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ABSTRACT 
 
In image deconvolution or restoration using Kalman filter, the 
image and blur models are required to be known for the 
restoration process. Generally, the accuracy of the restoration 
depends on the accuracy of the given models. Unfortunately, the 
image and blur models are normally unknown in practice. To 
solve the problem, an identification stage is employed to 
estimate the image and blur models. However, the estimated 
models are seldom accurate especially with the presence of noise 
in the image. This paper presents a robust Kalman filter design 
for image deconvolution that can accommodate the inaccuracy in 
the estimated image and blur models. If the inaccuracy can be 
modelled as addictive white Gaussian noise with a known 
variance, it can be stochastically account for in the robust filter 
design. In the simulation tests performed, the robust design 
achieved improved accuracy in the image restoration even 
though inaccurate image and blur models were used. 
 

1. INTRODUCTION 
 

In the process of blind image deconvolution or restoration, the 
true image is being estimated from a degraded observation only. 
Blind image deconvolution techniques can be broadly 
categorized into 2 groups. The first group involved estimating 
the blur and true image concurrently. Recent techniques 
belonging to the first group include the expectation 
maximization (EM) algorithm [1], the iterative blind 
deconvolution (IBD) algorithm [2], McCallum’s simulated 
annealing (SA) algorithm [3] and the non-negativity and support 
constraints recursive inverse filtering (NAS-RIF) [4]. Most of 
them employ some form of optimisation to estimate the true 
image among various unknown parameters of the image.  

In comparison to the first group, the second group performs 
the image parameters identification and true image estimation in 
two separate processes. The estimation (or restoration) stage 
generally employs a classical deconvolution method such as 
Kalman [5-8], Wiener or least-squares filtering. These classical 
deconvolution methods require a priori information on the 
image, like noise statistics, image and blur models, which are to 
be first identified in an identification stage. Recent identification 
methods make use of the maximum likelihood (ML) [9], 
generalized cross-validation (GCV) [10] or residual spectral 
matching technique [11]. Accurate image and blur models are 
essential for accurate image restorations. However, making 
accurate estimations on the models are difficult especially with 
the presence of noise in the image. To counter this problem, this 
paper presents a robust Kalman filtering design that can 
minimize the effects from the inaccurate image and blur models 
by factoring the inaccuracies in the models. The inaccuracies or 
errors in the models are modelled as addictive white Gaussian 
noise. 

The spatial correlation between neighbouring pixels in true 
image can be represented by the Gauss-Markov model. The 

image process is modelled as an autoregressive (AR) process 
driven by a white Gaussian noise process w(i,j) with variance 
σw

2 described by: 

 
where s(i,j) indicates the pixel intensity level at column i and 
row j and Ra represents the non-symmetric half-plane (NSHP) 
support model. The NSHP support specifies the extent of pixel 
correlation within a region. An illustration on the NSHP support 
can be found in Figure 1. a(m,n) are the MSE image model 
coefficients which minimize E{w(i,j)}2. Alternatively, this image 
system can be seen as a recursive model with a modelling 
uncertainty defined by σw

2. The blurred and noisy pixel, r(i,j), is 
defined by the linear degradation formation system: 

 
where h(m,n) is the space-invariant PSF with support Rh and 
v(i,j) represents the observation noise with variance σv

2. In the 
case of inaccurate image and blur models, Equation (1) and (2) 
become (3) and (4) respectively, as shown: 

 
where w(i,j), ζ(i,j), ν(i,j) and η(i,j) are mutually independent 
white noise . 

This paper starts with the formulation of the Reduced Order 
Model Kalman Filter (ROMKF) for the image deconvolution 
problem in Section 2. Section 3 covers the development and 
formulation of the proposed robust Kalman filter design. Finally, 
details on experiments and restoration results are given in 
Section 4. 
 
 

2. REDUCED ORDER MODEL KALMAN FILTER 
(ROMKF) 

 
In the state representation, the size of the state vector is directly 
proportional to the width of the image. Hence, a large image will 
result in a very large state vector that is a computational burden. 
The reduced update Kalman filter (RUKF) is devised to reduce 
the heavy computational load posed by a large state vector [6]. 
In the RUKF, only the local states are updated due to the local 
extent of the correlation exhibited by most images. Hence, the 
gains outside the local states are assumed to be zero. 

In comparison to the RUKF, the reduced order model 
Kalman filter (ROMKF) only includes the local states in its state 
vector. Thus, the ROMKF has a much smaller and manageable 
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state vector. In term of performance, the both types of filters are 
found to be on par with each other [7]. The state and observation 
equations of the ROMKF are: 

 
where A is the transition matrix, H is the blur matrix and B and 
E are the selection matrices. u(i,j) is the input that includes the 
most recent estimates of states, which are not found in the last 
state vector. The states are missing due to the ROM 
approximation. 
 
