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ABSTRACT 
 

This paper presents an online/sequential linear regression 
adaptation framework for hidden Markov model (HMM) based 
speech recognition. Our attempt is to sequentially improve 
speaker-independent (SI) speech recognizer to meet 
nonstationary environments via linear regression adaptation of 
SI HMM’s. A quasi-Bayes linear regression (QBLR) algorithm 
is developed to execute online adaptation where the regression 
matrix is estimated using QB theory. In the estimation, we 
moderately specify the prior density of regression matrix as a 
matrix variate normal distribution and exactly derive the pooled 
posterior density belonging to the same distribution family. 
Accordingly, the optimal regression matrix can be easily 
calculated. Also, the reproducible prior/posterior density pair 
provides meaningful mechanism for sequential learning of prior 
statistics. At each sequential epoch, only the updated prior 
statistics and the current observed data are required for 
adaptation. In general, the proposed QBLR is universal and can 
be reduced to well-known maximum likelihood linear regression 
(MLLR) and maximum a posteriori linear regression (MAPLR). 
Experiments show that the QBLR is effective for speaker 
adaptation in car environments. 
 

1. INTRODUCTION 
 

There is no doubt that the robustness issue is crucial for speech 
recognition in real-world applications because the mismatch 
between training and testing data always exists and degrades the 
performance considerably. One effective approach is to adjust 
the existing speech hidden Markov models (HMM’s) to fit the 
acoustics of test speaker/noise/transducer. The desirable 
recognition performance can be obtained. However, because the 
realistic environments are time-variant, an attractive adaptation 
strategy is to sequentially perform the adaptation using online 
observed data instead of doing batch adaptation [2][9]. In the 
literature, the maximum likelihood linear regression (MLLR) 
[10] worked quite well for batch speaker adaptation. Using 
MLLR, the adaptation of 1×d  HMM mean vector jkµ of state j 

and mixture component k is achieved by applying a )1( +× dd  

cluster-dependent transformation matrix cW  to the extended 

mean vector TT
jkjk ],1[ µξ = . The likelihood of observation tx  

associated with the adapted mean vector becomes 
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where }{ jkλλ =  are HMM parameters. The MLLR is aimed to 

estimate the set of regression matrices }{ cWW =  by maximizing 

the likelihood of batch adaptation data }{ txX =  
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However, in case of sparse adaptation data, the ML estimation 
often leads to biased estimate. To deal with the sparseness 
problem, it is helpful to incorporate the prior knowledge and 
apply the maximum a posteriori (MAP) principle to estimate the 
regression matrix. The maximum a posteriori linear regression 
(MAPLR) [1][3][5] was accordingly established by 
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Generally, MAP estimate MAPW  could outperform ML estimate 

MLW  when the subjective prior density )( ϕWg  with hyper-

parameters ϕ  is proper. 
 

In this study, our strategy is to develop an online linear 
regression adaptation scheme in case that the adaptation data 

},,,{ 21 n
n XXX L=χ  are sequentially observed. The 

mechanisms of sequential parameter estimation and prior 
statistics evolution should be formulated. In [2][9], the quasi-
Bayes (QB) framework was exploited for online 
adaptation/transformation of HMM’s. Herein, we would like to 
estimate the linear regression model parameter corresponding to 
nth observation epoch )(nW  using the following QB principle 
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where the posterior density of overall data nχ  is approximated 

by a product of likelihood of current data nX  and prior density 

of regression matrix W  given hyperparameters )1( −nϕ  evolved 

from history data 1−nχ . Starting from initial hyperparameters 
)0(ϕ , the sequential learning of parameters )()2()1( ,,, nWWW L

 

and evolution of hyperparameters )()2()1( ,,, nϕϕϕ L
 can be 

established by continuously applying the adaptation data 

nXXX ,,, 21 L
. After refreshing hyperparameters )(nϕ , the 

current observation data nX  are thrown away at each sequential 

epoch. As a result, we don’t need to store long batch data for 
adaptation so that the adaptation efficiency can be consolidated 
and the nonstationary environments can be continuously traced. 
In this paper, we construct and validate the general quasi-Bayes 
linear regression (QBLR) theory for online speaker adaptation in 
car speech recognition. 
 



