DSP APPLICATION IN E-COMMERCE SECURITY

Jankun Hu®, Ziping Xi, Andrew Jennings, H.Y. J. Lee and D. Wahyudi

[(Boftware & Networks Discipline, School of Electrical and Computer Systems Engineering, Royal Melbourne Institute of Technology
(RMIT University), Melbourne 3000, Australia. Fax: +61 3 9925 5340; E-mail: Jiankun.Hu@rmit.edu.au

ABSTRACT

This is a case study on using DSP board to construct an
encryption/decryption module embedded in a E-Commerce web
server. The idea of using DSP is to push beyond the key length
limits of encryption/decryption algorithms and computational
power in software environment while avoiding the heavy
investment in dedicated hardware encryptor/encryptor. The low
cost, high computational power, high flexibility of DSP and the
ubiquitous availability of PC PCI (peripheral component
interconnect) slot for DSP can provide any web browser or web
server an excellent cost-effective option to improve the security
level of Internet applications. The paper provides a step-by-step
procedure and reveals every detal of a successful
implementation of DSP RSA encryptor/decryptor for a E-

commerce web server by using the latest TMS320C6000 ™

Evauation Module (EVM) DSP hardware. A strong prime
concept and Garner agorithm are introduced to generate more
secure keys and compute encryption/decryption more efficiently
than that of recent publications. Experiments show that the
performance of using DSP hardware encryption can be 300 times
faster than that in software environment. Building a DSP
application embedded in a E-Commerce server needs to consider
more issues than doing a pure open DSP application. However,
since this conference falls exclusively in DSP field, other
irrelevant DSP issues like RSA Key Database, server design etc.
are not discussed here.

1. INTRODUCTION

With the growing number of electronic commerce applications,
secure transmission of information is essential. Data that is sent
across the network could be intercepted, read and modified by
unauthorised persons. Therefore, a strong encryption system is
required in order to protect the data at a maximum level.
Unfortunately, a strong data encryption algorithm such as public-
key cryptosystem usualy leads to a degradation of the
encryption performance because of the complexity of the
algorithm. A direct consequence is the compromised key lengths
being used in popular web browsers like Netscape or Internet
Explorer and other E-commerce systems with limited
computational resources. Strong public-key cryptographic
techniques can not afford to process high volume of message.
Instead, they are normaly used to transmit secret keys and
consequently this relative weaker secret key system is used to
transmit real data. Hardware encryption is a preferred way to
overcome the performance degradation problem. However,
dedicated VLSI chip costs a fortune in investment and normal
microcontroller is not suitable for handling sophisticated tasks.
Digital Signal Processing (DSP) is an idea choice for such
applications. It has very high computational power, high speed,

and high flexibility. Moreover, it is cost-effective due to batch
production. Another amazing advantage is that nearly every PC
has a PCI interface that can support DSP applications which
reduces greatly any overhead or extra effort in constructing a
functional DSP application.

RSA dgorithm is the most popular public-key system created by
Rivest, Shanir and Adelman [1]. There are some reports for
software implementation of RSA algorithm [2][3]. However,
report on DSP hardware implementation of RSA isvery rare. In
[4], adesign and implementation of RSA cryptosystem using
multiple TMS320E15 DSP chips is reported. The system
developed consists of a stand-alone unit containing the DSP
hardware and a high-level PC user-interface. The system allows
for additional DSP chips to be inserted in allocated slots to
improve its performance. The system was found to be 70 times
faster than the same RSA agorithm implemented using C-
language at PC level. However, no detailed report has been
given, to the best of our knowledge, to address the DSP
hardware implementation of RSA in PC PCI dot environment
using latest commercial development tools, which should be a
far more interesting issue as this PC PCl environment is
available everywhere without any extra cost. This paper reports a
successful DSP hardware implementation of RSA in a PC PCI
board using the latest commercial TM S320C6201 fix-point DSP
EVM and latest TI Code Composer Studio DSP software
development tools. A strong prime concept is used in key
generation which is more secure than conventiona key
generation as used in [4]. Experiments and testing show that the
performance of using DSP hardware encryption can be as high
as 300 times faster than that in software environment.

