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Joint diagonalization problems of Hermitian or non-Hermitian ma-
trices occur as the final parameter estimation step in several blind
source separation problems such as ACMA, JADE, PARAFAC,
and SOBI. Previous approaches have been Jacobi iteration schemes
and alternating projections. Here we show how thejoint diagonal -
ization problem can be formulated as a (weighted) subspace fitting
problem so that it can be solved using the efficient Gauss-Newton
optimization algorithm proposed for that problem. Since a good
initial point isusually available, the algorithm converges very fast.

1. INTRODUCTION

Supposethat we are given K complex Hermitian matrices Y of the
form )
Ye=AAA"+E,, k=1,---,K, @

where the Ay are diagonal and real, and Ey represents additive
noise. The joint diagonalization problem we consider is, given the
Y, to estimate the common factor A. We assume that all Yy are
square d x d matrices, and that A is square d xd with full rank d.

An extension of this problem is, for complex non-Hermitian
matrices,

Y =AAB"+E, k=1, K, @

where A and B can be different, and the Ay are diagonal but not
necessarily real.

Joint diagonalization of either type turnsup in several recently
proposed blind source separation problems with data models X =
AS+ N, where X isthe observation matrix, A isthe mixing matrix,
the rows of S contain the source signals, and N is additive noise.
Depending on the assumptionson A and/or S, the following types
of algebraic source separation techniques have been proposed:

— Diagonalization of fourth order cumulant matrices, asin JADE

[1] whereK =d and A is considered unitary.

— Algebraic Constant Modulus Algorithm (ACMA) [2]. Typi-
cally we have problem (1) with K = d but A not unitary.

— Second order techniques for separating sources based on dif-
ferencesin their spectra, such as SOBI [3]. Y are covariance
matrices for several lags.

— Multi-dimensional ESPRIT [4, 5], and related applications
such as joint angle-delay estimation [6], giving rise to prob-
lem (2) with K = 3 or more.

— Multilinear source separation problems, going under the name
of PARAFAC models[7], aso resulting in problem (2).

The joint diagonalization problem is a generalization of an
eigenvalue problem. For two matrices, we can form Y2Y11, as
sumingthat Y isinvertible. Withoutnoise, Y,Y7* = AA,A 1AL
and A follows from a standard eigenvalue decomposition. In the
presence of noise, Y2YIl can still be diagonalized. When K > 2
matrices are available, the problem becomes overdetermined and
we cannot find an exact diagonalizing factor.

The joint diagonalization problem is often solved by iterative
Jacobi techniques (one-sided or two-sided; see [8, 9] for compar-
isons), or by iterations such as Alternating L east Squares[7,10].

Here, we consider A (and B) full rank but not necessarily uni-
tary, and we derive an efficient Gauss-Newton iteration.

Notation Overbar (") denotes complex conjugation, ' is the ma-
trix transpose, "' the matrix complex conjugate transpose, T the ma-
trix pseudo-inverse (Moore-Penroseinverse). | or | p isthe (px p)
identity matrix; g isitsi-th column. vec(A) is a stacking of the
columns of amatrix A into avector. ® isthe Kronecker product, o
istheKhatri-Rao product, which isacolumn-wise Kronecker prod-
uct: AocB=[a®b; ay®b, ---].

2. ALGORITHM DERIVATION
2.1. Cost function

Consider {Y} of the form (1). If we assume that the entries
of the additive noise matrix Ey are independent and identically
distributed,! then it makes sense to consider the following Least
Squares problem:

{A{Ad} = agmin ¥ ||V —AAA" |2 3)

AfAG Tk
where the Ay arereal and diagonal. Thisis the cost function usu-
aly considered for joint diagonalization. Without loss of general-
ity, wecan put anorm constraint on thecolumnsof A, say ||ax|| = 1.
The cost function can be rewritten as

Sl V—AAA"2 = 3] 9k= (Ao A)my |2

= [Y=(AoAM|?2
where 9y = vec(Yy), m = diag(Ay), ¥ = [§1,--,9], M =
[mq,--+, mk]. Thus the joint diagonalization problem is equiv-
alentto

{AM} = agmin [Y-AM|Z, A :=AcA, (4

which is recognized as a Subspace Fitting problem where the K
columns of Y are considered to span a subspace, and we seek to
model this subspace by d unit-norm vectors of theforma®a. M
isafull rank (real) dx K matrix that relates the two bases.

