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ABSTRACT 

 
A new divide-and-conquer method for estimating 

the frequency of a single complex sinusoid in additive 
uncorrelated noise is proposed.  Its computational 
complexity is comparable to previous fast methods 
(roughly 2N complex multiplies and log2(N) arctangents 
for N a power of 2).  However, it nearly achieves the 
Cramer-Rao bound for a wider range of input frequency 
and signal-to-noise-ratio (SNR) values.  Simulations are 
presented to demonstrate its performance. 
 
 

1.  INTRODUCTION  

 
 A common problem in communications is the 
estimation of the frequency of a single complex sinusoid 
in additive noise.  Since the wireless environment is often 
characterized by poor SNR, it is of interest to find 
methods of frequency estimation that work well in low 
SNR environments. 
 Previous work in this area includes that of  [1], 
[2] and their references.  All of the methods treated in [1] 
fail below different SNR thresholds.  Hence it would be 
useful to increase the SNR before applying these methods. 
 This is the approach taken in [2].  However, 
the price for decreasing the SNR threshold is that the 
range of frequency over which the estimator is valid is 
reduced. 
 In this paper, first a method is described for 
preprocessing a sample of sinusoid+noise data to increase 
its SNR.  This preprocessed data can then be used as input 
to any one of a number of frequency estimation methods.  
The accuracy of the resulting frequency estimates will be 
improved due to better SNR at their input.  Also, there is 
no reduction in the valid frequency range of the estimate. 
 Then, extending the basic SNR improvement 
idea, a recursive method using approximately N2  
complex multiplies, N2log5  real multiplies, N2log  

inverse square roots and N2log  arctangent operations is  

 
 

presented for MN 2= .  This technique nearly achieves 
the Cramer-Rao bound on estimation error variance over a 
wider range of SNR than previous algorithms of similar 
complexity; in fact, its performance is comparable to the 
much more computationally intensive maximum 
likelihood estimator (MLE).  The reduction in 
computation relative to the MLE is especially dramatic for 
large N.  The technique can also be used to lesser 

advantage for LN J *2= . 
 

2.  SNR IMPROVEMENT 
  
 Assume the following model for the data: 
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(we only consider even values of N here).  The noise 
sequence nυ  is assumed to be complex, zero-mean and 

uncorrelated with variance 2
υσ .  The SNR is then given 

by 22 / υσA . 

To increase the SNR prior to frequency 
estimation, consider 
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Since the samples of { }nυ  are uncorrelated, the variances 

of nυ  and *
1 nN

je −−υθ  will add and nε  will have 3dB 

more power than nυ .  However, if =θ  

[ ] πφω 2mod2)1( +−N , the sinusoid and its conjugate time-

reverse add coherently, increasing the sinusoidal power 
by 6dB.  This would increase the SNR by 3dB without 
knowledge of ω . 
 Note that θ  can be estimated by maximizing the 
power of { }nz , namely 
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 with respect to θ .  The solution to this is given by 
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(the arg function used here gives values in { }ππ ,− ).   

Using this value in (2) yields { }nz  with SNR 

roughly 3dB better than { }nx .  Note that for (2) it is 

sufficient to compute θcos  and θsin , i.e. 
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where A  and B  are the real and imaginary parts of  the 
dot product in (6).   

The sequence { }nz  can then be used as input in 

any of a number of methods for determining the 
frequency.  In particular, consider the two types of 
estimators described by Kay in [1].  The ones considered 
are variants of the “phase average” (PA) estimator 
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and the “linear predictive” (LP) estimator 
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which use different choices of  the symmetric weight 
sequence { }2,0, −= Nnwn , with nNn ww −−= 2 . 

 Equation (2) introduces a symmetry into { }nz  

that can be used to simplify these computations.  It can be 
easily shown that 
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Hence if the preprocessing is done before application of 
(8) or (9), they become 
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respectively. 
 