 
3. PROBLEM FORMULATION FOR ROBUST KALMAN 

FILTER 
 
In the deconvolution using Kalman filter, A (image model) and 
H (blur model) matrices are to be estimated beforehand. The 
inaccuracies in the estimates are detrimental to the 
deconvolution process. However, if the statistics of the 
uncertainties in the model estimates are known, the effects of the 
uncertainties can be minimized by employing a robust filtering 
design. In the robust design, the random uncertainties in the 
image and blur models are represented by ∆Aζ(i,j) and ∆Hη(i,j) 
respectively in the state and observation equations as shown 
below: 
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where w(i,j), ζ(i,j), ν(i,j) and η(i,j) are mutually independent 
white noise with covariance matrixes Qw, Qζ, Qν and Qη 
respectively. ζ (i,j) and η(i,j) are assumed to be scalars. 
 
By rewriting (7), we have, 
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Since ζ (i,j) is uncorrelated to w(i,j), wa(i,j) is also white noise. 
The covariance matrix Qwa of wa(i,j) can be calculated as 

 
where �{.} denotes mathematical expectation and 
 

To find X(i-1,j), we have to first derive X(i,j) from (9), i.e. 
 

Hence, by recursion, 
 

)14(),2(

),1(),1(

),2(),1(

T
w

T

TT

T

BBQQAjiAX

EjiujiEu

AjiAXjiX

+∆−∆
+−−

+−=−

ζ

 

 
Following the same steps for the state equation, we first rewrite 
the observation equation in (8) as 
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and va(i,j) is white noise with a covariance matrix  
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By using the results in (11), (13), (14) and (16), the robust 
Kalman filter can be implemented with the following Kalman 
equations: 

 
where subscript a represents update and b denotes prediction. 
 
 

4. SIMULATIONS 
 

4.1 Experiment setup  
 
The simulations were performed with the test configuration as 
shown in Table 1. 
 

Image  Lenna Synthetic 
Description 

 
portrait of a lady 

256x256 
synthetically 

constructed, 256x256  
Modelling 
error, σw

2 
0.0014 0.0001 

Boundary 
conditions 

initial S(i,j) = g(i,j) 
initial X(i,j) = 0 

initial S(i,j) = g(i,j) 
initial X(i,j) = 0 

 
Table 1. Test configuration 
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The image model coefficients are shown in Figure 1. The model 
correlates pixel s(i,j) to 4 of its neighbouring pixels.  
 

 a11 

=-0.267 
s(i-1,j-1) 

a01 

=0.538 
s(i,j-1) 

a-11 

=0.261 
s(i+1,j-1) 

 
s(i+2,j-1) 

 
s(i-2,j) 

a10 

=0.452 
s(i-1,j) 

 
s(i,j) 

  

 
Figure 1.  Image support 

 
 
4.2 Experimental results 
 
The effect on MSE due to uncertainties in the image model 
 

σa 0 0.01 0.02 0.03 
a11 
a01 
a-11 
a10 

σw
2 (x10-4) 

-0.267 
0.538 
0.261 
0.452 
1.00 

-0.257 
0.548 
0.271 
0.462 
2.36 

-0.247 
0.558 
0.281 
0.472 
4.49 

-0.237 
0.568 
0.291 
0.482 
8.04 

MSE (%) 0.0346 1.114 14.42 901.2 
 

Table 2. The effect on MSE due to uncertainties in the image 
model of Synthetic image 

 
In Table 2, the effect of uncertainties in the image model was 
tested on a synthetically constructed image blurred by 1x3 linear 
motion blur at a SNR of 10dB. The reasons for using Synthetic 
image (synthetically constructed) instead of Lenna image (real) 
are twofold. Firstly, the 1x1x1 image model assumes a highly 
localized pixel correlation and hence, it is unable to represent 
both dynamic edges and textures in the real image accurately. 
This can be observed from the large variance of the modelling 
uncertainty. Tests have shown that there is little or no change in 
the MSE’s of the restored Lenna image, despite the deviations 
introduced in the image model. Secondly, the test requires the 
filtering process to have more dependence on the state 
predictions, which are based on the image model, and this can be 
brought about by either reducing the image model uncertainty or 
increasing the noise level in the observation (so that it is less 
reliable). Since Lenna image has a large pixel intensity variance, 
an even larger noise variance is required to degrade the image to 
a SNR of 10dB. At this noise level, the image is too noisy to be 
processed. Due to the reasons, the synthetically constructed 
image was used in place of a real image, as a test on the latter 
will not give meaningful result. 

σa is the standard deviation introduced into the image 
coefficients to simulate the inaccuracy in the model. The test in 
Table 2 shows that the MSE increases (deteriorates) with the 
increase in deviations in the image model. This happens because 
the image model becomes less reliable (increasing σw

2) with the 
increase in deviations in the image model coefficients. 
 
