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ABSTRACT

In image deconvolution or restoration using Kalman filter, the
image and blur models are required to be known for the
restoration process. Generally, the accuracy of the restoration
depends on the accuracy of the given models. Unfortunately, the
image and blur models are normally unknown in practice. To
solve the problem, an identification stage is employed to
estimate the image and blur models. However, the estimated
models are seldom accurate especially with the presence of noise
in the image. This paper presents a robust Kalman filter design
for image deconvolution that can accommodate the inaccuracy in
the estimated image and blur models. If the inaccuracy can be
modelled as addictive white Gaussian noise with a known
variance, it can be stochastically account for in the robust filter
design. In the simulation tests performed, the robust design
achieved improved accuracy in the image restoration even
though inaccurate image and blur models were used.

1. INTRODUCTION

In the process of blind image deconvolution or restoration, the
true image is being estimated from a degraded observation only.
Blind image deconvolution techniques can be broadly
categorized into 2 groups. The first group involved estimating
the blur and true image concurrently. Recent techniques
belonging to the first group include the expectation
maximization (EM) algorithm [1], the iterative blind
deconvolution (IBD) agorithm [2], McCalum’'s simulated
annealing (SA) algorithm [3] and the non-negativity and support
constraints recursive inverse filtering (NAS-RIF) [4]. Most of
them employ some form of optimisation to estimate the true
image among various unknown parameters of the image.

In comparison to the first group, the second group performs
the image parameters identification and true image estimation in
two separate processes. The estimation (or restoration) stage
generally employs a classical deconvolution method such as
Kaman [5-8], Wiener or least-squares filtering. These classical
deconvolution methods require a priori information on the
image, like noise statistics, image and blur models, which are to
be first identified in an identification stage. Recent identification
methods make use of the maximum likelihood (ML) [9],
generalized cross-validation (GCV) [10] or residua spectra
matching technique [11]. Accurate image and blur models are
essential for accurate image restorations. However, making
accurate estimations on the models are difficult especialy with
the presence of noise in the image. To counter this problem, this
paper presents a robust Kalman filtering design that can
minimize the effects from the inaccurate image and blur models
by factoring the inaccuracies in the models. The inaccuracies or
errors in the models are modelled as addictive white Gaussian
noise.

The spatial correlation between neighbouring pixels in true
image can be represented by the Gauss-Markov model. The

image process is modelled as an autoregressive (AR) process
driven by a white Gaussian noise process w(i,j) with variance
0,2 described by:

i, j)= Y ammnsi-m j-n+wi,j) @
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where £(i,j) indicates the pixel intensity level at column i and
row j and Ra represents the non-symmetric half-plane (NSHP)
support model. The NSHP support specifies the extent of pixel
correlation within aregion. An illustration on the NSHP support
can be found in Figure 1. alm,n) are the MSE image model
coefficients which minimize E{w(i,j)} >. Alternatively, thisimage
system can be seen as a recursive model with a modelling
uncertainty defined by o,,%. The blurred and noisy pixel, r(i,j), is
defined by the linear degradation formation system:

ri,j)= Zt:(myn)s(i -mj-m+v(,j) (2

where h(m,n) is the space-invariant PSF with support Rh and
v(i,j) represents the observation noise with variance 6, In the
case of inaccurate image and blur models, Equation (1) and (2)
become (3) and (4) respectively, as shown:

s(i, ) = ;Ea(m,n)%(m,n)]s(i-m.l'-n)+W(i.J) (©)
r@i,j) = ;[h(m.n)w(m,n)]s(i-m.l'-n)+V(i.J) 4

where w(i,j), (i,j), v(i,j) and n(i,j) are mutualy independent
white noise.

This paper starts with the formulation of the Reduced Order
Model Kaman Filter (ROMKF) for the image deconvolution
problem in Section 2. Section 3 covers the development and
formulation of the proposed robust Kalman filter design. Finaly,
details on experiments and restoration results are given in
Section 4.

