
INFRARED-IMAGE CLASSIFICATION USING

EXPANSION MATCHING FILTERS AND HIDDEN MARKOV TREES

Priya Bharadwaj, Paul Runkle and Lawrence Carin

Department of Electrical and Computer Engineering
Duke University

Durham, NC 27708-0291

ABSTRACT

Forward-looking infrared (FLIR) images of targets are
characterized by the different target components visible in the
image, with such dependent on the target-sensor orientation and
target history (i.e., which target components are hot). We define
a target class as a set of contiguous target-sensor orientations
over which the associated image is relatively invariant, or
statistically stationary. Given an image from an unknown target,
the objective is proper target-class association (target identity and
pose). Our principal contribution is an image classifier in which a
distinct set of templates is designed for each image class, with
templates linked to the object sub-components, and the
associated statistics are characterized via a hidden Markov
model. In particular, we employ expansion matching (EXM)
filters to identify the presence of the target components in the
image, and use a hidden Markov tree (HMT) to characterize the
statistics of the correlation of the image with the various
templates. We achieve a successful classification rate of 92% on
a data set of FLIR vehicle images, compared with 72% for a
previously developed wavelet-feature-based HMT technique.

1. INTRODUCTION

Classification of images is a problem of long-standing interest,
because of applications in target identification, medical
diagnosis, character recognition, etc. In this paper we propose a
new technique, employing expansion matching and a hidden
Markov tree (EXM-HMT), to classify two-dimensional forward-
looking infrared (FLIR) images of three-dimensional targets. As
we move around the target, certain parts in the two-dimensional
projection (image) of the object become visible, and certain
others remain hidden, depending on the target-sensor orientation.
The images of an target therefore vary depending on the
orientation of the sensor with respect to the object, while also
being a function of the target history (e.g., how long the target
engine has been on or off). For example, if the object under
consideration is a car, the images of the front of the car are often
dramatically different from the images of the sides. Moreover,
there is not simply one realization of the FLIR signature of a
vehicle at a given orientation, but rather an ensemble of such
accounting for variable target history.

The classification problem involves assigning each image to a
class, where a class is defined as a set of object-sensor
orientations, for a given target, over which the images remain
relatively invariant or stationary (with respect to target-sensor
variation and target history). There is a set of classes for each of
multiple targets.

The fundamental idea behind the image classification scheme
introduced in this paper is that images can be classified by
identifying the parts of the object that are visible in each class of
images, and by considering the relative position of the various
parts in the image. We represent the target parts by a set of
templates, and use expansion matching (EXM) filters [5] instead
of the more commonly used matched filters, to correlate the
image with the templates. The response of the EXM filters has
sharper peaks, which facilit ates the process of locating the
template in an image.

Since the images belonging to a particular class are statistically
stationary, the feature vectors of the images can be characterized
by a single statistical model. A two-state model is used to
represent each coeff icient of the feature vector, and the statistics
of the coeff icient within each such state is modeled via a distinct
Gaussian density [3]. Further, the states sampled by successive
coeff icients of the feature vector are modeled as a Markov
process. This formulation results in a hidden Markov tree
(HMT): 'hidden' because the states sampled by the coeff icients
are unknown. The feature vector is arranged in a tree [3,4]. The
performance of the HMT based on EXM filters, tied to target
parts, is compared to HMT performance based on a Haar-wavelet
decomposition [4].

2. FEATURE EXTRACTION:
EXPANSION MATCHING (EXM)

FILTERS

We derive the templates for each target class by partitioning the
images into several subimages. We have an additional template
for the overall i mage, to characterize the global target shape and
size. In Fig. 1, for example, an image is divided into six
subimages, numbered 2-7 in the figure, and the template of the
entire image is indexed as 1. It can be seen from Fig. 1 that
subimages 2 and 3 represent the body of the car, and subimages
4, 5, 6 and 7 represent the tires and the lower half of the car.