2. PROJECT IMPLEMENTATION

Details of the RSA algorithm are not listed here. Interested
readers are referred to references [1][2][3][4][5] of this paper
and references therein.

2.2.Hardware

The host is a common Pentium PC with 400MHz machine
frequency. A standard PCl expansion slot on the computer's
motherboard is available for plug-in DSP board. The
TMS320C6x EVM Block Diagram is shown in Fig. 2.1
[6][7].The Céx EVM is built around the C6201 or C6701 DSP,
which operates up to 1600 MIPS with a CPU clock rate of 200
MHz. It also provides a PClI Local BUS Revision 2.1-compliant
interface that enables host access to the onboard JTAG

controller, DSP host port interfface (HPI), and board
control/status registers.

Dual clocks(33.25/40
External MHz)
JTAG header

BARL | PCI target JTAG CLKIN
emulation ITAG

CEQ M6aK x 32
SBSRAM
BAR3/ TMS 320

BAR4 C6201/6 CE2 | IMx32
PCltarget HPI 701 SDRAM

HPI pSP bank 0

Pel connector (133/160MHz) SDRAM
bank 1)

bus fs/12 « Voltage

— - fimers
ftimers memory interface
Voltage CcEL
supervisor
RST McBSPO
X Expansion
FIFOs PCI master EI: peripheral interface
EMIF interface
BAR2 — CE1 MIC and LINE
LT IN/O UT audio
CPLD ! Stereo 16-bit ALK
ISP header bi audio codec
logic CEL
(12) LED indicators
User-option

DIP itch i
switches [«——» Miscellaneous control

Fig. 2.1 TMS320C6x EVM Block Diagram [7].

2.2. Software

The C6x EVM software consists of host support software and
DSP support software. The host support software supplied with
the C6x EVM board includes the Win32 host utilities and

libraries. The host utilities and host libraries run on an Intel ™
compatible PC under either Windows 95 or Windows NT 4.0
[6]. The Code Composer Studio speeds and enhances the
development process for programmers who creates and test real-
time, embedded signal processing applications. It provides tools
for configuring, building, debugging, tracing, and anaysing
programs.The RSA encryption can be summarised in Table 1.

TABLE 1RSA Encryption [5]

Public Key:
n product of two primes, p and q (p and q must remain
secret)

e relatvely primeto (p—1)(g-1)

Private Key:
d e"mod ((p-1)(a-1))

Encrypting:
c=m°modn

Decrypting:
m=c’mod n

For security reasons, prime numbers p,d should be large

enough, say greater than 100 [5]. Hence, selection of and
processing of these two large prime numbers and their
derivatives constitute major difficulties in DSP implementation.
For prime number generation, we adopted the modified Euler's
Theorem that has been used in [4]. It states that if a number p

isaprime, then

x"TmodP) =1 @),

for al integer values of x. A practical procedureistesting only 5
different values of x [4].

Discussion:

Prime number selection:

Obvioudly, the primary goa of equation 1 is to test whether a
number is a prime or not. There is till plenty of room left on
how to select these two prime numbers. The issue related to
factoring problem is that a passive adversary tries to recover the
plain text m from the corresponding cipher text c, given the
public key (n, €) of the intended receiver A. The adversary would
factor n first, and then compute gand d just as A did to generate
the key pair. Once d is obtained, the adversary can decrypt any
cipher text intended for A [5].

Small encryption or decryption components (e, d) are used when
the communication parties want to improve the algorithm
efficiency for encryption or decryption. However, this would
wegken the security of the algorithm since it is easier for
eavesdroppers to search for the keys and/or plain text. It is
recommended that the size of encryption or decryption
components (e, d) should be roughly the same sizeasn [5].