Weimmediately notethat in noise-free conditions, if the model
holds then Y has maximal rank d. If K > d, then Y must be rank
deficient and its dimension can be reduced if so desired.

To solve the problem, we can follow entirely similar proce-
dures asfor subspacefitting, viz. [11]. First note that the optimiza-
tion problemisseparable, sinceM = ATY . (Itisautomatically real,
see Appendix B.) Thus, we can eliminate M and reduce (4) to

A = agmin ||Y-AATY |2 = agmin |[PRY[Z  (5)
where Px =1 -AAT.

IMore precisely, in view of the Hermitian symmetry of Ej, thisis un-
derstood for thereal and imaginary parts of the upper triangular part of Ey.



2.2. Minimizingthe cost function via Gauss-Newton

Assumethat A isparametrized by auniquely identifiable parametriza-
tion A = A(0), and consider the cost function

J(8) = 3lIPRYIZ = Zllvec(BAY)|I> = 37(8)"f(8)  (6)

wheref(0) = vec(EkY). Thisisaquadratic minimization problem
suitable for the Gauss-Newton optimization scheme [12]. Define
the Jacobian

(9) df (@)

The gradient of the cost functlon a 0 isg= Re(F(0)"f(0)). Ac-
cording to the Gauss-Newton scheme, the Hessian of the cost func-
tion is approximated by H =~ Re(F"F) , and the Gauss-Newton up-
date step is

e(k+l) _ e(k) _ ukHilg-
Kk € [0,1] is a step size; with a good initial point we can take
uk = 1. To apply Gauss-Newton, it remainsto (i) select a suitable
parametrization, (ii) givean explicit form of F intermsof the prob-
lem variables, and (iii) compute an initial point.
2.3. Parametrization

Recall that A = [a;---ag], where each g is normalized to unit
norm. We can furthermore constrain the first entry of each g to
be positivereal. Let p be the number of (real-valued) parameters
per a-vector. Animportant property of the parametrizationisthat it
isminimal, otherwise the Hessian will become singular, leading to
problems in the optimization. A convenient parametrization with
p=2(d—1) real parametersisgivenin Appendix A.
Let ©; be the parameter vector for a;,

0=1[0,,,04:pxd, 0=vec(®).

The entries of © will be denoted by 6;j, (i=1,---,p, j = 1,---d),
the entries of @ by 6;,. We will collect the derivatives of A and A
in vectors and matrices, defined as follows:

da;

d.
4 = g, (©) dij = G- (0)
Dj = [dll pﬂ Dj = [dyj---dpj] M
D = [D; - Dd] D =[Dy - Dd-
Since aj = aj ®a;, we obtain
dij = aj®d,]+d”®aJ
Dj = [ ---aj]oDj + Djo[aj ---ay]
D = AeoD+DoAe ©)
whereAe;:A(@lI):[a1 cap|-|ag - ag).

2.4. Explicit form of F
Recall that f = vec(PxY) . Let 0 be theindex of one of the param-
eters;; in @, and let Ay 1= ggin The derivative of P} is[11]

dPx

g = “PaAnAT - (BaAnAT)".
n

Pn =

Thus, the derivative of f to 0y is

of dPx

s 9
= Go, =Vl g,

¥)=—vec((PEARAT+ (BAANA

HMY).
At this point, we propose to ignore the second term in this expres-
sion, since the factor E’jY occuring in that term correspondsto the

residual and istypically very small in the neighborhood of the op-
timum (moreover, it cancels in forming F'f). Thus, in first order

approximation
fiy = ~vec(PrAnATY) = —[(ATY) @ PkIvec(Ay).  (9)

The Jacobian is thus given by

F=[f, -, fal = -[(A"Y)'®Pz]De  (10)
where
De = [vec(An)ln=1,-..pd = [dvfgff) dvdegz(;g)
Recall that we have defined
_%a da  da "
doy1’ doy ' T dOp’

De merely augments each column of D with many zero entries
since each parameter affects only one column of A. Thus

De=le1--e1] €| -+ |&-+-e]oD = (Ig®1;)oD

and after substitution of thisin (10)
F=—{(A"Y®1p)"oPxD].

At this point, we note that due to the Hermitian symmetry of the
problem (see Appendix B), F'f and F"'F are automatically real, so
that we have H™1g = (F"F)"1F"f = FTf. Given an estimate 0%,
one iteration of the Gauss-Newton scheme thus becomes as fol-
lows.