            Figure 1.  Image divided into several subimages

For a given feature template, the matched filter is an optimal
filter in the sense that the SNR is maximized, with SNR defined
as the ratio of the filter's response at the center of the pattern to
the variance of the filter's response to noise. However, one of the
drawbacks of a matched filter [5] is that the response off the
center of the feature can be high (as the matched filter is
optimized only with respect to the response at the center of the
template); as a result the response has a broad peak, and it is
diff icult to locate the feature in the image, especially if the image
has several similar features close to each other.

This limitation of a matched filter is alleviated by the Expansion
Matching (EXM) filter [5] which maximizes a criterion called
Discriminative SNR  (DSNR, [5]), by seeking to minimize the
off-center response of the filter; EXM filters generate sharper
peaks, enhancing the localization of features in an image. The
EXM filter obtained by maximizing DSNR is the same as the
Wiener filter [5] formulation for restoring images in the presence
of noise and blurring effects. In this context, the feature template
corresponds to the blurring function, and a delta function is to be
restored. Hence, the EXM filter of a template is given as
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),( 21 ϖϖΦ  is the complex conjugate of the Fourier transform

of the feature template ),( 21 ϖϖΦ , and Sλλ and Scc are the

power spectral densities of the noise and the input sequence that
is to be estimated, respectively.

2.1 Eigen Detectors Using Karhunen-Loeve Transform

Assume there are  M image classes, and let Nm denote the number
of training images associated with class m (1 Mm ≤≤ ).
Assume P feature templates (e.g., P=7 for the image in Fig. 1)
are derived from each of the Nm images belonging to the training
set of class m. Therefore, there are Nm realizations of each of the
P templates of class m. In order to correlate the feature templates
with each image, EXM filters are generated from each template
using (1).

By using Nm EXM filters for each of the P feature detectors, we
incorporate the variations in the templates of the images

belonging to the same class into the feature detectors. We use the
Karhunen-Loeve transform (KLT) [6] to reduce the
computational complexity of correlating the image with Nm

filters. The KLT produces an orthonormal set of basis functions
for the Nm realizations of template p of class m. The eigenvectors
are arranged in the descending order of eigenvalues; MSE can be
minimized by using the top Neig eigenvalues as a truncated basis
to represent the entire set of Nm filters. In general,

meig NN < . It

should be noted that Neig is not a fixed value: the value of Neig

depends on the EXM filter set under consideration.

2.2 Feature Vector

Each image is reduced to a feature vector by correlating the
image with the eigen detectors of the EXM filters of P templates
of a particular class m, summing the responses from the
respective EXM filters, and determining the maximum value of
the correlation in a particular neighborhood in the image. Since P
feature detectors characterize class m, the length of the feature
vector equals P. The feature vector for image n, class m is
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,φ is the j th eigenvector of the EXM filter set of template p,

belonging to image class m. One of the limitations of both
matched filters and EXM filters is that they produce a high
response at certain locations that have high amplitudes, despite
the absence of the template at those locations. In order to offset
the effect of high amplitude regions, we use correlation as the
feature, and not energy extracted by the template from the image,
as correlation is a better indicator of the 'match' between
templates. We thereby nulli fy the effects of high-amplitude
regions by dividing the inner product in (3) by the energy in the
image over the support of the filter under consideration.

We do not search for the maximum value of the correlation in (3)
over the entire image, rather we restrict our search to a prescribed
neighborhood. Since the subimages are formed by dividing the
image into parts, and all the images of the training set are located
at a known reference point and oriented at a particular angle, for
a given class we know where each template should be located
approximately. We look for maximum correlation only in the
neighborhood of the corresponding image component.

It is not necessary, however, to know the location and the
orientation of the test images. The test images can be centered by
correlating the image with the set of EXM filters derived from
the entire image, and then shifting the image such that maximum
value of correlation lies in the center of the image (or at any other



reference point). Similarly, we can use the training set to develop
EXM filters of the images oriented at different angles, and
determine the orientation of the test image by correlating it with
the rotated set of EXM filters. The orientation of the test image
corresponds to the orientation of the EXM filter set for which the
maximum value of correlation is obtained, and the test image can
be oriented as the training images by rotating it through this
angle. The EXM-HMT scheme is, therefore, approximately shift
and rotation invariant.

