
COMPENSATION OF AMPLIFIER NONLINEARITIES ON WAVELET PACKET DIVISION
MULTIPLEXING

Kin-Fai TO, P.C. CHING

Department of Electronic Engineering,
The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong.

E-mail: fkfto, pcchingg@ee.cuhk.edu.hk

Kon Max WONG

Communications Research Laboratory,
McMaster University,

Hamilton, Ontario, L8S 4K1, Canada.
E-mail: wong@ece.eng.mcmaster.ca

ABSTRACT

Wavelet packet division multiplexing (WPDM) is a high-capacity,
flexible and robust orthogonal multiplexing scheme in which the
message signals are waveform coded onto wavelet packet basis
functions for transmission. However, WPDM suffers from severe
performance degradation in the presence of high-power amplifier
(HPA) nonlinearities. In this paper, data predistortion using the
pth-order Volterra inverse is proposed to combat the amplifier non-
linearities in a WPDM system. A 5th-order Volterra inverse with
truncated memory length is designed based on the Volterra series
channel model. Computer simulations are presented to demon-
strate the capability of the proposed technique in compensating
amplifier nonlinearities even under system parameter discrepancy.
Guidelines are also proposed for designing wavelet filter which
leads to better predistortion with the truncated Volterra inverse.

1. INTRODUCTION

Wavelet packet division multiplexing (WPDM) [1] is an orthogo-
nal multiplexing scheme using wavelet packet basis functions as
coding waveforms. The orthogonality properties of the wavelet
packets provide a substantial increase in channel capacity and
added robustness against many adverse channel environments
[1]�[3]. However, in the presence of nonlinear high-power ampli-
fier (HPA), the performance of WPDM degrades significantly due
to its large signal dynamics. The effects of amplifier nonlineari-
ties on WPDM has been analyzed and a nonlinear channel model
of WPDM has also been derived using Volterra series [4]. In this
paper, a 5th-order Volterra inverse with truncated memory length
is designed based on the Volterra series channel model. Data pre-
distortion is performed on the equivalent sequence at the root of
the WPDM tree to alleviate the distortion due to amplifier nonlin-
earities. The merit of this method is its simple implementation and
reduced computational complexity. Structure and complexity of
the inverse will be discussed. Computer simulations are presented
to verify the ability and robustness of the inverse. Guidelines are
also proposed in designing wavelet filter for better predistortion.

First, let us briefly review WDPM [1]. Let g0[n], g1[n] be
a unit-energy real causal FIR conjugate quadrature mirror filter
(QMF) pair of length N which are orthogonal to their even trans-
lates. An iterative algorithm [5] may be used to find the function
�01(t) =

p
2
P

n g0[n]�01(2t � nT0) for a given T0. Subse-
quently, we can define a family of functions �lm(t); l � 0; 1 �
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m � 2l, in a binary tree structure, with the subscripts denoting the
“level” of a node in the tree and its position within the level, re-
spectively. The functions at the terminals of the tree form a wavelet
packet [5]. They are self and mutually orthogonal at integer mul-
tiples of Tl = 2lT0 and have a finite duration (N � 1)Tl. The
message symbols �lm[n] are waveform coded by pulse amplitude
modulation of �lm(t� nTl) and are then added together to form
the composite signal s(t). By exploiting the wavelet packet tree
structure, WPDM can be implemented using a transmultiplexer
and a single modulator,

s(t) =
X
k

�01[k]�01(t� kT0) (1)

where �01[k] =
P

(l;m)2T

P
n flm[k�2ln]�lm[n] is the equiva-

lent data sequence, with T being the set of terminal index pairs and
flm[k] the equivalent filter from the (l;m)th terminal to the root
of the tree. The original messages can be recovered from �01[k]
using �lm[n] =

P
k flm[k � 2ln]�01[k].

Using the discrete-time (2N + 1)th-order Volterra model, the
nonlinear WPDM channel model can be expressed as [4]

�̂01[n] = �01[n] +

NX
k=1

H2k+1f�01[n]g| {z }
interference due to
HPA nonlinearities

(2)

where

H2k+1f�01[n]g =
X
m1

� � �
X

m2k+1

h2k+1[m1; � � � ;m2k+1]

�
k+1Y
r=1

�01[n�mr]

2k+1Y
s=k+2

�
�
01[n�ms]

(3)
and

h2k+1[m1; � � � ;m2k+1] , 
2k+1

Z
�01(t)

2k+1Y
i=1

�01(t+miT0)dt
(4)

are the (2k+1)th-order Volterra operator and kernel, respectively.

