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ABSTRACT

This paper presents an online/sequential linear regression
adaptation framework for hidden Markov model (HMM) based
speech recognition. Our attempt is to sequentially improve
speaker-independent  (SI) speech  recognizer to  meet
nonstationary environments via linear regression adaptation of
SI HMM'’s. A quasi-Bayes linear regression (QBLR) algorithm
is developed to execute online adaptation where the regression
matrix is estimated using QB theory. In the estimation, we
moderately specify the prior density of regression matrix as a
matrix variate normal distribution and exactly derive the pooled
posterior density belonging to the same distribution family.
Accordingly, the optima regression matrix can be easily
calculated. Also, the reproducible prior/posterior density pair
provides meaningful mechanism for sequentia learning of prior
statistics. At each sequential epoch, only the updated prior
statistics and the current observed data are required for
adaptation. In generd, the proposed QBLR is universal and can
be reduced to well-known maximum likelihood linear regression
(MLLR) and maximum a posteriori linear regression (MAPLR).
Experiments show that the QBLR is effective for speaker
adaptation in car environments.

1. INTRODUCTION

There is no doubt that the robustnessissueiscrucia for speech
recognition in real-world applications because the mismatch
between training and testing data always exists and degrades the
performance considerably. One effective approach is to adjust
the existing speech hidden Markov models (HMM’s) to fit the
acoustics of test speaker/noise/transducer. The desirable
recognition performance can be obtained. However, because the
realistic environments are time-variant, an attractive adaptation
strategy is to sequentialy perform the adaptation using online
observed data instead of doing batch adaptation [2][9]. In the
literature, the maximum likelihood linear regression (MLLR)
[10] worked quite well for batch speaker adaptation. Using
MLLR, the adaptation of d x1 HMM mean vector UjkOf state j

and mixture component Kk is achieved by applying a d x (d +1)
cluster-dependent transformation matrix W, to the extended

mean vector &, :[lijk]T . The likelihood of observation x,
associated with the adapted mean vector becomes
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where A ={A, } are HMM parameters. The MLLR is aimed to

estimate the set of regression matrices W ={W_} by maximizing
the likelihood of batch adaptation data X ={x,}

Wi = arg max P(XW, 2) - @

However, in case of sparse adaptation data, the ML estimation
often leads to biased estimate. To deal with the sparseness
problem, it is helpful to incorporate the prior knowledge and
apply the maximum a posteriori (MAP) principle to estimate the
regression matrix. The maximum a posteriori linear regression
(MAPLR) [1][3][5] was accordingly established by

Wiy = arg max PW[X,A) Dargmex POXW, ) gWp) - (3)

Generaly, MAP estimate w,,,, could outperform ML estimate
W,,. when the subjective prior density g(W|¢) with hyper-
parameters ¢ is proper.

In this study, our strategy is to develop an online linear
regression adaptation scheme in case that the adaptation data
x"={X,X,,--,X,} ae sequentidly observed. The
mechanisms of sequential parameter estimation and prior
statistics evolution should be formulated. In [2][9], the quasi-
Bayes (QB) framework was exploited for online

adaptation/transformation of HMM’s. Herein, we would like to
estimate the linear regression model parameter corresponding to

nth observation epoch W™ using the following QB principle
WG = argmax pW|x", A)

Dargmrlnax p(X n|\lv,}\)g(w|¢(n—1)) , 4

where the posterior density of overall data y" is approximated
by a product of likelihood of current data X, and prior density
of regression matrix W given hyperparameters ¢ ("% evolved
from history data y". Starting from initiadl hyperparameters
¢©@, the sequential learning of parameters W® w®@ ... w®
and evolution of hyperparameters ¢ @ ¢@ ... 9™ can be
established by continuously applying the adaptation data
X1,X,,---, X, - After refreshing hyperparameters ¢ , the
current observation data X, are thrown away a each sequential

epoch. As a result, we don’t need to store long batch data for
adaptation so that the adaptation efficiency can be consolidated
and the nonstationary environments can be continuously traced.
In this paper, we construct and validate the general quasi-Bayes
linear regression (QBLR) theory for online speaker adaptation in
car speech recognition.



2. PRIOR DISTRIBUTION

There are two key issues for QB-based parameter estimation.
First, the QB estimate in (4) should have a close form solution to
achieve rapid linear regression adaptation. This issue is
important because the calculation of a set of regression matrices
using numerical approach, e.g. [11], would be very expensive.
Second, the prior density of regression matrix should belong to
the conjugate distribution family where the prior distribution
and the pooled posterior distribution have the same distribution
form regardless of the size and the values in observation data.
With the conjugate prior specification, we could generate the
reproducible prior/posterior density pair. The mechanism of
hyperparameter evolution can be built for sequential adaptation.
In [2], we used the cluster-dependent transformation function

A ={uj + Hén) nec(n)rjk} ' ©)
where ik =z]T|} is precision matrix. The joint prior density of
transformation parameters (M and §{V was defined by
normal-Wishart density
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It was proved that the resulting posterior density also had a
normal-Wishart density form [2]. The online transformation of
HMM'’ s was proposed for supervised speaker adaptation. Herein,
the QBLR is aso an online transformation technique where the
transformation function is constrained by a linear regression
model. Therefore, the point of QBLR turns out to find a
conjugate prior distribution for regression matrix.