 
 
 
 
 

The effect on MSE due to uncertainties in the blur model 
 

σn 0 0.0707 0.1414 0.2121 
Coefficients, 

h0 
h-1 
h-2 

 

 
0.3333 
0.3333 
0.3333 

 
0.2833 
0.4333 
0.2833 

 
0.2333 
0.5333 
0.2333 

 
0.1833 
0.6333 
0.1833 

MSE (%) 0.0343 0.0723 0.0966 0.1039 
 

Table 3. The effect on MSE due to uncertainties in the blur 
model 

 
The test in Table 3 was performed on Lenna image blurred by 
1x3 motion blur at a SNR of 35.1dB. σn is the standard deviation 
introduced into the blur model to simulate the inaccuracy in the 
model. To preserve the conservative property of the blur system, 
the deviations in the model are chosen such that the sum of all its 
coefficients is equal to one. The test shows that the MSE 
increases (decreasing accuracy in restorations) with the level of 
uncertainty in the blur model.  
 
 
Robust deconvolution for image model with uncertainties 
 
In this section, the test on uncertainties in the image model was 
performed using the proposed robust filter design. The result in 
Table 4 shows marked improvements in MSE’s of the restored 
images when the robust design was used. 
 

σa 0.01 0.02 0.03 
σa

 2=Qζ 1.0x10-4 4.0x10-4 9.0x10-4 
ROMKF, MSE (%) 1.114 14.42 901.2 
Robust ROMKF, 

MSE (%) 
0.422 0.596 0.567 

Improvement (dB) 4.2 13.8 32.0 
 
Table 4. Results for robust filtering with uncertain image model 
 
 
Robust deconvolution for blur model with uncertainties 
 
The test for uncertain blur models in Table 3 was carried out 
again in this section, but with the proposed robust filter design.  
 

σn 0.0353 
(11%) 

0.0707 
(21%) 

0.1414 
(42%) 

σn
2=Qη 1.25x10-3 2.5x10-3 0.01 

ROMKF, MSE (%) 0.0441 0.0723 0.0966 
Robust ROMKF, 

MSE (%) 
0.0431 0.0593 0.0813 

Improvement (%) 2.3 18.0 15.8 
 

Table 5. Results for robust filtering with uncertain blur model 
 

 
Table 5 compares the performance of the robust and 

conventional filter design. When the robust ROMKF is used, 
improvements in the MSE’s are observed for the various degrees 
of inaccuracy, in the form of deviations, in the blur. 

 



Modelling a blur with a smaller support and uncertainty 
 

This test demonstrates how a deconvolution filter with a 
maximum blur support size of 3x3 can handle a bigger 5x5 blur. 
The Lenna image is blurred by 5x5 uniform motion blur as 
defined in (22) and has white Gaussian noise added it to give a 
SNR of 40 dB. The MSE of the degraded image is 0.214%. 
When a support size of 3x3 is assumed, the actual 5x5 blur will 
be truncated as shown in (23). 
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To maintain the conservative property and 2D profile of the 

blur, the actual 5x5 blur is being modelled as a robust 3x3 blur ©
consisting an uniform 3x3 blur with an uncertainty representing 
the difference in coefficient values as shown in (24). The 
variance of the uncerWDLQW\ WHUP 4� LV GHILQHG LQ ���). Table 6 
shows that the robust blur model offers a much better restoration 
compared to the truncated blur. Hence, the test shows that the 
5x5 blur can be modelled as a smaller order blur of 3x3 size. 
 

Blur 
models 

 
h(x,y) 

 
htruncated(x,y) 

 
©�[�\� 

MSE (%) 0.189 17.6 0.245 
 

Table 6. Results for modelling of blur using a smaller support 
 
 

5. CONCLUSION 
 

A new robust filter design for image deconvolution or 
restoration is proposed and verified in simulation tests to be a 
feasible idea. In the design, any uncertainties in the image and 
blur models are being taken into account in the filtering process. 
In the test on uncertain image model, a synthetically constructed 
image, which can be represented by the 1x1x1 image model 
accurately, is used.  In the simulation tests employing the robust 
design, a marked improvement in MSE of up to 32 dB can be 
achieved for a deviation of 0.03 in the image model. Simulation 
tests have also shown that the robust ROMKF can achieve 
improvements of 2.3-18% in the MSE’s over the conventional 
ROMKF for 11-42% of deviations in the blur model. The robust 
blur modelling also allows a filter with a smaller support size to 

restore images that are blurred by larger support blur models. 
This is done by using a robust blur model, which consists a 
smaller-support blur with a similar 2D profile as the actual blur 
and an uncertainty term to account for the difference in the blur 
coefficients. 

If an iterative identification method is used, we can first 
establish a relationship between the number of iterations used 
and the accuracy in the estimated image and blur models. By 
using the known relationship, inaccuracy in image and blur 
estimates can be compensated using the robust ROMKF. Thus, 
the identification time can be shortened and the dependence on 
the accuracy of the models can also be reduced. 
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