2. REDUCED ORDER MODEL KALMAN FILTER
(ROMKF)

In the state representation, the size of the state vector is directly
proportiona to the width of the image. Hence, alarge image will
result in avery large state vector that is a computational burden.
The reduced update Kalman filter (RUKF) is devised to reduce
the heavy computational load posed by a large state vector [6].
In the RUKF, only the local states are updated due to the local
extent of the correlation exhibited by most images. Hence, the
gains outside the local states are assumed to be zero.

In comparison to the RUKF, the reduced order model
Kaman filter (ROMKF) only includes the local statesin its state
vector. Thus, the ROMKF has a much smaller and manageable



state vector. In term of performance, the both types of filters are
found to be on par with each other [7]. The state and observation
equations of the ROMKF are:

X(i, j) = Ax(i =1, j) + Bw(i, j) + Eu(i, j) ®)

y(i, j) = Hx(, j) +v(, j) (6)
where A is the transition matrix, H is the blur matrix and B and
E are the selection matrices. u(i,j) is the input that includes the
most recent estimates of states, which are not found in the last

state vector. The dtates are missng due to the ROM
approximation.

3. PROBLEM FORMULATION FOR ROBUST KALMAN
FILTER

In the deconvolution using Kalman filter, A (image model) and
H (blur model) matrices are to be estimated beforehand. The
inaccuracies in the estimates are detrimenta to the
deconvolution process. However, if the datistics of the
uncertainties in the model estimates are known, the effects of the
uncertainties can be minimized by employing a robust filtering
design. In the robust design, the random uncertainties in the
image and blur models are represented by AA{(i,j) and AHN(i,j)
respectively in the state and observation equations as shown
bel ow:

(i, J) =[A+DAZG, IX( -1, )
+Eu(i, j) +Bw(i, j) @)
y(i, J) =[H +AHA(, DIX(, §) +v(, j) ®
where w(i,j), {(i,j), v(i,j) and n(i,j) are mutualy independent

white noise with covariance matrixes Qw, Q¢, Qv and Qn
respectively.  (i,j) and n(i,j) are assumed to be scalars.

By rewriting (7), we have,
X(i,§) =AX(i-1j)+Eu(,j)+
DAL, J)X( =1, j) + Bw(, j)
=AX( -1 j)+Euli, ) +w(.)) (9

where
w, (i, J) = DA (I, j)x( =1, j) +Bw(i, j) 10)

Since C (i,j) is uncorrelated to w(i,j), wy(i,j) is also white noise.
The covariance matrix Q,,, of wy(i,j) can be calculated as

Qn  =E{w (i, Hw, @, )}
= E{[AAZ (i, ))x( -1, j) + Bw(i, j)].
[AAZ (i, j)x( -1, j)+Bw(, ))]'}
= AAE{x(i -1, j)X" (i -1 j)}AA'Q, + BQ,B’
= AAX (i -1, j)AATQ, +BQ,BT 1y

where E{.} denotes mathematical expectation and

X( -1 §)=E{x(i -1 j)x" (-1 j) 12

To find X(i-1,j), we have to first derive X(i,j) from (9), i.e.

X(i, J) = E{[Ax(i =1, j) + Eu(i, j) + w, (i, j)]-

[AX(i -1 j)+ Eu(i, j) +w, (i, )I'}

= AX(i =1 ))A" + Eu(i, u" (i, ))E" +Q,,

= AX(i =1 ))A" +Eu(i, ju" (i, ))E" +

AAX(i -1, j)AA'Q, +BQ,B’ 13
Hence, by recursion,

X(@i-1j)=AX([I-2[)A +
Eu(i -1 ju"(i -1 )E" +
AAX(i - 2, )AATQ, +BQ,B" 14)

Following the same steps for the state equation, we first rewrite
the observation equation in (8) as

y(i, §) = Hx(i, ) + v, (i, §) 15
where v, (i, j) = AHN(, ))x(, j) + (i, j)

and v(i,j) is white noise with a covariance matrix
Q. =E{v,( v, (.}
= AHX(, j)AHTQn +Q, (16)

By using the results in (11), (13), (14) and (16), the robust
Kaman filter can be implemented with the following Kalman
equations:

% (i, J) = A3 -1, j) + Eu(i, ) 17
R(, 1) =AR( -1 ))A"+Q, (18)
K@i, ) =R, DHTTHR(, HHT +Q,]™ (19
X1, 1) =%, 1)+ K(Q, PIyda, 1) = HX, @, )] (20)
PG, 1) =01 -K(@, DHIRG, J) (2D

where subscript a represents update and b denotes prediction.

