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ABSTRACT

A newdivide-andconquemethodfor estimating
the frequencyof a single complex sinusoidin additive
uncorrelated noise is proposed. Its computational
complexity is comparableto previous fast methods
(roughly 2N complexmultiplies and log2(N) arctangents
for N a power of 2). However, it nearly achievesthe
CramerRao boundfor a wider rangeof input frequency
and signalto-noiseratio (SNR) values. Simulationsare
presented to demonstrate its performance.

1. INTRODUCTION

A commonproblemin communicationss the
estimationof the frequencyof a single complexsinusoid
in additive noise. Sincethe wirelesservironmentis often
characterizedby poor SNR, it is of interestto find
methodsof frequencyestimationthat work well in low
SNR environments.

Previouswork in this areaincludesthatof [1],
[2] andtheir references.All of the methodstreatedin [1]
fail below different SNR thresholds. Henceit would be

useful to increase the SNR before applying these methods.

This is the approachtakenin [2]. However,
the price for decreasingthe SNR thresholdis that the
range of frequencyover which the estimaor is valid is
reduced.

In this paper,first a methodis describedfor
preprocessing sampleof sinusoid+noisalatato increase
its SNR. This preprocessedatacanthenbe usedasinput
to any one of a numberof frequencyestimationmethods.
The accuray of the resultingfrequencyestimateswill be
improveddueto betterSNR at their input. Also, thereis

no reduction in the valid frequency range of the estimate.

Then, extendingthe basic SNR improvement
idea, a recursive method using approximately 2N
complex multiplies, 5log, N real multiplies, log, N

inverse square roots anadg, N arctangent operations is

presentedfor N =2M . This techniquenearly achieves
the CramerRaoboundon estimationerror varianceovera
wider rangeof SNR than previousalgorithmsof similar
complexity; in fact, its performancds comparableto the
much more computationally intensive maximum
likelihood estimator (MLE). The reduction in
computatiorrelativeto the MLE is especiallydramaticfor
large N. The technique can also be used to lesser

advantage foN =27 * L.

2. SNR IMPROVEMENT

Assume the following model for the data:

X, = Ae/e™® 1y - n=0,.,N-1 1)
(we only considereven valuesof N here). The noise
sequencev, is assumedo be complex,zereomeanand

uncorrelatedwith variancea?. The SNR s thengiven

by A?/c?.
To increase the SNR prior to frequency
estimation, consider

z, =%, +exy ., n=0..,N-1 (2

Hence
7, = A(ej (@1+9) 4 o (@N-0(N-1)-¢+0) )+5n 3)
where g,=u, +e®uy ., (4)

Sincethe samplesof {u,} areuncorrelagd, the variances

of v, and e’®vy_,_, will addand &, will have3dB
more power than uv,. However, if 6=
[m(N -+ 2(p]mod2n , the sinusoidandits conjugae time-

reverseadd coherently,increasingthe sinusoidalpower
by 6dB. This would increasethe SNR by 3dB without
knowledge ofw .
Notethat 8 canbe estimatecby maximizingthe
power of{zn}, namely
N-: N/2-1

1 N-1
S1z P =25 1%, P +4Re S e Pxxyyn  (5)
n=0 n=0 n=0

with respect t@ . The solution to this is given by



[N/2-1 C
6= argn Z XnXN-1-n C (6)
[In=0 U

(the arg function used here gives value{—im[,n}).

Using this value in (2) yields {z,} with SNR
roughly 3dB better than {xn}. Note that for (2) it is
sufficient to computeco andsing , i.e.

A : B
coHd =—————— and sin@ = ——— 7
VA% +B? VA? + B2 "
where A and B arethe realandimaginarypartsof the
dot product in (6).
The sequence{zn} canthenbe usedasinputin

any of a number of methods for determining the
frequency. In particula, consider the two types of
estimatorsgdescribedby Kay in [1]. The onesconsidered
are variants of the “phase average” (PA) estimator

N-2
w= Z Wy arg(xn+lxn) (8)
n=0
and the “linear predictive” (LP) estimator
N-2
W= arg(z Wh xn+an) (9)
n=0

which use different choicesof the symmetric weight
sequencew,,n =0,N -2}, with w, =wy_,_, .
Equation (2) introducesa symmetryinto {zn}

thatcanbe usedto simplify thesecomputations.lt canbe
easily shown that
Zyan =7, (10)
It follows that
ZnanZNoen = ZonZn, N=0...,N-2 (11)

Henceif the preprocessings donebefore applicationof
(8) or (9), they become
N/2-2

W=2 ) Wy arg@ni2y) + Wy o4 a9 22n/21)
=0
and (12)
N/2-2 . .
W=aArgR » WnZnaZy +WyjoaZnj22ni21)  (13)
=0
respectively.