In forward search attack, if the message space is small or
predictable, adversary can decrypt a cipher text ¢ by simply
encrypting all possible plain text messages until cipher text c is
obtained. To prevent this problem, the plain text message should
be appended with fixed length random text (at least 64 hits)
before message encryption.

In the key generation process, the prime numbers p and g should
be selected so that factoring n = pq is computational infeasible
[5]. The mgjor restriction on p and q in order to avoid the elliptic
curve factoring algorithm is that p and g should be about the
same hit length, and sufficiently large. Another restriction on the
primes p and q is that the difference p — q should not be too

small. If p—qgissmall, then p = qand hence p = \/ﬁ . Thus, n
could be factored efficiently by trial division by all odd integers

closeto \/ﬁ . If pand g are chosen randomly, then p — q will be
appropriately large with overwhelming probability. In addition
to these restrictions, many experts recommended that p and g be
strong primes. A prime p is said to be a strong prime if the
following three conditions are satisfied [5]:

(i) p— 1 hasalarge prime factor, denoted r;
(i) p + 1 has alarge prime factor; and
(iii) r — 1 has alarge prime factor.

If the prime p is randomly chosen and is sufficiently large, the
both p—1 and p + 1 can be expected to have large prime factors.
The strong primes can protect against the p -1 and p + 1
factoring algorithm in any cases.

Improved encryption computation:

In order to improve the performance of the decryption engine,
instead of direct computation of m = ¢ mod n, we compute
m1= c¢® mod p and m2= c¢* mod q (where d,=d mod (p-1) and,
d,=d mod (g-1)) then use Garner's algorithm to construct m.
This procedure seems to be more complicated but more efficient

since the moduli are smaller [5]. In addition, the small
decryption component could be used to increase the speed of the
agorithm. However, the use of this technique would weaken the
agorithm. Therefore, the best choice for decryption component
sizeisroughly same size of the public key n.

2.3. Outlineof program coding and project building:

All the program source codes ae in C. The
encryption/decryption program works as follows:

i. The encryption starts by trying to open the message (source
file) to be encrypted. If the source file could not be found, an
error message is displayed and the program terminates. If the
source file exists, the program continues to execute. At this
point, atiming function is started to calculate the execution time
of the encryption process. Then the contents of the source file
areread character by character, each character is encrypted using
the improved encryption technique discussed above with the
public key and the result is written into another file (ciphertext
file). When end of file of the source file has been reached, the
encryption process completes and the timing function is stopped.
Next, the encryption process time is calculated and displayed
based on the “timestamp” produced by the timing function.

ii. The decryption program works similar to that of the
encryption process. The program first looks for the ciphertext
file, if the file exists then the program starts by reading the
contents of the source file, character by character. |If the
ciphertext file does not exist then the program displays an error
message and terminates. To calculate the decryption process, a
timing function is performed before the contents of the file are
read. Then the each ciphertext is decrypted by using the
improved encryption technique proposed above with the private
keys passed into the algorithm. The result of the computation is
written into an output file, which is the recovered message.
After the program finishes reading the ciphertext file, the
decryption process ends and the timing function is stopped. The
execution time of the decryption process is then calculated and

displayed.
BUILDING THE APPLICATION PROJECT

After coding the application program in C, we need to make it
working on DSP board. The procedure of creating a new project
under Code Composer Studio isdescribed below [6] [7] .

(1) Select Project - New Project from the menu and navigate
to a desired directory where the project is going to be created.
Save the project’s file name (eg. “enc.mak”) in the “File Name”
field and click Save. A new project fileis created with an empty
project list.

(2) Add necessary filesto the project list:

(2.1) Select Project — Add Files to Project. The project

manager identifies files by their file extension:

e« *cC : C sourcefile.

e *asm : Assembly sourcefile.
« *lib : Library file.

e *.cmd : Linker command file.

