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ABSTRACT

Common-acoustic-poles/zeros (CAPZ) approximation is a
more efficient way to model head-related transfer functions
(HRTF’s). In CAPZ approximation, a group of HRTF’s can
share a set of poles but use their own zeros. Previous CAPZ
works, such as the Prony, Shanks and iterative prefiltering
methods, were all based on the linearized least-square cri-
terion. A new state-space approach, jointly balanced model
truncation, is proposed by using singular value decomposi-
tion of a joint Hankel matrix. The proposed approach can
choose the suitable order of IIR filters for HRTF’s approx-
imation according to the distribution of singular values but
previous works can’t. The proposed method is also modi-
fied to permit different orders for pole and zero. Computer
simulations of these approaches are included for compari-
son.

1. INTRODUCTION

Head-related transfer functions (HRTF’s), which convey sou-
nd transmission characteristics from different spatial loca-
tions to both ears, play an important role in 3-D sound pro-
cessing. In order to completely describe channels’ charac-
teristics around the head, many HRTF’s have to be measured
and stored, which makes real-time implementation difficult.
Approximation of FIR by IIR filters can reduce such an
enormous data set.

To further save processing time and the memory size, we
can model a group of HRTF’s using a set of common poles
but individual zeros, which is called common-acoustic-poles
and zeros (CAPZ) approximation. Compared to conven-
tional pole/zero models, CAPZ approximation is more ef-
ficient because it needs fewer poles in respect of a group
of HRTF’s. Three previous methods developed for CAPZ
modeling all use the least-square criterion to minimize ap-
proximation error [3][4].

Based on balanced model truncation (BMT)[1], a new
approach, jointly balanced model truncation (jointly BMT),

is proposed. Using singular value decomposition, the pro-
posed approach extracts the most significant singular vec-
tors to effectively model a group of HRTF’s. To further im-
prove jointly BMT, we use iterative prefiltering to determine
zero coefficients with a different order from that of pole.

2. COMMON-ACOUSTIC-POLES/ZEROS
APPROXIMATION

Each HRTF can be viewed as an long-duration FIR filter
which can be approximated by using an IIR filter. Given a
group of N HRTF’s denoted as F(z), Fz(2), ..., Fn(2). In
CAPZ approximation, we try to model these HRTF’s by the
formulation

- bi0+bi1271+,...,+biq2’7q
- P(2)  l+aizl+asz 24, ..., +a,z?

where {1, a1, a, ..., a, } is common-pole coefficients and
{bio, bi1, .., biq } is individual-zero coefficients, which mea-
ns a group of approximated HRTF’s can share a set of poles
but possess their own zeros. To determine P(z) and Q;(z),
it is the most direct way to minimize group error
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where E;(z) = Fi(z) — E(z) It is very difficult to solve
these nonlinear equations, however. In the following, we
will discuss 3 linearized least-square approaches and the
state-space model.

2.1. Prony, Shanks and Iterative prefiltering methods

The Prony, Shanks and iterative prefiltering methods have
something to do with one another. We just mention their
connection here. The details for these three methods can be
found in [3][4]. As a compromise, the Prony method did



not directly minimize the group error but the group filtered
error
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where E;(z) = P(z)E;(z). In the time domain, minimiz-
ing group filtered error is just a least-square problem and
common-pole and individual-zero coefficients can be de-
termined. The Shanks method determined P(z) using the
same way as the Prony method did. The difference is that
the Shanks method directly minimized group error to de-
termine @;(z) because our initial goal, minimizing group
error, is no longer a nonlinear problem after P(z) is deter-
mined. It is obvious that the Shanks method for sure has
better performance than the Prony method does because the
Shanks method directly minimized group error while deter-
mining @;(z). The Prony and Shanks methods are basically
based on the minimization of filtered error, so they have the
problem that direct error is not suppressed enough. The it-
erative prefiltering method, which can be seen as extension
of the Shanks method, iteratively minimized

PO (2)P(z) - @V (2)
P (2)

E(”'l)(z) =

to reach an optimum solution. P(+D (z) and Q'Y (2) can
be determined by minimizing EC*Y(z) when P (2) is
fixed. In a few iterations, the group error will converge.
The initial guess of denominator coefficients can be found
by the Prony method.