A = A0K) [dxd]
D= D(e(k)) [dxdp]
Ae = A®1 [dxdp]
D= AeoD+Der [d?xdp]
A = AoA [d2xd]
Px = I-AAT [0?xd?]
Ot = 809 + w(ATY @ 1) o PAD] Veo(RRY)

The complexity of an iterationis O(d?K(pd)?), with p= 2(d-1).
2.5. Initial point and preprocessing

A suitableinitia estimate for A isusually obtained from an eigen-
value decomposition of Y2Y1 , since in the noise free case

YoYi=A(AATHATL

Theinitial point 8(9) isderived from A asdescribedin Appendix A.
With thisinitialization, the iteration converges very fast, typically
within two steps. Theinitialization assumesthat (i) the inverse of
Y1 exists, (ii) the eigenvalues A A7t are not repeated, and (jii)
they are real. The latter requirement sometimes gives problems
with strong noise, it may happen that the e|genval ues of Y2Yl
become complex. One can prove that if either Y1 or Y5 is posi-
tive definite, then the eigenvalues of Y2Y1 arereal. Thus, we can
search among the Y for amatrix that is positive definite and use
this matrix in the initialization. We may also try to find alinear
combination of the Y such that the result is positive definite.

To generalizethemodel, supposethat A hassizedxr. If r < d,
then r isthe rank of the Y, and these matrices are rank deficient.



To improve the initialization, it is better to first reduce the dimen-
sionsto thesquare (rxr) case. Thiscanbedoneviaasingular value
decompositionof [Y1 -+ Yk]:

Y1 - Yk]=UDV" (12)

Therank r can be detected from the singular values, Let U bether
dominant left singular vectors, then we can replacethe Y by com-
pressed r xr matrices Y}, = U"Y U, and solve the joint diagonal-
ization problem \?{( = TAT", initialized by the solution of

VoY)t =T(AAHT (12)

After finding T, wecanset A = UT. Infact, wehaveachoiceto ei-
ther solvethejoint diagonalization problem for the Y (thisis most
efficient but does not exactly solve (3)), or to find the initidial T
from (12) and solve the original probleminitialized by A = UT.

If from the singular valuesin (11) it turns out that r > d, then
we are in a situation with “less sensors than sources’. For this sit-
uation, there appears to be no closed form solution available yet.
Although unelegant, we can try arandom initialization, and follow
theiteration with areduced step size (e.g. px = 0.5). Convergence
now takes longer, in the order of 15 iterations.

If K> d, then'Y is necessarily rank deficient (rank d). This
is not a problem for the algorithm, but it is possible to reduce the
dimensionto d, by replacing Y by its dominant d left singular vec-
tors. Thus, we can reduce caseswith K > d and d > r to ageneric
caseof K=d=r.

2.6. Remarks

A requirement for the iteration isthat F isatall matrix of full col-
umn rank. If A : dxr, then F has size Kd2 x pr, where for the cur-
rent parametrization p= 2(d—1), so that Kd® > 2r(d—1). If r =d,
then we need K > 2. Increasing K or d increases the tallness of F
and improves its conditioning and thus the robustness of the opti-
mization. For sufficiently largeK, itisseenthat r > d ispermitted.
However, only r < d gives convenient initialization.

3. EXTENSIONS

3.1. Parametrized array

In some applications where joint diagonalization problems occur,
the columns of A are not arbitrary vectors but functions of a sin-
gle (or afew) parameters. For example, in array signal processing,
we might have a = a(8), where 6 corresponds to the direction of
the source. It is clear that we can directly exploit this more parsi-
monious parametrization. The algorithm remainsthe same, but we
have a smaller parameter vector (p = d rather than p = 2(d—-1)),
and only thefunctions A(0) and D(0) need to change. Anexample
is the combination of ACMA or JADE to take a directional model
into account.

3.2. Unsymmetricjoint diagonalization

An extension of the joint diagonalization problemin (1) isthe data
model A
Yi=AAB" +Ey, k=1,---,K.

In this problem, the left and right factors A and B are not necessar-
ily equal to each other (perhaps even with different dimensions),
and Ay are diagonal but not necessarily real.

If our objective is again to minimize the model error, we may
derive as before

YAYi-AAB"[Z = Y|I9i-(BoA)mi[2 = [|Y-(BoAM |2
I I

where M is an arbitrary complex matrix. Thus, we end up with a
very similar subspacefitting problem, except that now we havetwo
parameter sets: @ = [0, O], where A = A(0,) and B = B(05g).
Since without loss of generality we can still take the columns of A
and B to be unit norm and with positive real first entry, we can use
the same parametrization asbefore. Thus, wecan useavery similar
Gauss-Newton iteration, now with

A= EOA _

Da = BeoD(04), Dg := D(0g)oAe.
F=-[(ATY®1p) oPiDa , (ATY®1,) oPLDs]
f = vec(PxY)

00t = 09 — 1, [Re(F"F)] tRe(F"f).