(2.2) Add the C sourcefile to the project (eg. “enc.c”).

(2.3) Add the assembly source file to the project (eg.
“vectors.asm”)

(2.9) Add thelibrary file to the project (eg. “rts6201.1ib").
(2.5) Add the linker command file to the project (eg.
“rsacmd”).

3. EXPERIMENTAL RESULTS

Experiments have been conducted to allow investigation into the
performance of data encryption and decryption, in terms of
elapse time and speed of execution in hardware and software
environments, under the same platform of MS Windows NT
operating system.

The experiments that performed in hardware environment were
conducted using Code Composer Studiod 1.2, which is a fully
integrated development environment supporting Texas
Instruments industry-leading TM S320C62010 platform of DSP.

The experiments that performed in software environment were
conducted using Microsoftd Visua C++ 6.0 Enterprise Edition,
Copyright 00 1994-1998 Microsoft Corporation.

3.1. Building and running the program for experiment

In Code Composer Studiod 1.2 [7], carry out the following
procedures to execute RSA encryption and decryption program
that has been implemented as discussed above.

@) Choose Project - Rebuild All. Code
Composer Studio recompiles, reassembles,
and relinks al the files in the project.
Messages about this process are shown in a
frame at the bottom of the window.

(i) Choose File — Load Program. Select the
program that has just been rebuilt, (example,
encryption.out), and click Open. Code
Composer Studio loads the program onto the
target DSP and opens a dis-assembly window
that shows the disassembled instructions that
make up the program. (Notice that Code
Composer Studio also automatically opens a
tabbed area at the bottom of the window to
show output the program sends to stdout.)

(iii) Click on an assembly instruction in the Dis-
Assembly window. (Click on the actual
instruction, not the address of the instruction
or the fields passed to the instruction.) Press
the F1 key. Code Composer Studio searches
for help on that instruction. This is a good way
to get help on an unfamiliar assembly
instruction.

(iv) Choose Debug — Run.

3.4 Statistics data

Encryprion and decryption experiments have been conducted
both in the software and hardware environment. Experimental
data are shown in following figures.

B sourced.od - Notepad [[51x]
File Edit Search Help
sing the RSA Algorithm for Encryption and Digital Signatures: |

Can You Encrypt, Decrypt, Sign and Uerify without Infringing the RSA Patent?
Patrick J. Flinn and James M. Jordan III[x]

(c) 1997 Alston & Bird LLP
July 9, 1997

"Public key cryptography,” a method for encrypting messages to be transmitted over an insecure
channel, and "digital signatures,” a method for authenticating the author of a message transmitted
ouer an insecure channel, are emerging as fundamental tools for conducting business securely ouer
the Internet. These technologies are widely expected to be used to conduct billions of dollars in
electronic commerce within the next few years. Howeuer, the broad deployment of these technologies
is substantially burdened by licensing demands being made by the ouner of United States Patent No.
4,405,829, uhich is known as the “"RSA Patent.” It has become commonly accepted Internet lore that
the RSA Patent covers most of the commonly used techniques for public key encryption and digital
signatures, and that a patent license from the ouner of the RSA Patent is necessary to employ these
techniques. As this article explores in some detail, however, the RSA Patent is far more limited in
scope and far more uulnerable to a validity challenge than is generally assumed.

The RSA Algorithm and the RSA Patent

The RSA Algorithm was named after Ronald Rivest, Adi Shamir and Leonard Adelman, who first published
the algorithm in April, 1977.[1] Since that time, the algorithm has been employed in the most
widely-used Internet electronic communications encryption program, Pretty Good Privacy (PGP).[2] It
is also employed in both the Netscape Navigator and Microsoft Explorer web browsing programs in
their implementations of the Secure Sockets Layer (SSL), and by Mastercard and UISA in the Secure
Electronic Transactions (SET) protocol for credit card transactions.