2.2. Jointly Balanced Model Truncation

We have to briefly outline BMT here, because jointly BMT
is derived from BMT. The details for BMT can be found in
[2]. We start with an FIR filter F'(z) with order n written
as:

F(z)=fo+ fiz "+ 4 fuz ™

In the state-space model, F'(z) can be expressed as a set of
difference equations:

where
0 0 00 1
10 00 0
A= . , B=
0 0 1 0 0
C=1f1,f2---,fn], D= fo.

The transfer function F'(z) is related to the state-space mod-
el by the formulation F(z) = C(2I — A)"'B + D.

F'(z) can be approximated by the pth order reduced bal-
anced system (A(®) B(®)C() D) using BMT. A low-order
IIR filter F () (z) is related to (A® B()C(?) D) by

F(”)(z) = C(p)(zI _ A(p))*lB(p) +D (D)
where
AP = VT AV, B®) =VIB CP) =CV,,D = f, (2)

and p indicates the pole order which equals the zero order.
To determine V},, we can define a Hankel matrix as follows:

fi fo oo fa
fa fs ... 0

B : G)
fo 0 - 0

Because H is a symmetric matrix, it can be factorized as:
H=VAVT, 4)
V) is an m X p matrix obtained from the following partition:

V=V, Va_l. 5)

As we mentioned before, BMT can only be used to de-
cide the approximated IIR filter for individual HRTF’s. Bas-
ed on BMT, jointly BMT is proposed to approximate a group
of HRTF’s using common-poles IIR filters. Equation (1) in-
dicates that the poles of an approximated IIR filter depend
on A®) which is determined by V,, from (2). From above,
we learn that a group of HRTF’s can be approximated by
using common poles and individual zeros if Hankel matri-
ces belonging to different HRTF’s share a set of truncated
eigenvectors V,,. In the following, we try to find V' which
can be shared by a group of Hankel matrices because V), is
given by (5).

In finding eigenvectors of H , we try to find x; which
can satisfy:

max ||H - x1]|?
l[xa]]=1
where x7 is an eigenvector belonging to the largest eigen-
value of H. In turn, we can find x5, ..., X,, which are or-
thogonal eigenvectors of /. When given a group of Hankel
matrices Hy, Ho, ..., Hy, we also try to find an eigenvector
x3 which can satisfy:

max ||H;-x1|[?, max ||Hyxq|%, ..., max ||[Hy-x1|%
I[xa]]=1 l[xa]]=1 x1||=1

This attempt is not likely to succeed unless Hy, Hs, ..., Hy
have a common set of eigenvectors. As a compromise, we



try to find x; which can satisfy:

a1 (I1H1 - xa|® + [[Hy - xa | + o+ |[Hy - xa][?)
x1||=
2

H,y
H,
= max . X1
[Ix1][=1 :
Hy

which means x; is the eigenvector belonging to the largest
eigenvalue of H'H where the joint Hankel matrix H is
written as:
H,y
Hy
H= o (6)

Hy
In CAPZ modeling, there are a group of N HRTF’s de-
noted as Fi(z), Fa(z), ..., Fn(z). For each HRTF, we can
define a Hankel matrix H; as (3). In order to find a set of
eigenvectors shared by all Hankel matrices, we can create
a joint Hankel matrix H by cascading H1, Ha, ..., Hy as

(6). We assume H is an m X n matrix (m>n) which can be
factorized as follows:

H=UAV" (7)

where V' contains the eigenvectors of HTH. Finally, each
F;(z) can be approximated by the pth order reduced system

(AP B CP) D;) where

A®) = VT AV, B® = VTB,CP = CiV,, D; = fio

®)
1 = 1,2,...,N and V), is given by (5). The choice of
order p depends on the distribution of ¥’s diagonal ele-
ments. The substantially smaller part of ¥’s diagonal el-
ements can be viewed as redundancy which has little ef-
fect on the system response. We can convert the pth order
reduced system (A(”)B(p)Ci(p )D;) into the transfer func-
tion using F{*) (z) = C%) (21 — A®)=1B® 4 D, where
Fi(p) (z) is the approximated IR filter of F;(2),i = 1,2,...
N.