F has size Kd? x2pr, with p=2(d—1). To have H invertible, we
need [Re(F)" Im(F)"]" to betall, or 2Kd? > 4(d—1)r. Thisleads
to the same conditions as we had for the symmetric case before.

3.3. Weighted subspacefitting

Weighted subspace fitting estimates are usually obtained by insert-
ing in (6) (but not in the original (3)) a positive definite weighting
matrix I'. Inits most general form, the cost function becomes

J(8) = [[PaY|F = vec(PAY)'Tvec(PaY).  (13)

T can be used to minimizethe estimator variance. From the theory
of WSF (viz. [11,13]) weknow that the optimal weight isT°Pt = C*
where

C = E{vec(PrY)"vec(PxY)}.

Thus, the optimal weight depends on the covariance of ¥, and in
turn on the origin of the problem.

4. SIMULATIONS

Figure 1(a) shows a test with K = 4 Hermitian matrices of size
d = 4, arandomly generated complex A (i.i.d. entries with stan-
dard deviation 1), Ay (std 1), and Ei (std 0.05). We compare the
subspacefitting technique using Gauss-Newtoniterationswith step
size ux = 1 to ACDC [10], which is an aternating least squares
type technique that optimizes A and A in turn, and two-sided Ja-
cobi iterations asin [2]. The latter is a QZ iteration that tries to
solve QY Z = Ry for unitary Q and Z and upper triangular Ry,
and subsequenly derives A from the result. The subspace fitting
and ACDC agorithms are initialized from an eigenvalue decom-
position of Y2Y11, the Jacobi iterations from a QZ decomposition.
From the graph it is seen that the subspacefitting convergesin two
steps, ACDC converges to amost the same point in about 40 steps,
whereas the Jacobi iterations quickly converge but to a different
point.

Figure 1(b) shows a similar test with non-Hermitian matrices.
Here we compare the subspace fitting technique (ug = 1) to two-
sided Jacobi iterations and to PARAFAC [7], which is an alternat-
ing least squarestechniquefor the non-Hermitian case. Theresults
are similar to the symmetric case.

The smaller number of iterations for the subspace fitting tech-
niqueisto someextent offset by itslarger complexity: (’)(d7) com-
pared to O(d*) for the other iterativetechniques. Asiswell known,
the Gauss-Newton iteration with maximal step size py = 1 gives
fastest convergence but is only robust if the initialization point is
sufficiently close. For ill-conditioned A, the eigenvalue decompo-
sition of two matrices is not always accurate enough, and a more
conservative step size hasto be used for the first few steps.
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A. PARAMETRIZATION OF A UNIT-NORM VECTOR a

A minimal parametrization of a complex unit-norm vector a with
d entries and positive real first entry is provided by a sequence of
Givensrotations:

a = ®Ry(01)R2(02) Rg-1(0g-1) €1

where
& =diag[l, el .. el%1], 0< ¢ < 2,
c -s
. _ I|—l
Ri(o) = s c ’
lg-1-i

c=cos(ar), s=sin(a), -5 <a < 3

The parameter vector for a(0) is® = o1, -+, 041,01, ,dg 1] -
We will also need the derivative of a(0) to each of the p=2(d-1)
parameters:

da .
—_ = <k<d-—
oo L K, 1<k<d-1,
k= do ( )_ da .
k 8 i—k-d+1, d<k<2d-1)
do;
where
da ,
don = ®R1(0n) - Ri—1(0i-1)R{(06)Rir1 (k1) - *Ry-1(0tg-1)€1
1
-s —c
da . by 0i_1
dT’i = JQ+1%H+137 Ri(Oﬂ)— c s
Og-1-i

B. REAL PROCESSING

Since a® a = vec(ad"), the entries of this vector have a certain
Hermitian symmetry property. It follows that there exists a data-
independent unitary matrix Q such that Q(a®a) isreal, for any a.
A conseguence of thisis that for the Hermitian joint diagonaliza-
tion problem (1), al kinds of derived matrices are real or can be
mapped to real. In particular, the expressions for M, the gradient
F" and Hessian F'F arereal by itself.
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