
COMMON-ACOUSTIC-POLES/ZEROS APPROXIMATION

OF HEAD-RELATED TRANSFER FUNCTIONS

C. J. Liu and S. F. Hsieh

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan 300

email:cjliu.cm89g@nctu.edu.tw and sfhsieh@cc.nctu.edu.tw

ABSTRACT

Common-acoustic-poles/zeros (CAPZ) approximation is a

more efficient way to model head-related transfer functions

(HRTF’s). In CAPZ approximation, a group of HRTF’s can

share a set of poles but use their own zeros. Previous CAPZ

works, such as the Prony, Shanks and iterative prefiltering

methods, were all based on the linearized least-square cri-

terion. A new state-space approach, jointly balanced model

truncation, is proposed by using singular value decomposi-

tion of a joint Hankel matrix. The proposed approach can

choose the suitable order of IIR filters for HRTF’s approx-

imation according to the distribution of singular values but

previous works can’t. The proposed method is also modi-

fied to permit different orders for pole and zero. Computer

simulations of these approaches are included for compari-

son.

1. INTRODUCTION

Head-related transfer functions (HRTF’s), which convey sou-

nd transmission characteristics from different spatial loca-

tions to both ears, play an important role in 3-D sound pro-

cessing. In order to completely describe channels’ charac-

teristics around the head, many HRTF’s have to be measured

and stored, which makes real-time implementation difficult.

Approximation of FIR by IIR filters can reduce such an

enormous data set.

To further save processing time and the memory size, we

can model a group of HRTF’s using a set of common poles

but individual zeros, which is called common-acoustic-poles

and zeros (CAPZ) approximation. Compared to conven-

tional pole/zero models, CAPZ approximation is more ef-

ficient because it needs fewer poles in respect of a group

of HRTF’s. Three previous methods developed for CAPZ

modeling all use the least-square criterion to minimize ap-

proximation error [3][4].

Based on balanced model truncation (BMT)[1], a new

approach, jointly balanced model truncation (jointly BMT),

is proposed. Using singular value decomposition, the pro-

posed approach extracts the most significant singular vec-

tors to effectively model a group of HRTF’s. To further im-

prove jointly BMT, we use iterative prefiltering to determine

zero coefficients with a different order from that of pole.

2. COMMON-ACOUSTIC-POLES/ZEROS

APPROXIMATION

Each HRTF can be viewed as an long-duration FIR filter

which can be approximated by using an IIR filter. Given a

group of N HRTF’s denoted as F1(z), F2(z), ..., FN (z). In

CAPZ approximation, we try to model these HRTF’s by the

formulation

F̂i(z) =
Qi(z)

P (z)
=

bi0 + bi1z
−1+, ..., +biqz

−q

1 + a1z−1 + a2z−2+, ..., +apz−p

where {1, a1 , a2, ..., ap} is common-pole coefficients and

{bi0, bi1, .., biq} is individual-zero coefficients, which mea-

ns a group of approximated HRTF’s can share a set of poles

but possess their own zeros. To determine P (z) and Qi(z),
it is the most direct way to minimize group error

N∑

i=1

‖Ei(z)‖
2

where Ei(z) = Fi(z) − F̂i(z). It is very difficult to solve

these nonlinear equations, however. In the following, we

will discuss 3 linearized least-square approaches and the

state-space model.

2.1. Prony, Shanks and Iterative prefiltering methods

The Prony, Shanks and iterative prefiltering methods have

something to do with one another. We just mention their

connection here. The details for these three methods can be

found in [3][4]. As a compromise, the Prony method did



not directly minimize the group error but the group filtered

error

N∑

i=1

∥∥∥Êi(z)
∥∥∥

2

where Êi(z) = P (z)Ei(z). In the time domain, minimiz-

ing group filtered error is just a least-square problem and

common-pole and individual-zero coefficients can be de-

termined. The Shanks method determined P (z) using the

same way as the Prony method did. The difference is that

the Shanks method directly minimized group error to de-

termine Qi(z) because our initial goal, minimizing group

error, is no longer a nonlinear problem after P (z) is deter-

mined. It is obvious that the Shanks method for sure has

better performance than the Prony method does because the

Shanks method directly minimized group error while deter-

mining Qi(z). The Prony and Shanks methods are basically

based on the minimization of filtered error, so they have the

problem that direct error is not suppressed enough. The it-

erative prefiltering method, which can be seen as extension

of the Shanks method, iteratively minimized

E(i+1)(z) =
P (i+1)(z)F (z)−Q

(i+1)
i (z)

P (i)(z)

to reach an optimum solution. P (i+1)(z) and Q
(i+1)
i (z) can

be determined by minimizing E(i+1)(z) when P (i)(z) is

fixed. In a few iterations, the group error will converge.

