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ABSTRACT

Forward-looking infrared (FLIR) images of targets are
charaderized by the different target comporents visible in the
image, with such dependent on the target-sensor orientation and
target history (i.e., which target comporents are hot). We define
a target class as a set of contiguows target-sensor orientations
over which the awciated image is relatively invariant, or
statisticdly stationary. Given an image from an urknown target,
the objediveis proper target-classassociation (target identity and
pose). Our principal contributionis an image dassfier in which a
distinct set of templates is designed for ead image dass with
templates linked to the objed sub-comporents, and the
asociated statistics are tharaderized via a hidden Markov
model. In particular, we amploy expansion matching (EXM)
filters to identify the presence of the target comporents in the
image, and wse ahidden Markov tree (HMT) to charaderize the
statistics of the arrelation o the image with the various
templates. We adieve asuccessul classficaion rate of 92% on
a data set of FLIR vehicle images, compared with 724 for a
previously devel oped wavel et-fegure-based HMT technique.

1. INTRODUCTION

Clasdfication d images is a problem of long-standing interest,
becaisse of applicdions in target identification, medicd
diagnosis, charader recognition, etc. In this paper we propose a
new technique, employing expansion matching and a hidden
Markov tree (EXM-HMT), to clasdfy two-dimensional forward-
looking infrared (FLIR) images of threedimensional targets. As
we move aoundthe target, certain partsin the two-dimensional
projedion (image) of the objed bewmme visible, and certain
others remain hidden, depending on the target-sensor orientation.
The images of an target therefore vary depending on the
orientation d the sensor with resped to the objed, while dso
being a function o the target history (e.g., how long the target
engine has been on o off). For example, if the objedt under
considerationis a ca, the images of the front of the ca are often
dramaticdly different from the images of the sides. Moreover,
there is nat simply one redizaion o the FLIR signature of a
vehicle & a given orientation, but rather an ensemble of such
acourting for variable target history.

The dasdficaion poblem involves asdgning ead image to a
class where a d¢ass is defined as a set of objed-sensor
orientations, for a given target, over which the images remain
relatively invariant or stationary (with resped to target-sensor
variation and target history). There is a set of classes for eath of
multi ple targets.

The fundamenta idea behind the image dassficaion scheme
introduced in this paper is that images can be dassfied by
identifying the parts of the objed that are visible in ead classof
images, and by considering the relative position d the various
parts in the image. We represent the target parts by a set of
templates, and wse expansion matching (EXM) filters [5] instead
of the more commonly used matched filters, to correlate the
image with the templates. The respornse of the EXM filters has
sharper pegs, which fadlitates the process of locding the
template in an image.

Since the images belonging to a particular class are statisticaly
stationary, the feaure vedors of the images can be charaderized
by a single statisticd model. A two-state model is used to
represent eadt coefficient of the fegure vedor, and the statistics
of the wefficient within ead such state is modeled via adistinct
Gaussan density [3]. Further, the states ssmpled by successve
coefficients of the fedaure vedor are modeled as a Markov
process This formulation results in a hidden Markov tree
(HMT): 'hidden' because the states sampled by the mefficients
are unknown. The fedure vedor is arranged in atree[3,4]. The
performance of the HMT based on EXM filters, tied to target
parts, is compared to HMT performance based ona Haa-wavelet
decomposition [4].

2. FEATURE EXTRACTION:
EXPANSION MATCHING (EXM)
FILTERS

We derive the templates for ead target classby partitioning the
images into several subimages. We have a additiona template
for the overdl image, to charaderize the global target shape and
size In Fig. 1, for example, an image is divided into six
subimages, numbered 2-7 in the figure, and the template of the
entire image is indexed as 1. It can be seen from Fig. 1 that
subimages 2 and 3represent the body of the ca, and subimages
4,5, 6 and 7represent the tires and the lower half of the ca.



Figure 1. Image divided into several subimages

For a given feaure template, the matched filter is an optimal
filter in the sense that the SNR is maximized, with SNR defined
as theratio of the filter's resporse & the center of the pattern to
the variance of the filter's respornse to ndse. However, one of the
drawbads of a matched filter [5] is that the resporse off the
center of the feaure can be high (as the matched filter is
optimized ony with resped to the resporse & the center of the
template); as a result the resporse has a broad pes, and it is
difficult to locate the feaure in the image, espedally if the image
has svera similar fedures close to ead ather.