3. STOCHASTIC MODEL: HIDDEN
MARKOV TREE (HMT)

The value of nm
pcorr , in (3) can be either 'high' or 'low' [3,4]

depending on whether that particular feature is present or
occluded in the FLIR image being considered. For example, if a
given target part is cool, it will have a low value in the FLIR
image, with the opposite true for hot target parts. Occlusions can
also play a role in the strength of a given target component. We
call the 'high' and 'low' correlation values 'high' and 'low' states,
respectively, of a feature. The statistics of the 'high' and 'low'
states, corresponding to each element of the feature vector, are
modeled via a distinct Gaussian density (or, possibly, a Gaussian
mixture). Also, if the nm

pcorr , is 'high', it is still possible that

nm
pcorr ,

1+  is 'low'. Such interactions between the states of different

elements, for a given class of images, are modeled as a Markov
process [5]. This formulation results in a hidden Markov tree,
since the state of the coeff icient being sampled is 'hidden', and

the tree nature of the feature vector 
n
mC .

          Figure 2.  Hidden Markov Tree

The feature vectors of the images can be cast into a tree structure,
similar to the wavelet coeff icients for which the HMT was
developed in [4].  Figure 2 shows a 3-level HMT used to classify
the images belonging to the same class as the one shown in Fig.
1, and the index p in each node of the HMT indicates that the

node is occupied by nm
pcorr , . The correlation with the EXM

filter of the entire image, nmcorr ,
1

, occupies the position at the

top of the tree. Subsequent levels are occupied by the correlation
values with templates 2 to P, which for the image shown in Fig.1
correspond to the body and the tires of the car (for this example).

The EXM-HMT scheme is demonstrated on FLIR images of
vehicles (Sec. 5), with the intensity of these images a function of
the temperature of the vehicles. As discussed, in such images
'high' and 'low' states correspond to whether a particular part of

the object is 'hot' or 'cold'. The model in Fig. 2 is compatible with
our understanding of the physical nature of infrared images.
Referring to Figs. 1 and 2, the state of nodes 2 and 3, i.e.,
correlation with the templates corresponding to the body of the
car, are dependent on the state of the correlation with the entire
image, i.e. node 1. For example, if node 1 is in the 'high' state, it
means that the vehicle is generally 'hot', and therefore it is li kely
that the nodes 2 and 3 are also in the 'high' state. Since parts 4
and 5 are close to 2, states of 4 and 5 are likely to be influenced
by the state of 2, and similarly states of 6 and 7 are dependent on
the state of 3. We note, however, that there are multiple ways of
devising the tree structure. The goal is to link the decomposition
of the Markov tree to the physical (thermal) characteristics of the
target.

All but the lowest HMT nodes are connected with two "children"
at a lower level. Referring to Fig. 2, let j l and jr represent the
"children" nodes to the left and right of node j+1. Each node of
the HMT, as mentioned, is characterized by a two-state Gaussian
model. Let H and L represent the "high" and "low" states of node
j+1, with Hl and Ll similarly defined for j l. There are four
possible state transitions from j+1 to j l: the node j+1 could be H
and the element at j l could be Hl, [H,Hl]; similarly we could have
[H,Ll], [L,Hl] or [L,Ll]. Each state transition, li sted above, is
characterized by an associated probabilit y. A similar set of state
transitions is defined for transition from j+1 to jr. The initial-state
probabilit y for the top node is defined as the probabilit y that
element nmcorr ,

1
 is in the "high" or "low" state. The hidden

Markov tree is completely characterized by the dual-state
Gaussian model for each element, the state-transition
probabiliti es, and the initial-state probabilit y for the top node.
The HMT construct developed here is motivated by [4], in which
it was applied to a wavelet decomposition.