3.  RECURSIVE SNR ENHANCEMENT 
 
 In addition to increasing the SNR by 3dB, 
application of (2) produces the redundancy in { }nz  given 

by (10).  Thus, the number of independent points is half 
as large as in (1).  Also, the functional form of 
{ }12/,0, −= Nnzn  is identical to that of (1) and the 

underlying sinusoid has the same frequency as { }nx .  This 

is true even if the estimate of θ  is not perfect, since an 

error in θ  will affect only the initial phase and amplitude 
of the resulting sinusoid, not its frequency. 

This suggests applying the algorithm again to 
{ }12/,0, −= Nnzn  in a divide-and-conquer fashion to get 

{ }14/,0,' −= Nnzn , then again to get { }18/,0,'' −= Nnzn , 

etc., until mN 2/  is odd.  Ideally, each iteration increases 
the SNR of the remaining points by 3dB (this doesn’t 
happen at every iteration in practice due to errors in the θ  
estimates).  The original-length sinusoid can then be 
reconstructed with improved SNR using (10) iteratively, 
after which one of the algorithms of [1] or [2] can be 
applied to the reconstructed { }1,0, −= Nnxn  to 

determine the sinusoid frequency. 
To maximize the SNR improvement of this 

method, let N  be a power of 2, MN 2= .  Define 

1,...,0,)0( −=≡ Nnxz nn , and perform (14) and (15) for 

0=k  to 1−M : 
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Note that there is only one point in the M th 

sequence, )(
0
Mz .  We can now reconstruct the original 

sinusoid with reduced noise by using (10), i.e. 
)(
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and performing the following two steps for k decreasing 
from M  to 1: 
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The final sequence { }1,0,)0( −= Nnxn  is a 

version of the original sinusoid with reduced noise.  The 
algorithms from [1] and [2] can then be applied to this 
sequence as above.   

Note that all information defining the reduced-

noise sequence { })0(
nx  is contained in the combination of 

)(
0
Mz , )arg( )(

0
Mz  and { }1)(log,0, 2 −= Nkkθ , that is, in 

only 2)(log2 +N  real numbers. 

 
4.  APPLICATION TO KAY’S ESTIMATOR  

 
 The PA estimators of the form (8) treated in [1] 
require only the principal values of the phase differences 
between adjacent samples to compute their results.  It 
turns out that, using (16)-(18) these phase differences for 

{ }1,0,)0( −= Nnxn  can easily be constructed directly from 
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(18), as follows. 

 Let )arg( )(
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Mz=ϕ .  Then 
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where the principal value function )(⋅princ  maps its input 

(assumed to be a phase) to the interval { }ππ ,− .  Let 

{ }22/,0),( −=Φ k
k Nnn  be the phase difference 

sequence for { })(k
nx .  That is, (19) defines the one-point 

sequence { })0(1−Φ M . Then (11), (17) and (18) yield the 

step-down recursion: 
          { } { }kkkkk princ Φ+−Φ=Φ −− |)22(| 11 ϕθθ , 

  1,...,2,1 −−= MMk   (20) 
where “|” denotes sequence concatenation. 

Figure 1 shows an illustrative example of the 
reconstructed phase difference 0Φ  for this algorithm for 

a realization of the case N=128, f=0.125Hz, SNR=10dB.  
For comparison, the phase difference for a noiseless 
version of this signal would be a constant value of π/4 = 
0.7854 rad. 

Using (20), the Kay estimator becomes 
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However, since there are only M  distinct phase 
difference values in 0Φ , this can be simplified.  If  
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it can be shown that the optimal { }nw  from [1] gives 
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(proof omitted due to lack of space).  Hence (21) can be 
computed with only N2log  real multiplies.  

The complexity of this complete recursive 
frequency estimation algorithm consists of 
a) )1(2 −N  complex multiplies to compute (14) and (15)  

(since 2/N + 4/N +…+1 = 1−N ), 
b) N2log  inverse square roots for (7), 

c) N2log5  real multiplies for (7) and (21) and 

d) 1log2 +N  arctan’s for (14) and computation of ϕ . 

By comparison, the PA method of [2] requires 
roughly KN −  complex multiplies, KN −  real 
multiplies and KN −  arctan’s, where K << N  is a 
parameter.  The PA method of [1] usesK =1. 