Basically, the prior density should properly reflect the statistical
behavior of parameter. However, the selection of prior density
for matrix parameter is really tricky in Bayesian learning. As
suggested in MAPLR [1][5], the d x (d +1) regression matrix

of cluster ¢ can be modeled by an dlipticaly symmetric
distribution (or matrix variate normal distribution) [7][8]
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where W™ (i) and M (" (i) are respectively the ith rows of

gw™

regression matrix W™ and hyperparameter M (" and the
=diag(z§ ™, Z{7) is a d(d +1)xd(d +1)
block diagonal matrix with each diagonal block element 5 (™
being (d +1) x(d +1) matrix. This distribution has location
parameter M ("™ ={M (i)} (mean vector) and scale matrix

matrix A(c”'l)

A" (covariance matrix). Next, we will show the conjugate

property on the use of matrix variate normal distribution. This
property is crucial to develop QBLR agorithm for online
speaker adaptation.

3. QUASI-BAYESLINEAR REGRESSION

To obtain QB estimate in (4), we apply EM algorithm [6] to
overcome the missing data problem in HMM related formulation.
Namely, the first step (E-step) isto calculate the expectation

R?B(\N(")I\N(”)) = E{log p(Xn'Sn‘lan(n))
+logg(W™|p")
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where W™ is current estimate, W™ is new estimate and
(sy,!,) denote state and mixture component sequences. In the

second step (M-step), we find the new estimate by
W™ = argmax RQB(\/V(”)[W(”)) : ©)
wm

To solve (8)(9), we may expand the expectation of the cluster
membership Q_ in (8) by discarding the terms, which do not

involve W™ , i.e.
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Assuming that HMM covariance matrices are diagondl,
Ty = diag(o'jzkl,-.-7o'jzkd) , (10) can be further arranged by
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We obviously see that the exponential of expectation function
RQBMC(”)I\/\/C(")) is proportional to a matrix variate normal
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Therefore, a reproducible prior/posterior density pair is
generated. With the property of conjugate density, the
maximization (M-step) can be easily performed to obtain QB
estimate

W = (15)

M. ={M(i)} -
At the same time, we also construct the mechanism for
hyperparameter evolution

¢ ={pM} =M, AP} ={M A} ={{M ()} {Es}} - (16)

The updated hyperparameters ¢(™ subsequently serve as new
hyperparameters for linear regression adaptation using upcoming
data X

n+l”*

4. SPECIAL REALIZATIONSTO
MLLR AND MAPLR

MLLR and MAPLR are both batch adaptation methods, which
the regresson matrices W ={W,} ae estimated via EM

agorithm by applying batch adaptation data X ={x,} . In

MLLR, the ML edgtimate is involved and the resulting
expectation function of cluster cis
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By maximizing (17) with respect to WC we can obtain ML

estimate W, . =W, ={W,(i)} With W,(i) shown in (12). This

formula is exactly equal to that in MLLR. The notations g™
and z in MLLR[10] are herein expressed by
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On the other hand, MAPLR was trying to find MAP estimate of
linear regression model by combining the subjective prior
¢ ={M.,AJ ={{M_ ()} {Z;}} , which could be empiricaly
estimated from training data [1][3][5]. Correspondingly, the
expectation function RMAP(WCIWC) has the same form as (11).
By maximizing Ry,p (WCIWC) with respect to Wc , the ith row of
MAP linear regression matrix is found to be
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which is equivalent to that derived in [5].
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However, the proposed QBLR is a sequentiad adaptation
agorithm with special realizations of MLLR and MAPLR. We
demonstrate that the matrix variate normal distribution belongs
to the conjugate prior distribution family. The regression
matrices can be optimally estimated at each sequentia epoch
according to the QB principle. Simultaneoudly, an attractive
scheme for hyperparameter evolution is devel oped.

