
notes the Hadamard product, and

p = [/pi,--,1/pn]" (20)

AT = [1/Aq, -, 1/8] (21)
In the derivation of (18) , we used

Ao _ 1 it i=j

€i €= { 0 otherwise ° (22)

Although (18) presents the exact relation between {p; }
and {)\;}, from (13) and (14) we assume that {p;} and {)\;}
have approximately the same distribution. If we select MDL
as the decision criterion, it is given by using {p;} instead of

{Ai}

K . L(K—N)
MDL(N) = —21n | —=8H
i=N+1
+ N(QK—N)lnL
foor N=1,---,K—1, (23)

where N is the possible number of signals. The number of
signals is determined as the value of N that minimizes the
MDL. From the relation between (12) and (13) , the esti-
mates of the true DOAs {f; ; i = 1,--- , N} are obtained.
As a special case, we consider a umformly spaced lin-
ear array antenna where the distance between two adjacent

elements is d. Then, the mode vector expressed in (5) can
be rewritten as

) . aT
](Mfl)kdsm&]
,e

a(d) = [Lejkdsine’_._

M7 = #(2) 24)

where z = e*dsin?  FErom (10) and (24) , the direction
search computation can be replaced with the computation
of polynomial root of the F(2):

= [172/7...

F(z) = wfp F(2) ( ’wLP a(f) )
= 1+wiz+ - +whzMt
0. (25)

Let{z;; i=1,---,M — 1} denote the roots of F(z), the
spectrum peak directions, which includes [NV signal diretions
and M — 1 — N spurious directions, are obtained from

gizsin—l{ari_(dzi)} for i=1,,M—1, (26)

where arg(z;) denotes the argument of complex number z;.
Then, we can get N and {6;} using (12) and (23) . Note that
we must replace K in (12) and (23) with M — 1.

5. SIMULATION RESULTS

In the simulation, a uniformly spaced linear array antenna
with eight elements separated by half a wavelength (d =
0.5)) was used. Three signals with DOAs §; = —60°,
Ay = 10°, and 63 = 30° were present. Each signal was
modulated using 16QAM, and the number of snapshots was
100 (L = 100). The angle step of the direction search com-
putation was 0.1 degrees. Simulation results were obtained
after averaging over 10000 trials.

Figure 2 shows the detection probability of the exact
number of signals, when the SNR of s3(t) varied from 14
to —4 dB and MDL (23) was used as the decision crite-
rion. Through the simulation, SNR of s; (¢) and s () were
17 and 20 dB, respectively. In this figure, *Proposed’ and
’Eigenvalue’ in the legend correspond to the values of MDL
when {p;} and {\;} was used, respectively. This result in-
dicates that the signal detection ability was perfect on the
condition that the SNR was larger than —2 dB.

Figure 3 shows the RMSE of estimate f5. The RMSE
obtained by the proposed technique was almost the same as
that of MUSIC.

Figure 4 shows the results of an investigation of the
number of computations using the same parameters as the
preceding example except that the number of signals varied
from 1 to 7. The main feature of the proposed technique
is that the number of computations is constant even if the
number of signals varies. In MUSIC, computational cost
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Fig. 3. Comparison of RMSE of estimate b5.

depends on the number of signals which affects the direc-
tion search computation. The computational cost of our pro-
posed technique is significantly low when compared with
that of MUSIC. The eigenvalue decomposition and the ma-
trix computation in the direction search cause the difference
of computational costs between both methods.

6. CONCLUSION

We have proposed a computationally efficient DOA estima-
tion technique that is based on using the LP method with
the Capon method. Since our proposed technique combines
the high-resolution spatial spectrum of the LP method with
the reliable array output power of the Capon method, it can
estimate not only DOAs but also the number of signals. The
estimation accuracy of our technique is almost the same
as that of MUSIC. Therefore, it would be useful for the
miniaturization and cost reduction of the DSP unit in the
base station because of its significantly low computational
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Fig. 4. Comparison of the number of computations.

cost. Now, we are planning to extend this technique into
the tracking of mobile terminals for the new generation of
mobile communication.
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