The RSA Algorithm is claimed in the RSA Patent, which was issued to Drs. Rivest, Shamir and Adelman,
uho exclusively licensed the patent nine days later to RSA Data Security, Inc., a company which was
originally controlled by the inuentors but is now a wholly-owned subsidiary of a Boston based
company called Security Dynamics Technology, Inc. RSA Data has to date filed three lawsuits alleging
infrinment of the RSA Patent. Tuo were settled prior to trial.

|
Mstart| BJExploring - IAproject..| BY Microsaft Ward - Ser... [[[Z] source 4.6t - Note. P& NI wed 25 0ct2000 185532

Fig. 3.1 Sample of plaintext file before encryption source4.txt

RESULT TABLE 1

Result Encryption Decryption

1 0.00006429 0.000061485

Hardware environment 2 0.00006429 0.000065945

AVERAGE 0.00006429 0.000063715

Speed (kbytes/sec) | 36724.21839 | 147406.4192
1 0.02 0.02
Software environment 2 0.02 0.01
3 0.02 0.02

AVERAGE 0.02 0.016666667

Speed (kbytes/sec) [11805 | 563.52

@

Chat 1.1: Gonparison of Hapse Time between Hrdwere and
Softwere Bvironment
o1

_ o 0016856857
¢ w D Hardnere
s OSofvere
§ ocoL

Qo OO0 | | 0co0e3s |

I []

EnoryptionDecryption

(b)

Fig.3.2 (a)-(b)Statistics data drawn from the

encryption/decryption experiment

The original plaintext file sourced.txt was encrypted. The speed
of encryption in hardware environment was as high as
36,724.21839 Kbytes per second, which was approximately 311
times faster than software environment. The encrypted file
cipherd.txt file was decrypted. The speed of decryption in
hardware environment was as high as 147,406.4192 Kbytes per
second, which was approximately 261 times faster than software
environment.

4. CONCLUSION

The paper has reported a successful DSP hardware
implementation of RSA in a PC PCl board using the latest
commercial TMS320C6201 fix-point DSP EVM and latest Tl
Code Composer Studio DSP software development tools. A
strong prime concept is used in key generation, which is more
secure than conventional key generation that is used in [4]. An
improved encryption/decryption implementation technique based
on Garner's algorithm [5] is utilised to avoid the direct

computation of m=c% mod). This procedure is more

efficient than that was used in [4] as our procedure produces
smaller moduli. Experiments of encryption/decryption have
shown that the performance of using DSP hardware encryption
can be as high as 300 times faster than in software environment.
This better result than that of [4] is expected since PC PCI
environment uses internal bus and contains fewer overheads. As
all the resources used here are very popular available products,
such implementation can be particularly helpful for IT engineers
who are interested in thisfield.

5.REFERENCES

[1] R.L. Rivest, A. Shamir and L. Adelman, “On digita
signatures and public key cryptosystems,” Commun. ACM, Vol.
21, pp. 120-126, 1978.

[2] A. Seby and C. Mitchell, “Algorithms for software
implementations of RSA,” Proc. |IEE, Vol.136, Pt. E, pp.166-
170, 1989.

[3] JJ. Quisguater and C. Couvreur, “Fast decipherment
algorithm for RSA public-key cryptosystem,” Electron. Letter,
18, pp. 905-907, 1982.

[4] M.H. Er, D.J Wong, A/L Sethu and K.S. Ngeow, “Design
and implementation of RSA cryptosystem using multiple DSP
chips” IEEE International Symposium on Circuits and
Systems, 1991, vol.1, Page(s): 49 -52

[5] B. Schneier, “Applied cryptography---Protocols, algorithms,
and source codein C,” John Wiley & Sons, 2™ Edition, USA.
[6] TMS320C6000 Code Composer Studio, Tutorial, Texas
Instruments, 1999.

[7]TM S320C6201/6701Evaluatiion Module, User’'s Guide,
Texas Instruments, 1999.