4. COMPARISON WITH WAVELET-HMT

Since the HMTs were first developed [4] to characterize wavelet
coeff icients, we compare the classification results obtained via
the EXM-HMT algorithm with results from the wavelet-HMT
scheme. The resulting wavelet-HMT structure is a quadtree [4],
in which each parent node is connected to four child nodes (in
the HMT model discussed in Sec. 3 each parent is connected to
two children). We here employ a decomposition based on the
Haar wavelet, although the study of HMT performance with
alternative wavelets will also be considered. The wavelet
decomposition of the FLIR images is performed to the coarsest
level, and quadtree HMTs are developed for the sequence of
high-high, high-low and low-high images, using the coarsest and
two subsequent finer levels (a total of three levels). Due to the
fact that the FLIR images are not spatially stationary, we do not
perform tying [4]. Consequently, with the finite imagery
available for training, we cannot accurately estimate HMT
parameters for more than three wavelet levels.

As indicated, there is a wavelet quadtree for the sequence of
high-high, high-low and low-high FLIR imagery (for three
levels), with these here taken as statistically independent, for
simplicity. Therefore, the total li kelihood that a given image is

1

2 3

4 5 6   7

node j+1

node jrnode j l



associated with a given class is computed as the product of the
likelihoods of the three associated wavelet-quadtree HMTs.

5. CLASSIFICATION RESULTS

We employ the EXM-HMT classification technique to classify
FLIR images of four distinct vehicles: three tanks and one truck.
We observe that the images, formed at 5o intervals around the
vehicle, vary as a function of the target-sensor orientation (and as
a function of target history). We identify two sets of angular
regions (classes) for each vehicle over which the images are
relatively unchanged (stationary). Let 0o be defined as looking at
the front end of the vehicle. Class 1 of a target type is defined as
FLIR images of the front and rear of the vehicle (angles 0-15o,
345-360o and 165-195o), and class 2 comprises images of the
sides of the vehicle (angle 20-160o and 200-340o). There is not
suff icient resolution and training data to separately distinguish
the front and back of the targets. Since there are two classes for
each vehicle, there are a total of M=8 image classes (four
vehicles with 2 classes per vehicle). The data was provided by
the US Army Research Laboratory [7], with example FLIR
images shown in Fig. 3. For vehicle 1, class 1 and class 2, a set
of Nm=260 images are used to train the HMT. For the other
image classes, Nm=152. Seven EXM filters are developed for
each image: one for each subimage (see Fig. 1), and one EXM
filter for the entire image. We perform KLT, and Neig is set such
that 90% of the energy in the original set of filters can be
extracted by the eigen-detectors. For vehicle 1, class 1 and class
2, Neig =30, and for the rest Neig =50.

The average correct classification of the EXM-HMT was 92%
(the associated confusion matrix is shown in Table 1), while the
wavelet-based HMT yielded 72% correct classification (Haar
wavelets). The testing and training data was completely
independent.

6. CONCLUSIONS

We have designed a hidden Markov tree (HMT) for target
classification, based on expansion-matching filters. Such a model
has been developed previously based on a wavelet
decomposition. The principal contribution reported here is an
extension of the

HMT to more general filters, in particular to EXM (Wiener)
filters [5] matched to fundamental components of the targets of
interest. The method was tested on FLIR data from similar targets
[7].
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V1
C1

V1
C2

V2
C1

V2
C2

V3
C1

V3
C2

V4
C1

V4
C2

V1C1 95.5 0 0.38 0 2.31 0 2.31 0
V1 C2 0 96.54 0.77 0 1.92 0 0.38 0.38
V2 C1 0.67 2.63 82.24 1.32 12.50 0 0.66 0
V2 C2 0 0 0.66 98.03 0.66 0 0.66 0
V3 C1 1.97 4.61 7.89 0 84.87 0 0.66 0
V3 C2 0 0 1.32 0.66 0 98.03 0 0
V4 C1 1.32 1.32 1.97 0 7.89 0 85.53 1.97
V4 C2 0 0 2.63 0 0 0 1.97 95.39

Table 1. Confusion matrix of EXM-HMT algorithm for four vehicles (V1, V2, V3 and V4), with two classes per target (C1 and
C2). Testing and training data is independent.

Fig. 3. Example FLIR imagery from targets V1-V4, with two
classes (C1 and C2) per target.
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