 

2. PRIOR DISTRIBUTION 
 

There are two key issues for QB-based parameter estimation. 
First, the QB estimate in (4) should have a close form solution to 
achieve rapid linear regression adaptation. This issue is 
important because the calculation of a set of regression matrices 
using numerical approach, e.g. [11], would be very expensive. 
Second, the prior density of regression matrix should belong to 
the conjugate distribution family where the prior distribution 
and the pooled posterior distribution have the same distribution 
form regardless of the size and the values in observation data. 
With the conjugate prior specification, we could generate the 
reproducible prior/posterior density pair. The mechanism of 
hyperparameter evolution can be built for sequential adaptation. 
In [2], we used the cluster-dependent transformation function 
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where 1−Σ= jkjkr  is precision matrix. The joint prior density of 

transformation parameters )(n
cµ  and )(n

cθ  was defined by 

normal-Wishart density 
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It was proved that the resulting posterior density also had a 
normal-Wishart density form [2]. The online transformation of 
HMM’s was proposed for supervised speaker adaptation. Herein, 
the QBLR is also an online transformation technique where the 
transformation function is constrained by a linear regression 
model. Therefore, the point of QBLR turns out to find a 
conjugate prior distribution for regression matrix. 
 

Basically, the prior density should properly reflect the statistical 
behavior of parameter. However, the selection of prior density 
for matrix parameter is really tricky in Bayesian learning. As 
suggested in MAPLR [1][5], the )1( +× dd  regression matrix 

of cluster c  can be modeled by an elliptically symmetric 
distribution (or matrix variate normal distribution) [7][8] 
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where )()( iW n
c  and )()1( iM n

c
−  are respectively the ith rows of 

regression matrix )(n
cW  and hyperparameter )1( −n

cM  and the 

matrix ),,( )1()1(
1
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cd

n
c

n
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 is a )1()1( +×+ dddd  

block diagonal matrix with each diagonal block element )1( −Σ n
ci  

being )1()1( +×+ dd  matrix. This distribution has location 

parameter )}({ )1()1( iMM n
c

n
c

−− =  (mean vector) and scale matrix 

)1( −∆ n
c  (covariance matrix). Next, we will show the conjugate 

property on the use of matrix variate normal distribution. This 
property is crucial to develop QBLR algorithm for online 
speaker adaptation. 
 

3. QUASI-BAYES LINEAR REGRESSION 
 

To obtain QB estimate in (4), we apply EM algorithm [6] to 
overcome the missing data problem in HMM related formulation. 
Namely, the first step (E-step) is to calculate the expectation 
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where )(nW is current estimate, )(ˆ nW  is new estimate and 

),( nn ls  denote state and mixture component sequences. In the 

second step (M-step), we find the new estimate by 
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To solve (8)(9), we may expand the expectation of the cluster 
membership cΩ  in (8) by discarding the terms, which do not 

involve )(ˆ n
cW , i.e. 
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where )},{,Pr(),( )()()()( n
c

n
tn

n
t

n
tt Wkljskj xX ====γ . 

Assuming that HMM covariance matrices are diagonal, 

),,( 22
1 jkdjkjk diag σσ L=Σ , (10) can be further arranged by 
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t x=x  and 
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We obviously see that the exponential of expectation function 

)ˆ( )()( n
c

n
cQB WWR  is proportional to a matrix variate normal 

distribution with updated hyperparameters 
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Therefore, a reproducible prior/posterior density pair is 
generated. With the property of conjugate density, the 
maximization (M-step) can be easily performed to obtain QB 
estimate 
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At the same time, we also construct the mechanism for 
hyperparameter evolution 
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The updated hyperparameters )(nϕ subsequently serve as new 

hyperparameters for linear regression adaptation using upcoming 
data 1+nX .  