3. RECURSIVE SNR ENHANCEMENT

In addition to increasing the SNR by 3dB,
applicationof (2) produceghe redundancyin {z,} given
by (10). Thus,the numberof independenpointsis half
as large as in (1). Also, the functional form of
{zn,n:O,N/Z—l} is identical to that of (1) and the
underlyingsinusoidhasthe samefrequencyas {x,}. This
is true evenif the estimateof 6 is not perfect,sincean

errorin O will affectonly theinitial phaseandamplitude
of the resulting sinusoid, not its frequency.

This suggestsapplying the algorithm again to
{zn ,N=0,N/ 2—1} in adivide-and-conquerfashionto get

{zg,n =0, N/4—1}, thenagainto get {z;,n =0, N/8—1},

etc.,until N/2™ is odd. Ideally, eachiterationincreases
the SNR of the remaining points by 3dB (this doesn’t
happerat everyiterationin practicedueto errorsin the 6
estimates) The originatlength sinusoid can then be
reconstructedvith improved SNR using (10) iteratively,
after which one of the algorithmsof [1] or [2] can be
applied to the reconstructed {x,,n=0,N-1} to
determine the sinusoid frequency.

To maximize the SNR improvement of this

method, let N be a power of 2, N=2". Define
z9 =x,,n=0,...,N -1, and perform (14) and (15) for
k=0toM-1:

N kg C
8 =argd Y z,ﬁk)zf\lkz N (14)
=0 E
200 = 700 4 elf Zf\lk;;k—l—n '
n=0,.,N/2"1 -1 (15)
Note that thereis only one point in the M th

sequence,z). We can now reconstructthe original

sinusoidwith reduced noise by using (10), i.e.
x(()M) = zéM) (16)
and performingthe following two stepsfor k decreasing

from M to 1:

XD =y n=0..N/2"-1 (17

(kD =el®x®" - n=0..,N/2-1 (18)

N/2%t-1-n
The final sequence {xrﬂo),n=O,N—1} is a
versionof the original sinusoidwith reducednoise. The
algorithmsfrom [1] and [2] can then be appliedto this

sequence as above.
Note that all information defining the reduced

noisesequence{xﬁo)} is containedin the combinationof
|z(()'v')|, argz{™)) and {9k k=0, IogZ(N)—l}, thatis, in

only log,(N) + 2 real numbers.

4. APPLICATION TO KAY'S ESTIMATOR

The PA estimatorsof the form (8) treatedin [1]
requireonly the principal valuesof the phasedifferences
betweenadjacentsamplesto computetheir results. It
turns out that, using (16)-(18) thesephasedifferencesfor

{xrﬂo) ,n=0,N —1} caneasilybe constructeddirectly from



arg(zé'v')) and {ak} without the complex multiplies of
(18), as follows.
Let ¢ =argz)). Then

argxM P xM % = princ@ y_, - 20) (19)
wherethe principal valuefunction princ())] mapsits input
(assumedto be a phase)to the interval {—n,n}. Let
{qbk(n),n=0,N/2k —2} be the phase difference
sequencdor {x,(]k)}. Thatis, (19) definesthe onepoint
sequence{®,,_,(0)}. Then(11), (17) and (18) yield the
stepdown resursion:

{‘Dk—l} = {‘Dk | princ®y; =26, +29)| cbk}'

k=M-1M-2,...1 (20)

where “|” denotes sequence concatenation.

Figure 1 shows an illustrative example of the
reconstructeghasedifference ®, for this algorithm for
a realizationof the caseN=128, f=0.125Hz,SNR=10dB.
For comparison,the phase difference for a noiseless
versionof this signalwould be a constantvalue of W4 =

0.7854 rad.
Using (20), the Kay estimator becomes
N/2-2
W=2 % W,®Po(n) + Wy o1 Po(N/2-1) (21)
n=0
However, since there are only M distinct phase
difference values inb, this can be simplified. If

Y, =princ@, -P,,+20), k=0,..M-2 (22)

and Wp-q = princ®y -4 —29), (23)
it can be shown that the tipal {Wn} from [1] gives
M -1
w= "y o (24)
k=0
N 22k+l +1
where Ck = mw (25)

(proof omitted dueto lack of space). Hence(21) canbe
computed with onllog, N real multiplies.

The complexity of this complete recursive
frequency estimation algorithm consists of
a) 2(N -1) complexmultipliesto compute(14) and(15)
(sinceN/2+N/4+...+1 = N-1),
b) log, N inverse square roots for (7),
c) 5log, N real multiplies for (7) and (21) and
d) log, N +1 arctan’s for (14) and computation §f.