The initial guess of denominator coefficients can be found

by the Prony method.

2.2. Jointly Balanced Model Truncation

We have to briefly outline BMT here, because jointly BMT

is derived from BMT. The details for BMT can be found in

[2]. We start with an FIR filter F (z) with order n written

as:

F (z) = f0 + f1z
−1 + · · · + fnz−n.

In the state-space model, F (z) can be expressed as a set of

difference equations:

x(r + 1) = Ax(r) + Bu(r)

y(r) = Cx(r) + Du(r)

where

A =




0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 , B =




1
0
...

0




C = [f1, f2, . . . , fn], D = f0.

The transfer function F (z) is related to the state-space mod-

el by the formulation F (z) = C(zI −A)−1B + D.

F (z) can be approximated by the pth order reduced bal-

anced system (A(p)B(p)C(p)D) using BMT. A low-order

IIR filter F (p)(z) is related to (A(p)B(p)C(p)D) by

F (p)(z) = C(p)(zI −A(p))−1B(p) + D (1)

where

A(p) = V T
p AVp, B

(p) = V T
p B, C(p) = CVp, D = f0 (2)

and p indicates the pole order which equals the zero order.

To determine Vp, we can define a Hankel matrix as follows:

H =




f1 f2 . . . fn

f2 f3 . . . 0
...

...
. . .

...

fn 0 · · · 0


 . (3)

Because H is a symmetric matrix, it can be factorized as:

H = V ΛV T . (4)

Vp is an n× p matrix obtained from the following partition:

V = [Vp Vn−p]. (5)

As we mentioned before, BMT can only be used to de-

cide the approximated IIR filter for individual HRTF’s. Bas-

ed on BMT, jointly BMT is proposed to approximate a group

of HRTF’s using common-poles IIR filters. Equation (1) in-

dicates that the poles of an approximated IIR filter depend

on A(p) which is determined by Vp from (2). From above,

we learn that a group of HRTF’s can be approximated by

using common poles and individual zeros if Hankel matri-

ces belonging to different HRTF’s share a set of truncated

eigenvectors Vp. In the following, we try to find V which

can be shared by a group of Hankel matrices because Vp is

given by (5).

In finding eigenvectors of H , we try to find x1 which

can satisfy:

max
||x1||=1

||H · x1||
2

where x1 is an eigenvector belonging to the largest eigen-

value of H . In turn, we can find x2, ...,xn which are or-

thogonal eigenvectors of H . When given a group of Hankel

matrices H1, H2, ..., HN , we also try to find an eigenvector

x1 which can satisfy:

max
||x1||=1

||H1·x1||
2, max

||x1||=1
||H2·x1||

2, ..., max
||x1||=1

||HN ·x1||
2.

This attempt is not likely to succeed unless H1, H2, ..., HN

have a common set of eigenvectors. As a compromise, we



try to find x1 which can satisfy:

max
||x1||=1

(
||H1 · x1||

2 + ||H2 · x1||
2 + ... + ||HN · x1||

2
)

= max
||x1||=1

∥∥∥∥∥∥∥∥∥




H1

H2

...

HN


 · x1

∥∥∥∥∥∥∥∥∥

2

which means x1 is the eigenvector belonging to the largest

eigenvalue of HTH where the joint Hankel matrix H is

written as:

H =




H1

H2

...

HN


 . (6)

In CAPZ modeling, there are a group of N HRTF’s de-

noted as F1(z), F2(z), . . . , FN (z). For each HRTF, we can

define a Hankel matrix Hi as (3). In order to find a set of

eigenvectors shared by all Hankel matrices, we can create

a joint Hankel matrix H by cascading H1, H2, . . . , HN as

(6). We assume H is an m× n matrix (m>n) which can be

factorized as follows:

H = UΛV T (7)

where V contains the eigenvectors of HTH. Finally, each

Fi(z) can be approximated by the pth order reduced system

(A(p)B(p)C
(p)
i Di) where

A(p) = V T
p AVp, B

(p) = V T
p B, C

(p)
i = CiVp, Di = fi0

(8)

i = 1, 2, . . . , N and Vp is given by (5). The choice of

order p depends on the distribution of Σ’s diagonal ele-

ments. The substantially smaller part of Σ’s diagonal el-

ements can be viewed as redundancy which has little ef-

fect on the system response. We can convert the pth order

reduced system (A(p)B(p)C
(p)
i Di) into the transfer func-

tion using F
(p)
i (z) = C

(p)
i (zI − A(p))−1B(p) + Di where

F
(p)
i (z) is the approximated IIR filter of Fi(z), i = 1, 2, . . . ,

N .