4. SIMULATIONS
4.1 Experiment setup

The simulations were performed with the test configuration as
shownin Table 1.

Image Lenna Synthetic
Description portrait of alady synthetically
256x256 constructed, 256x256
Modelling 0.0014 0.0001
error, 0,
Boundary initia 5(i,j) = o) initial 5(i,j) = o(i,j)
conditions initial X(i,j)=0 initial X(i,j)=0

Table 1. Test configuration



The image model coefficients are shown in Figure 1. The model
correlates pixel s(i,j) to 4 of its neighbouring pixels.

g1 a1 an | .
=-0.267 =0.538 =0.261 s(i+2,-1)
____________ s(i-1,j-1) §(i,j-1) si+Lji-1) |
)
s(i-2,)) =0.452 E(H))
____________ §(i-1,))

Figure 1. Image support

4.2 Experimental results

The effect on M SE due to uncertainties in the image model

A 0 0.01 0.02 0.03
an -0267 | -0257 | -0247 | -0.237
a0 0.538 0.548 0.558 0.568
an 0.261 0.271 0.281 0.291
an 0.452 0.462 0.472 0.482
0,2 (x10% 1.00 2.36 4.49 8.04
MSE (%) 0.0346 | 1.114 14.42 901.2

Table 2. The effect on MSE due to uncertaintiesin the image
model of Synthetic image

In Table 2, the effect of uncertainties in the image model was
tested on a synthetically constructed image blurred by 1x3 linear
motion blur at a SNR of 10dB. The reasons for using Synthetic
image (synthetically constructed) instead of Lenna image (real)
are twofold. Firstly, the 1x1x1 image model assumes a highly
localized pixel correlation and hence, it is unable to represent
both dynamic edges and textures in the rea image accurately.
This can be observed from the large variance of the modelling
uncertainty. Tests have shown that there is little or no change in
the MSE's of the restored Lenna image, despite the deviations
introduced in the image model. Secondly, the test requires the
filtering process to have more dependence on the state
predictions, which are based on the image model, and this can be
brought about by either reducing the image model uncertainty or
increasing the noise level in the observation (so that it is less
reliable). Since Lenna image has a large pixel intensity variance,
an even larger noise variance is required to degrade the image to
a SNR of 10dB. At this noise level, the image is too noisy to be
processed. Due to the reasons, the synthetically constructed
image was used in place of a real image, as a test on the latter
will not give meaningful result.

0, is the standard deviation introduced into the image
coefficients to simulate the inaccuracy in the model. The test in
Table 2 shows that the MSE increases (deteriorates) with the
increase in deviations in the image model. This happens because
the image model becomes less reliable (increasing 6,,%) with the
increase in deviations in the image moddl coefficients.

The effect on MSE due to uncertainties in the blur model

On 0 0.0707 0.1414 0.2121
Coefficients,

ho 0.3333 0.2833 0.2333 0.1833

h. 0.3333 0.4333 0.5333 0.6333

h., 0.3333 0.2833 0.2333 0.1833

MSE (%) 0.0343 0.0723 0.0966 0.1039

Table 3. The effect on MSE due to uncertaintiesin the blur
model

The test in Table 3 was performed on Lenna image blurred by
1x3 motion blur at a SNR of 35.1dB. g, is the standard deviation
introduced into the blur model to simulate the inaccuracy in the
model. To preserve the conservative property of the blur system,
the deviations in the model are chosen such that the sum of all its
coefficients is equal to one. The test shows that the MSE
increases (decreasing accuracy in restorations) with the level of
uncertainty in the blur model.