By comparisonthe PA methodof [2] requires
roughly N-K complex multiplies, N-K real
multiplies and N -K arctan’s, where K<<N is a

parameter. The PA method of [1] uses 1.
It is possible to use other propertiesof the

single frequencyestimator,e.g. decimatiorin-frequency
and decimationin-time versions with and without the
conjugatetime reversalin (2). Spae limitations do not
permit discussionof thesehere. They will be presented
elsewhere. However,their performances similar to the
algorithm presented here.

Note thatfor N =27 * L | it is possibleto apply
J stagesf SNR enhancemertb the data. Theresulting
L -length sequencemay have SNR as much as 3J dB
betterthanthe original. This sequencean be expanded
backto its original length using (10) as above. Finally,
the algorithmsof [1] or [2] may be appliedto the result,
giving an improved frequency estimate.

5. COMPUTER SIMULATIONS

MATLAB simulations show that this method
very nearly achievesthe CramerRao bound for SNR
levelscomparabldo the classicalMLE egimator (i.e. the
DFT peaklocation). This is much better than existing
algorithms of this complexity and useful frequency range.

How much better dependson N and the
frequencyw . Figure 2 shows10log(1/error variance)
vs. SNR, for N=32 and f =w/2m= 0.05Hz. The SNR

thresholdis reducedrom 9dB for the PA algorithm[1] to
1dB for the new recursivePA (RPA) algorithm. Also,
note that in this casethe variancesof both the RPA and
recursiveLP (RLP) estimatorsare lower than the MLE
for SNR < 7dB.

ForN=128and f = 0.2Hz, the SNR threshold is
reducedfrom 11dB for the PA algorithmto -3dB for the
RPA algorithm, as shown in figure 3.

In principle, all the methodsin [1], the RPA and
RLP arevalid for therangew = {—n,n}. However those
discussedn [2] arelimited to a maximumtotal rangeof
T radiansor less. In fact, boththe PA andRPA methods
work best in the range {—Tt/2,n/2}; performane

degradesoutside this range. This is illustrated by the
results for N=32 andf = 0.45Hz shown in figure 4.

Interestingly,neitherthe RLP algorithm nor the
LP of [1] is much affectedby the frequency,thoughthe
RLP algorithmperformsbetterthanthe LP algorithmover
frequency and SNR.

It is relatively easyto modify the RPA algorithm
to work reliably over the entire frequencyrange{—n,n}.
Descriptionof this modification is omitted due to space
limitations andwill be presented elsewhere.

6. CONCLUSIONS

A divide-andconquermethodfor the estimation
of the frequencyof a singlesinusoidin additive noisehas

complex sinusoid to derive other versions of this recursive °€€n proposed. In full precision, it has performance
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Fig. 1. Typical reconstructegphasedifference sequence
derivedfrom (20); f=0.125Hz,N=128,SNR = 10dB; for a

noiselesssinusoid, this would be a constantvalue of
T1/4 =0.7854
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Fig. 2. Comparisorof Kay algorithmswith resultsfor the
samealgorithmsappliedto recursivelyenhanceddatafor

N=32, f=0.05Hz, 25000 realizations

comparabldo the MLE overa comparableangeof SNR
without restrictingthe rangeof w for which the estimate
is useful. Its computationaktomplexityis lower thanthe
fastestmethodsof [1] and[2] (consideringthatthe arctan
operationon practicalDSPshasa highercycle countthan
a complexmultiply). In spite of this, the SNR threshold
of the newalgorithmis lower thanthe fastmethodsof [1]
and [2] that are valid over @mparable frequency range.
The recursivenatureof the new algorithmraises
the question of how well it performs in fixed-point
arithmetic. Certainlyerrorsat early stageswill propagate,
so caremustbe takento maintainmaximumprecisionat
each iterdion. However, this should be manageable.
Also, note that we are usingthe {ek} and ¢ directly in

(22)(25) and are not adding error by computing (18).

Hence the numerical properties of the complete algorithm
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Fig. 3. Sameas figure 2 for N=128, f=0.20Hz, 50000
realizations
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are expectedto be better than the SNR enhancement
algorithm describedn (14)-(18), in additionto requiring
less comptation, at least for estimators of the form of (8).

7. REFERENCES

[1] S. Kay, “A fast and accurate single frequency
estimator,” IEEE Trans. on Acoust., Speech, Sgnal
Processing, pp. 19871990, Dec. 1989.

[2] D. Kim, M. J. Narasimhaand D. C. Cox, “An
improved single frequency estimator,” IEEE Sgnal
Processing Letters, pp. 212214, July 1996.