2.3. Modified Jointly Balanced Model truncation

For CAPZ approximation, the desired IIR filters derived

from jointly BMT must have the same orders in numerator

and denomerator (p = q). Three previous methods do not

have this kind of restriction. To make jointly BMT more

flexible (p 6= q), we try to determine zero coefficients of

jointly BMT using iterative prefiltering. That is, we use

jointly BMT to decide the common poles which are used as

the initial value for iterative prefiltering. Originally, the ini-

tial guess of denomerator coefficients for iterative prefilter-

ing was solved from the Prony method and within a few it-

erations iterative prefiltering would converge. The proposed

method, modified jointly balanced model truncation (mod-

ified JBMT), has comparable performance as iterative pre-

filtering does but it can converge in one iteration.

3. SIMULATION RESULTS

The HRTF’s data we use here are measured by MIT[5]. For

CAPZ modeling, we choose 14 HRTF’s measured for the

left ear as a group with the azimuth=0 degree and elevations

ranging from -40 degree to 90 degree by 10-degree increase.

Before simulation, these HRTF’s were prefiltered. Initial

time delays were removed and HRTF’s with longer data

length were cut from the tail to make them have same data

length. For performance comparison, we define a group er-

ror index as:

√√√√√
∥∥∥F1 − F

(p)
1

∥∥∥
2

+
∥∥∥F2 − F

(p)
2

∥∥∥
2

+ ... +
∥∥∥FN − F

(p)
N

∥∥∥
2

‖F1‖
2

+ ‖F2‖
2

+ ... + ‖FN‖
2

where Fi is the actual impulse response and F
(p)
i is the ap-

proximated HRTF.

Starting with Fig. 1, we plot the diagonal elements of Σ
versus order p of reduced systems. Fig. 1 reveals that the

more sharply the curve falls to zero, the more efficiently and

accurately we can model a group of HRTF’s. That is, when

singular values are negligible, singular vectors belonging to

them are not necessarily engaged in as (5). In Fig. 2, we

plot the group error index versus order p using the jointly

BMT method. The result shows that at the beginning, the

group error index drops sharply as p increases but it de-

creases more slowly when p is bigger than 15 , which fit

in with the result in Fig. 1. These two figures show us how

to decide the oder p of reduced systems. Previous works

can’t offer us this kind of help.

We compare conventional pole/zero modeling and CA-

PZ approximation in Table 1. We also compare the group

error index for four methods under the condition that the

pole number (=zero number) of desired IIR filters equals 12

. From Table 1, it is clear that conventional pole/zero mod-

eling can model a group of HRTF’s more efficiently but all

IIR filters have to use their own poles. CAPZ approximation

sacrifices some accuracy so that it can save computational

cost because all approximated HRTF’s in a group share a

set of poles. In terms of different approaches, iterative pre-

filtering is the best one and jointly BMT follows.

In Fig. 3, we compare CAPZ models derived from the

Prony, Shanks, iterative prefiltering and modified JBMT m-

ethods. For each approach, we plot a curve by changing



the zero number of desired IIR filters when the pole num-

ber equals 5. The result shows that the proposed method

is comparable with the iterative prefiltering method but out-

performs the Prony and Shanks methods.

4. CONCLUSION

In real-time applications, processing time is crucial. We

propose a new approach, jointly BMT, for CAPZ approx-

imation which can efficiently model a group of HRTF’s.

To further improve the proposed method, we extend jointly

BMT to modified JBMT such that we can use different oders

for pole and zero of desired IIR filters. Simulation results

show that the proposed methods have better performance

than the previous Prony and Shanks methods.
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Table 1. Comparison of group error indices for CAPZ

approximation and conventional models which use individ-

ual poles and individual zeros.

{Qi(z)
Pi(z) } {Qi(z)

P (z) }

Prony 0.2229 0.4063

Shanks 0.2052 0.3042

Iterative prefiltering 0.1243 0.2115

Jointly BMT 0.1616 0.2197
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Fig. 1. Singular values plot versus the order of desired IIR

filters
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Fig. 2. Group error indices plot versus the order of desired

IIR filters using jointly BMT
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Fig. 3. Group error indices comparison of four CAPZ mod-

els (pole number = 5).