 
4. SPECIAL REALIZATIONS TO  

MLLR AND MAPLR 
 

MLLR and MAPLR are both batch adaptation methods, which 
the regression matrices }{ cWW =  are estimated via EM 

algorithm by applying batch adaptation data }{ txX = . In 

MLLR, the ML estimate is involved and the resulting 
expectation function of cluster c is 
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By maximizing (17) with respect to cŴ , we can obtain ML 

estimate )}({ˆ
, iWWW cccML ==  with )(iWc  shown in (12). This 

formula is exactly equal to that in MLLR. The notations )(iG  
and iz  in MLLR [10] are herein expressed by 
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On the other hand, MAPLR was trying to find MAP estimate of 
linear regression model by combining the subjective prior 

}}{)},({{},{ ciccc iMM Σ=∆=ϕ , which could be empirically 

estimated from training data [1][3][5]. Correspondingly, the 

expectation function )ˆ( ccMAP WWR  has the same form as (11). 

By maximizing )ˆ( ccMAP WWR  with respect to cŴ , the ith row of 

MAP linear regression matrix is found to be 
 












Σ+= −

Ω∈
∑ ∑ 1

,
2, )(

),(
)(ˆ

cic
t kj

T
jkti

jki

t
cMAP iMx

kj
iW

c

ξ
σ

γ
 

1

,

1
2

),(
−

Ω∈

−












Σ+× ∑ ∑

t kj
ci

T
jkjk

jki

t

c

kj ξξ
σ

γ ,               (20) 

 

which is equivalent to that derived in [5]. 
 

However, the proposed QBLR is a sequential adaptation 
algorithm with special realizations of MLLR and MAPLR. We 
demonstrate that the matrix variate normal distribution belongs 
to the conjugate prior distribution family. The regression 
matrices can be optimally estimated at each sequential epoch 
according to the QB principle. Simultaneously, an attractive 
scheme for hyperparameter evolution is developed. 
 

5. EXPERIMENTS 
 

5.1 Speech Databases and Baseline System 
 

We conduct a series of connected Chinese digit recognition 
experiments to examine the goodness of QBLR. Two severely 
mismatched speech databases were collected [4]. One is the 
training database consisted of 1000 utterances by 50 males and 
50 females. This database was recorded in office environments 
via four close-talking microphones. We applied this database to 
train SI HMM’s. The second database contained the utterances 
of five males and five females recorded in two median-class cars: 
TOYOTA COROLLA 1.8 and YULON SENTRA 1.6. These 
utterances were collected using a high-quality MD Walkman of 
type MZ-R55 via a hands-free far talking SONY ECM-717 
microphone different from those in training database. Three 
materials of standby condition, downtown condition and freeway 
condition with averaged car speeds respectively being 0 km/h, 
50 km/h and 90 km/h were recorded. During recording, we kept 
the engine on, the air-conditioner on, the music off and the 
windows rolled up. The numbers of testing utterances were 50, 
150, 250 and corresponding digits were 324, 964, 1593 for 
driving conditions of standby, downtown and freeway, 
respectively. The word error rate (WER) was averaged over ten 
test speakers. Each speaker had additional five adaptation 
utterances. All training/testing utterances contained three to 
eleven random digits. Each Chinese digit was modeled using a 
seven-state CDHMM. Each HMM state was composed of four 
mixture components. The feature vector was consisted of 12-
order LPC-derived cepstral coefficients, 12-order delta cepstral 
coefficients, one delta log energy and one delta delta log energy. 
Our baseline system reports the word error rates of 25.6%, 55% 
and 62.3% for driving conditions of standby, downtown and 
freeway, respectively. Only one transformation cluster was 
adopted. 
 