Robust deconvolution for image model with uncertainties

In this section, the test on uncertainties in the image model was
performed using the proposed robust filter design. The result in
Table 4 shows marked improvements in MSE’s of the restored
images when the robust design was used.

O, 0.01 0.02 0.03
0,°=Q; 1.0x10" | 4.0x10" | 9.0x10"
ROMKF, M SE (%) 1114 14.42 901.2
Robust ROMKF, 0.422 0.596 0.567
MSE (%)
Improvement (dB) 4.2 13.8 32.0

Table 4. Results for robust filtering with uncertain image model

Robust deconvolution for blur model with uncertainties

The test for uncertain blur models in Table 3 was carried out
again in this section, but with the proposed robust filter design.

On 0.0353 0.0707 0.1414
(11%) (21%) (42%)
0.2=Qn 1.25x10° | 2.5x10° 0.01
ROMKF, MSE (%) | 0.0441 0.0723 0.0966
Robust ROMKF, 0.0431 0.0593 0.0813
M SE (%)
I mprovement (%) 2.3 18.0 15.8

Table 5. Results for robust filtering with uncertain blur model

Table 5 compares the performance of the robust and
conventiona filter design. When the robust ROMKF is used,
improvements in the MSE’ s are observed for the various degrees
of inaccuracy, in the form of deviations, in the blur.



Modelling a blur with a smaller support and uncertainty

This test demonstrates how a deconvolution filter with a
maximum blur support size of 3x3 can handle a bigger 5x5 blur.
The Lenna image is blurred by 5x5 uniform motion blur as
defined in (22) and has white Gaussian noise added it to give a
SNR of 40 dB. The MSE of the degraded image is 0.214%.
When a support size of 3x3 is assumed, the actual 5x5 blur will
be truncated as shown in (23).

0.04 004 004 004 0.040]
10.04 004 004 004 0047
h=[004 004 004 004 0.040 (22)
004 004 004 004 0047
.04 004 004 004 0.04H
0.04 004 0.040]
Mg = 0.04 004 0.047 (23)
.04 004 0.040

/9 1/9 1/90
h=H/9 1/9 1/95+n(xy) (24)
3/9 1/9 1/95

_1_ 2
Q  =(;-009
= (0.0711)? (25)

To maintain the conservative property and 2D profile of the
blur, the actual 5x5 blur is being modelled as a robust 3x3 blur h
consisting an uniform 3x3 blur with an uncertainty representing
the difference in coefficient values as shown in (24). The
variance of the uncertainty term Qn is defined in (25). Table 6
shows that the robust blur model offers a much better restoration
compared to the truncated blur. Hence, the test shows that the
5x5 blur can be modelled as a smaller order blur of 3x3 size.

Blur .
models h(x,y) Niruncated(X,Y) h(x.y)
MSE (%) 0.189 17.6 0.245

Table 6. Results for modelling of blur using a smaller support

5. CONCLUSION

A new robust filter design for image deconvolution or
restoration is proposed and verified in simulation tests to be a
feasible idea. In the design, any uncertainties in the image and
blur models are being taken into account in the filtering process.
In the test on uncertain image model, a synthetically constructed
image, which can be represented by the 1x1x1 image model
accurately, isused. In the simulation tests employing the robust
design, a marked improvement in MSE of up to 32 dB can be
achieved for a deviation of 0.03 in the image moddl. Simulation
tests have aso shown that the robust ROMKF can achieve
improvements of 2.3-18% in the MSE's over the conventional
ROMKF for 11-42% of deviationsin the blur model. The robust
blur modelling also allows afilter with a smaller support size to

restore images that are blurred by larger support blur models.
This is done by using a robust blur model, which consists a
smaller-support blur with a similar 2D profile as the actual blur
and an uncertainty term to account for the difference in the blur
coefficients.

If an iterative identification method is used, we can first
establish a relationship between the number of iterations used
and the accuracy in the estimated image and blur models. By
using the known relationship, inaccuracy in image and blur
estimates can be compensated using the robust ROMKF. Thus,
the identification time can be shortened and the dependence on
the accuracy of the models can also be reduced.
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