9

2.3. Modified Jointly Balanced Model truncation

For CAPZ approximation, the desired IIR filters derived
from jointly BMT must have the same orders in numerator
and denomerator (p = ¢q). Three previous methods do not
have this kind of restriction. To make jointly BMT more
flexible (p # q), we try to determine zero coefficients of
jointly BMT using iterative prefiltering. That is, we use
jointly BMT to decide the common poles which are used as

the initial value for iterative prefiltering. Originally, the ini-
tial guess of denomerator coefficients for iterative prefilter-
ing was solved from the Prony method and within a few it-
erations iterative prefiltering would converge. The proposed
method, modified jointly balanced model truncation (mod-
ified JBMT), has comparable performance as iterative pre-
filtering does but it can converge in one iteration.

3. SIMULATION RESULTS

The HRTF’s data we use here are measured by MIT[5]. For
CAPZ modeling, we choose 14 HRTF’s measured for the
left ear as a group with the azimuth=0 degree and elevations
ranging from -40 degree to 90 degree by 10-degree increase.
Before simulation, these HRTF’s were prefiltered. Initial
time delays were removed and HRTF’s with longer data
length were cut from the tail to make them have same data
length. For performance comparison, we define a group er-
ror index as:

2

|7 - FP 2+HF |+ +||Fy - PP
1 1 2 2 N N

IFL | + (|F)® + .. + | En]l®

where F; is the actual impulse response and Fi(p ) is the ap-
proximated HRTF.

Starting with Fig. 1, we plot the diagonal elements of X
versus order p of reduced systems. Fig. 1 reveals that the
more sharply the curve falls to zero, the more efficiently and
accurately we can model a group of HRTF’s. That is, when
singular values are negligible, singular vectors belonging to
them are not necessarily engaged in as (5). In Fig. 2, we
plot the group error index versus order p using the jointly
BMT method. The result shows that at the beginning, the
group error index drops sharply as p increases but it de-
creases more slowly when p is bigger than 15 , which fit
in with the result in Fig. 1. These two figures show us how
to decide the oder p of reduced systems. Previous works
can’t offer us this kind of help.

We compare conventional pole/zero modeling and CA-
PZ approximation in Table 1. We also compare the group
error index for four methods under the condition that the
pole number (=zero number) of desired IIR filters equals 12
. From Table 1, it is clear that conventional pole/zero mod-
eling can model a group of HRTF’s more efficiently but all
IIR filters have to use their own poles. CAPZ approximation
sacrifices some accuracy so that it can save computational
cost because all approximated HRTF’s in a group share a
set of poles. In terms of different approaches, iterative pre-
filtering is the best one and jointly BMT follows.

In Fig. 3, we compare CAPZ models derived from the
Prony, Shanks, iterative prefiltering and modified JBMT m-
ethods. For each approach, we plot a curve by changing



the zero number of desired IIR filters when the pole num-
ber equals 5. The result shows that the proposed method
is comparable with the iterative prefiltering method but out-
performs the Prony and Shanks methods.

4. CONCLUSION

In real-time applications, processing time is crucial. We
propose a new approach, jointly BMT, for CAPZ approx-
imation which can efficiently model a group of HRTF’s.
To further improve the proposed method, we extend jointly
BMT to modified JBMT such that we can use different oders
for pole and zero of desired IIR filters. Simulation results
show that the proposed methods have better performance
than the previous Prony and Shanks methods.
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Table 1. Comparison of group error indices for CAPZ
approximation and conventional models which use individ-
ual poles and individual zeros.

(B | (350

Prony 0.2229 0.4063
Shanks 0.2052 0.3042
Iterative prefiltering 0.1243 0.2115
Jointly BMT 0.1616 0.2197
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Fig. 1. Singular values plot versus the order of desired IIR
filters
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Fig. 2. Group error indices plot versus the order of desired
IIR filters using jointly BMT

14
—— Prony
100 —— Shanks
' —e— lterative prefiltering
—— Modified JIBMT
x 1r
(]
e
c
'=0.8f
<)
@
20.6f
3
o
5)04,
0.2r
0 L L L
0 5 10 15 20

zero number

Fig. 3. Group error indices comparison of four CAPZ mod-
els (pole number = 5).