2k+1 denotes the (2k + 1)th-order complex Taylor coefficient.
Notice that only odd order terms appear here due to the bandpass
nature of the nonlinearity.

2. DATA PREDISTORTION

Consider the system shown in Figure 1 where a nonlinear system
represented by G with Volterra kernels g is preceded by a pth-
order Volterra inverse F(p) with Volterra kernels f . Denote the



nonlinear system resulting from the cascade of F(p) and G by H
with Volterra kernels h. The 1st-, 3rd- and 5th-order h-kernels are
then given by

h(1)n;a = g(1)n;vf
(1)
v;a (5)

h
(3)
n;a;b;c = g

(1)
n;vf

(3)
v;a;b;c + g

(3)
n;v;w;xf

(1)
v;af

(1)
w;bf

(1)�
x;c (6)

and
h
(5)
n;a;b;c;d;e =g

(1)
n;vf

(5)
v;a;b;c;d;e

+ g
(3)
n;v;w;xf

(1)
v;af

(1)
w;bf

(3)�
x;c;d;e

+ g
(3)
n;v;w;xf

(1)
v;af

(3)
w;b;c;df

(1)�
x;e

+ g(3)n;v;w;xf
(3)
v;a;b;cf

(1)
w;cf

(1)�
x;e

+ g(5)n;v;w;x;y;zf
(1)
v;af

(1)
w;bf

(1)
x;cf

(1)�
y;d f (1)�z;e (7)

For simplicity, we are using the tensor notation which implies that
any term in which a given index appears twice must be summed
over the appropriate range of this index.

Now, let us consider the 5th-order compensation. Under the
assumption that the linear part of system G, that is, the 1st-order
g-kernel denoted by g(1), is invertible, it is possible to find a sys-
tem F such that its cascade with G gives a system with no linear
distortion, that is,

f
(1)
n;vg

(1)
v;a = g

(1)
n;vf

(1)
v;a

= Æn;a =

(
1; n = a

0; otherwise
(8)

This choice provides the 1st-order compensator. The 3rd-order
compensator is then obtained by choosing f(3) such that h(3) = 0.
The 3rd-order f -kernel can therefore be expressed as

f
(3)
n;a;b;c = �f (1)n;vg

(3)
v;w;x;yf

(1)
w;af

(1)
x;bf

(1)�
y;c (9)

Similarly, the 5th-order f -kernel can be written as

f
(5)
n;a;b;c;d;e = �f (1)n;u

�
g
(3)
u;v;w;xf

(1)
v;af

(1)
w;bf

(3)�
x;c;d;e

+ g
(3)
u;v;w;xf

(1)
v;af

(3)
w;b;c;df

(1)�
x;e

+ g
(3)
u;v;w;xf

(3)
v;a;b;cf

(1)
w;df

(1)�
x;e

+ g
(5)
u;v;w;x;y;zf

(1)
v;af

(1)
w;bf

(1)
x;cf

(1)�
y;d f

(1)�
z;e

�
(10)

From the derived Volterra channel model [4], we have g(1)n;v =
Æn;v , therefore, the corresponding 1st-order Volterra kernel for the
compensator is

f
(1)
n;v = Æn;v (11)

By substituting (11) into (9) and (10), we obtain the 3rd- and 5th-
order f -kernels as

f
(3)
n;a;b;c = �g(3)n;a;b;c (12)

and

f
(5)
n;a;b;c;d;e = �(g(3)n;a;b;xf

(3)�
x;c;d;e + g

(3)
n;a;w;ef

(3)
w;b;c;d

+ g
(3)
n;v;d;ef

(3)
v;a;b;c + g

(5)
n;a;b;c;d;e)

= g
(3)
n;a;b;xg

(3)�
x;c;d;e + 2g(3)n;a;w;eg

(3)
w;b;c;d + g

(5)
n;a;b;c;d;e

(13)

With the Volterra kernels, the block diagram of a 5th-order Volterra
inverse is shown in Figure 2.

x[n] F(p) G y[n] = Hfx[n]g

Fig. 1. Nonlinear system preceded by Volterra inverse

x[n]

G�3

2G3

�1

+ G3

�G5

+ y[n]