5. EXPERIMENTS
5.1 Speech Databases and Baseline System

We conduct a series of connected Chinese digit recognition
experiments to examine the goodness of QBLR. Two severely
mismatched speech databases were collected [4]. One is the
training database consisted of 1000 utterances by 50 males and
50 females. This database was recorded in office environments
via four close-talking microphones. We applied this database to
train S| HMM’s. The second database contained the utterances
of five males and five females recorded in two median-class cars:
TOYOTA COROLLA 1.8 and YULON SENTRA 1.6. These
utterances were collected using a high-quality MD Walkman of
type MZ-R55 via a hands-free far taking SONY ECM-717
microphone different from those in training database. Three
materials of standby condition, downtown condition and freeway
condition with averaged car speeds respectively being 0 knvh,
50 km/h and 90 km/h were recorded. During recording, we kept
the engine on, the air-conditioner on, the music off and the
windows rolled up. The numbers of testing utterances were 50,
150, 250 and corresponding digits were 324, 964, 1593 for
driving conditions of standby, downtown and freeway,
respectively. The word error rate (WER) was averaged over ten
test speskers. Each speaker had additiona five adaptation
utterances. All training/testing utterances contained three to
eleven random digits. Each Chinese digit was modeled using a
seven-state CDHMM. Each HMM state was composed of four
mixture components. The feature vector was consisted of 12-
order LPC-derived cepstral coefficients, 12-order delta cepstral
coefficients, one delta log energy and one delta delta log energy.
Our baseline system reports the word error rates of 25.6%, 55%
and 62.3% for driving conditions of standby, downtown and
freeway, respectively. Only one transformation cluster was
adopted.

5.2 Estimation of Initial Hyperparameters

To have a good beginning in online speaker adaptation, the
initial hyperparameters play an important role. Herein, the initial
hyperparameters ¢(© were empirically estimated from S
training data [1]. Let X1 Xg denote the training data sets of

Q speakers We first apply these data to calculate the regression
matrices {W,},- {VT/CQ} corresponding to individual training

speakers using the S| HMM's. Then, the initia hyperparameters
(MO} and {£?} are determined by respectively taking the

ensemble _mean and covariance over the matrices
(Wi}, Wio} i
Mé‘”:i%vvc (21)
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5.3 Comparison of MLLR, MAPLR and QBLR

Two sets of experiments are carried out for evaluation. First, we
evaluate the convergence property of online adaptation using
QBLR. For each test speaker, we sequentialy use five labeled
adaptation sentences to perform supervised QBLR adaptation.
The adapted HMM parameters are fixed for recognition of
his’her test data As shown in Figure 1, the WER’S versus
various driving conditions and adaptation data amounts (N) are
reported. The baseline system with N=0 is included. We can see
that WER's are consistently decreased for various driving
conditions when more adaptation data are applied. This indicates
the goodness of hyperparameter evolution and QB estimation in
QBLR. In case of N=5, WER's have been significantly reduced
to 15.3%, 35.7% and 38.3% for standby, downtown and freeway
driving conditions.
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Figure 1: Comparison of WER's (%) using QBLR for various
driving conditions and adaptation data amounts.

On the other hand, we also compare the results of baseline
system, MLLR, MAPLR and QBLR. Cases of N=1 and N=5 are
investigated. As listed in Table 1, the results of MAPLR are
better than those of MLLR for case of N=1 and similar to those
of MLLR for case of N=5. This phenomenon is observed for
various driving conditions. It is because that incorporation of
prior statistics is beneficial to parameter estimation when
adaptation data is sparse (N=1). But, when more adaptation data
(N=5) are involved, the prior information is de-emphasized in
estimation of regression matrices. Nevertheless, QBLR till
achieves the best results among these methods. Although the
improvement is mild, the superiority of QBLR is owing to the
adaptation efficiency. Using QBLR with N=5, only one
adaptation sentence is needed in each sequentiad epoch.
Efficiency is better than MLLR and MAPLR where al
adaptation data are employed in single one epoch.

BaselinelMLLR,(MAPLR,(MLLR,|MAPLR,|QBLR,
System | N=1 N=1 | N=5 | N=5 | N=5
Standby | 256 [ 17.1 16.8 | 16.1 16.7 | 153
Downtown| 55 398 | 387 [ 369 | 367 | 357
Freeway | 623 | 434 | 424 40 40.3 | 383
Table 1: Comparison of WER's (%) of baseline, MLLR,
MAPLR and QBLR.

6. CONCLUSION

This paper has presented a novel QBLR agorithm for online
speaker adaptation of HMM parameters. Different from MLLR
and MAPLR designed for batch adaptation, QBLR was a
sequential  adaptation approach to achieve high adaptation
efficiency in terms of computation cost and memory requirement.
We compared the theoreticall models of MLLR, MAPLR and
QBLR. In QBLR, the parameter of linear regression model was
estimated by maximizing the approximated posterior density of
accumulated adaptation data, which was equal to the product of
a likelihood of current data and a prior density of regression
parameter. Due to QBLR, we knew the underlying theory of
sequential adaptation and the mechanisms of how to evolve
statistics of linear regression model and employ the statistics to
estimate the optimal regression parameter. We carefully selected
the prior density of regression matrix to be a matrix variate
normal distribution and proved this density belonging to
conjugate prior distribution family. Accordingly, we obtained a
concise and closed form QB estimate of regression matrix. More
importantly, a reproducible prior/posterior density pair was
produced to build a meaning mechanism for evolution of
regression statistics. In this study, we showed the generalization
essence of the derived QBLR formulas with relations to formulas
of MLLR and MAPLR. In the experiments of car speech
recognition, the convergence property of QBLR is confirmed.
Also, the superiority of QBLR over MLLR and MAPLR is
demonstrated.
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