5.2 Estimation of Initial Hyperparameters 
 

To have a good beginning in online speaker adaptation, the 
initial hyperparameters play an important role. Herein, the initial 
hyperparameters )0(ϕ  were empirically estimated from SI 

training data [1]. Let Qχχ ,,1 L  denote the training data sets of 

Q speakers. We first apply these data to calculate the regression 
matrices }

~
{,},

~
{ 1 cQc WW L

 corresponding to individual training 

speakers using the SI HMM’s. Then, the initial hyperparameters 
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5.3 Comparison of MLLR, MAPLR and QBLR 
 

Two sets of experiments are carried out for evaluation. First, we 
evaluate the convergence property of online adaptation using 
QBLR. For each test speaker, we sequentially use five labeled 
adaptation sentences to perform supervised QBLR adaptation. 
The adapted HMM parameters are fixed for recognition of 
his/her test data. As shown in Figure 1, the WER’s versus 
various driving conditions and adaptation data amounts (N) are 
reported. The baseline system with N=0 is included. We can see 
that WER’s are consistently decreased for various driving 
conditions when more adaptation data are applied. This indicates 
the goodness of hyperparameter evolution and QB estimation in 
QBLR. In case of N=5, WER’s have been significantly reduced 
to 15.3%, 35.7% and 38.3% for standby, downtown and freeway 
driving conditions. 
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Figure 1: Comparison of WER’s (%) using QBLR for various 
driving conditions and adaptation data amounts. 

 
On the other hand, we also compare the results of baseline 
system, MLLR, MAPLR and QBLR. Cases of N=1 and N=5 are 
investigated. As listed in Table 1, the results of MAPLR are 
better than those of MLLR for case of N=1 and similar to those 
of MLLR for case of N=5. This phenomenon is observed for 
various driving conditions. It is because that incorporation of 
prior statistics is beneficial to parameter estimation when 
adaptation data is sparse (N=1). But, when more adaptation data 
(N=5) are involved, the prior information is de-emphasized in 
estimation of regression matrices. Nevertheless, QBLR still 
achieves the best results among these methods. Although the 
improvement is mild, the superiority of QBLR is owing to the 
adaptation efficiency. Using QBLR with N=5, only one 
adaptation sentence is needed in each sequential epoch. 
Efficiency is better than MLLR and MAPLR where all 
adaptation data are employed in single one epoch. 
 
 
 

 Baseline 
System 

MLLR, 
N=1 

MAPLR, 
N=1 

MLLR, 
N=5 

MAPLR, 
N=5 

QBLR, 
N=5 

Standby 25.6 17.1 16.8 16.1 16.7 15.3 
Downtown 55 39.8 38.7 36.9 36.7 35.7 

Freeway 62.3 43.4 42.4 40 40.3 38.3 
 

Table 1: Comparison of WER’s (%) of baseline, MLLR, 
MAPLR and QBLR. 

 
 
 
 
 

6. CONCLUSION 
 

This paper has presented a novel QBLR algorithm for online 
speaker adaptation of HMM parameters. Different from MLLR 
and MAPLR designed for batch adaptation, QBLR was a 
sequential adaptation approach to achieve high adaptation 
efficiency in terms of computation cost and memory requirement. 
We compared the theoretical models of MLLR, MAPLR and 
QBLR. In QBLR, the parameter of linear regression model was 
estimated by maximizing the approximated posterior density of 
accumulated adaptation data, which was equal to the product of 
a likelihood of current data and a prior density of regression 
parameter. Due to QBLR, we knew the underlying theory of 
sequential adaptation and the mechanisms of how to evolve 
statistics of linear regression model and employ the statistics to 
estimate the optimal regression parameter. We carefully selected 
the prior density of regression matrix to be a matrix variate 
normal distribution and proved this density belonging to 
conjugate prior distribution family. Accordingly, we obtained a 
concise and closed form QB estimate of regression matrix. More 
importantly, a reproducible prior/posterior density pair was 
produced to build a meaning mechanism for evolution of 
regression statistics. In this study, we showed the generalization 
essence of the derived QBLR formulas with relations to formulas 
of MLLR and MAPLR. In the experiments of car speech 
recognition, the convergence property of QBLR is confirmed. 
Also, the superiority of QBLR over MLLR and MAPLR is 
demonstrated. 
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