Fig. 2. Block diagram of 5th-order Volterra inverse

3. COMPUTATIONAL COMPLEXITY

For symmetric Volterra kernels, the total number of multiplica-
tions required for a discrete-time (2N +1)th-order Volterra series
with memory length Mk for the kth-order Volterra operator gives
a measure of the computational complexity, denoted by C2N+1,

C2N+1 =
NX
n=0

 
M2n+1 + n

n+ 1

! 
M2n+1 + n� 1

n

!
(2n+ 1)

(14)

where
�
n
k

�
is the binomial coefficient. For both Daubechies and

Symlets filters [5] with length N ,

Mk =

(
1; k = 1

2N � 3; otherwise
(15)

Therefore, the computational complexity of a 5th-order Volterra
inverse with wavelet filter length N is

Cinv
5 (N) = 3 + 3(2N � 3)

 
2N � 2

2

!
+ 5

 
2N � 1

3

! 
2N � 2

2

!

(16)

Table 1 shows the computational complexity of a 5th-order
Volterra inverse with different wavelet filter lengths. It can be
seen that the complexity of the inverse increases dramatically with
higher wavelet filter length. For system operating with high sam-
pling rates, real time compensation using a Volterra inverse is thus
limited to lower order, short memory cases. Therefore, we have
to truncate the memory length of the Volterra inverse in order to
reduce the complexity for real time implementation. In the next
section, computer simulations will be presented to demonstrate the
performance of the truncated Volterra inverse.

wavelet filter length, N complexity
4 2853
6 38343
8 210577

10 749091
12 2060061
14 4777503

Table 1. Computational complexity of 5th-order Volterra inverse
versus wavelet filter length



4. COMPUTER SIMULATIONS

The performance of the 5th-order Volterra inverse had been evalu-
ated through computer simulations. The memory length of the in-
verse had been truncated to reduce the computational complexity.
For simplicity, pth-order Volterra pre-inverse with memory span
K will be denoted by Pinv(p,K). In the simulations, a 4-channel
WPDM system was considered and 16-QAM signal constellation
was adopted in each channel. The transmission channel was as-
sumed to be an AWGN channel with no multipath propagation and
traveling wave tube amplifier (TWTA) model [7] was used for the
nonlinearities. Scaling functions generated by both Daubechies
and Symlets filters of length N = 14 were used and the memory
length of the 5th-order Volterra inverse was truncated to K = 1; 3
and 5. The symbol duration T0 is normalized to one.

Simulation 1: In this simulation, we attempt to demonstrate
the performance of the truncated 5th-order Volterra inverse. Figure
3 plots the signal constellations of the receiving data sequences of
the 4-channel WPDM system under noise-free condition, for IBO
= 8dB (input backoff ratio). The resulting constellations demon-
strate the ability of the truncated 5th-order Volterra inverse to com-
pensate the attenuation and rotation introduced by the amplifier’s
amplitude nonlinearity (AM/AM conversion) and phase nonlin-
earity (AM/PM conversion), respectively. Moreover, the inverse
is capable of reducing the spread of the signal constellations as
the memory length increases. Figures 4 shows the resulting prob-
abilities of symbol error under AWGN channel. The probabili-
ties were averaged over the 4 channels and the theoretical proba-
bility of symbol error of 16-QAM was also plotted for compari-
son. The results demonstrate again the capability of the 5th-order
Volterra inverse in compensating the distortion caused by the non-
linear amplifier. It is noted that the symbol error probabilities for
Pinv(5,5) are close to the theoretical 16-QAM bound under AWGN
channel. By comparing the results, we found that WPDM sys-
tem using Symlets filter performs better than the counterpart using
Daubechies filter, which can be explained as follows.

First, define the squared sum of the pth-order kernel coeffi-
cients of wavelet filter length N as

C
(p)
N =

2N�2X
m1=�(2N�2)

� � �
2N�2X

mp=�(2N�2)

jhp[m1; � � � ;mp]j2
(17)

and the squared sum of the truncated pth-order kernel coefficients
of memory length K as

C
(p)
K =

(K�1)=2X
m1=�(K�1)=2

� � �
(K�1)=2X

mp=�(K�1)=2

jhp[m1; � � � ;mp]j2
(18)

The ratio of the two squared sums, gives a measure of the approx-
imation accuracy of the truncated pth-order kernel to the original
kernel, denoted �p

�p =
C
(p)
K

C
(p)
N

(19)

where 0 � �p � 1. Table 2 shows the values of �3 and �5 for the
Daubechies and Symlets filters of length N = 14. It can be seen
from the tables that, for both truncated 3rd- and 5th-order Volterra
kernels with memory length K = 1; 3 and 5, the Symlets filter
always results in a higher �3 and �5 ratios. The higher approxima-
tion accuracy thus accounts for the better performance illustrated
above.