It is possible to use other properties of the 
complex sinusoid to derive other versions of this recursive 

single frequency estimator, e.g. decimation-in-frequency 
and decimation-in-time versions with and without the 
conjugate time reversal in (2).  Space limitations do not 
permit discussion of these here.  They will be presented 
elsewhere.  However, their performance is similar to the 
algorithm presented here. 

 Note that for LN J *2= , it is possible to apply 
J  stages of SNR enhancement to the data.  The resulting 
L -length sequence may have SNR as much as J3 dB 
better than the original.  This sequence can be expanded 
back to its original length using (10) as above.  Finally, 
the algorithms of [1] or [2] may be applied to the result, 
giving an improved frequency estimate. 
 

5.  COMPUTER SIMULATIONS  
 
 MATLAB simulations show that this method 
very nearly achieves the Cramer-Rao bound for SNR 
levels comparable to the classical MLE estimator (i.e. the 
DFT peak location).  This is much better than existing 
algorithms of this complexity and useful frequency range.   

How much better depends on N and the 
frequency ω .  Figure 2 shows 10log10(1/error variance) 
vs. SNR, for N=32 and πω 2/=f = 0.05Hz.  The SNR 

threshold is reduced from 9dB for the PA algorithm [1] to 
1dB for the new recursive PA (RPA) algorithm.  Also, 
note that in this case the variances of both the RPA and 
recursive LP (RLP) estimators are lower than the MLE 
for SNR < 7dB.   

 For N=128 and f = 0.2Hz, the SNR threshold is 

reduced from 11dB for the PA algorithm to -3dB for the 
RPA algorithm, as shown in figure 3.   

In principle, all the methods in [1], the RPA and 
RLP are valid for the range { }ππω ,−= .  However, those 

discussed in [2] are limited to a maximum total range of 
π  radians or less.  In fact, both the PA and RPA methods 
work best in the range { }2/,2/ ππ− ; performance 

degrades outside this range.  This is illustrated by the 
results for N=32 and f = 0.45Hz shown in figure 4.   

Interestingly, neither the RLP algorithm nor the 
LP of [1] is much affected by the frequency, though the 
RLP algorithm performs better than the LP algorithm over 
frequency and SNR. 

It is relatively easy to modify the RPA algorithm 
to work reliably over the entire frequency range { }ππ ,− .  

Description of this modification is omitted due to space 
limitations and will be presented elsewhere. 

 
6.  CONCLUSIONS 

 
A divide-and-conquer method for the estimation 

of the frequency of a single sinusoid in additive noise has 
been proposed.  In full precision, it has performance 

 



 

 
Fig. 1.  Typical reconstructed phase difference sequence 
derived from (20); f=0.125Hz, N=128, SNR = 10dB; for a 
noiseless sinusoid, this would be a constant value of 

4/π  = 0.7854 

 
Fig. 2.  Comparison of Kay algorithms with results for the 
same algorithms applied to recursively enhanced data for 
N=32, f=0.05Hz, 25000 realizations 
 
comparable to the MLE over a comparable range of SNR 
without restricting the range of ω  for which the estimate  
is useful.  Its computational complexity is lower than the 
fastest methods of [1] and [2] (considering that the arctan 
operation on practical DSPs has a higher cycle count than 
a complex multiply).  In spite of this, the SNR threshold 
of the new algorithm is lower than the fast methods of [1] 
and [2] that are valid over a comparable frequency range.  

The recursive nature of the new algorithm raises 
the question of how well it performs in fixed-point 
arithmetic.  Certainly errors at early stages will propagate, 
so care must be taken to maintain maximum precision at 
each iteration.  However, this should be manageable.  
Also, note that we are using the { }kθ  and ϕ  directly in 

(22)-(25) and are not adding error by computing (18).  
Hence the numerical properties of the complete algorithm  

 
Fig. 3.  Same as figure 2 for N=128, f=0.20Hz, 50000 
realizations 
 

 

 
Fig. 4.  Same as figure 2 for N=32, f=0.45Hz, 25000 
realizations 
 
 
are expected to be better than the SNR enhancement 
algorithm described in (14)-(18), in addition to requiring 
less computation, at least for estimators of the form of (8). 
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