From the Volterra kernel defined in (4), we found that the ker-
nel coefficients are the higher order autocorrelations of the scaling
function. This suggested that it is possible to design a wavelet fil-
ter such that the energy of the coefficients is packed within a spe-
cific region of the truncated Volterra kernels, resulting in a better
predistortion. Finally, Table 3 shows the tremendous reduction of
computational complexity of the truncated 5th-order Volterra in-
verses, compared to the original one with memory span K = 25
(last row).

predistorter Pinv(5,1) Pinv(5,3) Pinv(5,5)

�3
Daubechies 14 0.603 0.900 0.984

Symlets 14 0.860 0.964 0.999

�5
Daubechies 14 0.417 0.831 0.971

Symlets 14 0.793 0.949 0.998

Table 2. Values of �3 and �5 for truncated 3rd- and 5th-order
Volterra kernels with Daubechies and Symlets filters of length 14

predistorter Pinv(5,1) Pinv(5,3) Pinv(5,5) Pinv(5,25)
complexity 11 357 2853 4777503

Table 3. Computational complexity of truncated 5th-order
Volterra inverses with different memory lengths

Simulation 2: From the Volterra channel model derived in
[4], we noticed that the complex Taylor coefficient 
 in (4) depend
on the saturation voltage Asat, of the nonlinear amplifier. In the
previous example, perfect knowledge of the parameter Asat was
assumed, which is reasonable as the predistorter was placed in the
WPDM transmitter before the nonlinear HPA. In this simulation,
we will investigate the effects of parameter discrepancy of Asat

on the performance of the truncated 5th-order Volterra inverse.
Figure 5 gives the resulting probabilities of symbol error for a 4-
channel WPDM system with truncated 5th-order Volterra inverses
Pinv(5,1) and Pinv(5,3), respectively. In this test, Symlets filter of
length N = 14 are used and IBO = 8dB. In Figure 5, [�10%] de-
note the cases with inaccurate parameter ~Asat = Asat� 0:1Asat.
From the simulation results, an apparent degradation in symbol
error rate (SER) can be observed for the [+10%] case. On the
contrary, the [�10%] case results in a SER improvement which
can again be explained by the better approximation of the trun-
cated Volterra series to the nonlinear system. In fact, it had been
proved by simulation that further decrease of the inaccurate pa-
rameter ~Asat will result in performance degradation similar to the
[+10%] case.

5. CONCLUSION

Based on the Volterra series, the truncated 5th-order Volterra in-
verse is proposed for data predistortion of 16-QAM signal constel-
lation of multi-carrier WPDM system. It is shown that the com-
putational complexity of the truncated inverse is greatly reduced
when compared to the original one. Computer simulations have
demonstrated the ability of the truncated 5th-order Volterra inverse
in compensating the attenuation, rotation and spreading of the sig-
nal constellation caused by the nonlinear amplifier, for 4-channel
WPDM. Experiments on the effects of parameter discrepancy have
also shown the robustness of the truncated 5th-order Volterra in-
verse. For wavelet filters of length N = 14, it is found that
the truncated inverse performs better in the case of Symlets filter,



which is shown to be related to the higher approximation accuracy
of the Volterra kernels. As the Volterra kernels are the higher order
autocorrelation coefficients of the scaling function, therefore, this
provides the possibility of having an optimum wavelet filter de-
sign in which the approximation accuracy is maximized, leading
to a better data predistortion.
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(a) No predistortion (b) Pinv(5,1)

(c) Pinv(5,3) (d) Pinv(5,5)

Fig. 3. Simulated signal constellations of 4-channel WPDM with
truncated 5th-order Volterra inverses of different memory lengths
(IBO = 8dB, Symlets filter of length N = 14)
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(b) Symlets 14

Fig. 4. Averaged probability of symbol error of 4-channel WPDM
with truncated 5th-order Volterra inverses of different memory
lengths (IBO = 8dB, wavelet filters of length N = 14)
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Fig. 5. Averaged probability of symbol error of 4-channel WPDM
with truncated 5th-order Volterra inverse with memory length K
(IBO = 8dB, Symlets filter of length N = 14)