This limitation o a matched filter is alleviated by the Expansion
Matching (EXM) filter [5] which maximizes a aiterion cdled
Discriminative SNR (DSNR, [5]), by seeing to minimize the
off-center resporse of the filter; EXM filters generate sharper
pes, enhancing the locdizaion d fedures in an image. The
EXM filter obtained by maximizing DSNR is the same & the
Wiener filter [5] formulation for restoring images in the presence
of noise and Hurring effeds. In this context, the feaure template
corresponds to the blurring function, and a delta functionisto be
restored. Hence, the EXM filter of atemplateis given as
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of the feaure template P(T0,,W, ), and Sy and S, are the

power spedral densities of the noise and the input sequence that
isto be estimated, respedively.

2.1 Eigen Detectors Using Karhunen-Loeve Transform

Asamethere are M image dasss, and let N,,, denote the number
of training images asociated with class m (1< m<M).
Asame P fedure templates (e.g., P=7 for the image in Fig. 1)
are derived from ead of the N, images belonging to the training
set of classm. Therefore, there ae N, redizaions of ead of the
P templates of classm. In order to correlate the feaure templates
with ead image, EXM filters are generated from ead template
using (1).

By using N, EXM filters for eat of the P feaure detecors, we
incorporate the variations in the templates of the images

belonging to the same dassinto the feaure detedors. We use the
Karhuren-Loeve transform (KLT) [6] to reduce the
computational complexity of correlating the image with Ny
filters. The KLT produces an orthonamal set of basis functions
for the N, redizations of template p of classm. The dégenvedors
are aranged in the descending order of eigenvalues; MSE can be
minimized by using the top Ngg4 eigenvalues as a truncaed basis
to represent the entire set of Ny, filters. In general, Neig <N, - It

shoud be noted that Ngg is not a fixed value: the value of Ngg
depends onthe EXM filter set under consideration.

2.2 FeatureVector

Each image is reduced to a feaure vedor by correlating the
image with the égen detedors of the EXM filters of P templates
of a particular class m, summing the resporses from the
respedive EXM filters, and determining the maximum value of
the correlationin a particular neighbarhoodin theimage. Since P
feaure detedors charaderize dass m, the length of the fedure
vedor equals P. The feaure vedor for image n, classmis
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(prjn'p is the | eigenvedor of the EXM filter set of template p,

belonging to image dass m. One of the limitations of both
matched filters and EXM filters is that they produce a high
resporse & certain locations that have high amplitudes, despite
the asence of the template & those locations. In order to off set
the dfed of high amplitude regions, we use rrelation as the
feaure, and nd energy extraded hy the template from the image,
as correlation is a better indicaor of the 'match’ between
templates. We thereby nullify the dfeds of high-amplitude
regions by dividing the inner product in (3) by the energy in the
image over the suppat of thefilter under consideration.

We do nd seach for the maximum value of the rrelationin (3)
over the entire image, rather we restrict our seach to a prescribed
neighbarhood Since the subimages are formed by dividing the
image into parts, and all the images of the training set are locaed
at aknown reference point and aiented at a particular angle, for
a given class we know where eab template shoud be locaed
approximately. We look for maximum correlation orly in the
neighbarhood d the crrespondng image comporent.

It is not necessry, however, to know the locaion and the
orientation d the test images. The test images can be cantered by
correlating the image with the set of EXM filters derived from
the entire image, and then shifting the image such that maximum
value of correlationliesin the center of the image (or at any other



reference point). Similarly, we can use the training set to develop
EXM filters of the images oriented at different angles, and
determine the orientation o the test image by correlating it with
the rotated set of EXM filters. The orientation d the test image
corresponds to the orientation d the EXM filter set for which the
maximum value of correlation is obtained, and the test image can
be oriented as the training images by rotating it through this
angle. The EXM-HMT scheme is, therefore, approximately shift
and rotation invariant.

3. STOCHASTIC MODEL: HIDDEN
MARKOV TREE (HMT)

e value of corr™"in can dther 'high' or 'low' [3,
The va f F:"”' 3 be dther 'high' low' [3,4

depending on whether that particular fedure is present or
ocduded in the FLIR image being considered. For example, if a
given target part is codl, it will have alow vaue in the FLIR
image, with the oppdsite true for hot target parts. Ocdusions can
also play arolein the strength of a given target comporent. We
cdl the 'high' and 'low' correlation values 'high' and 'low' states,
respedively, of a fedure. The dtatistics of the 'high' and 'low'
states, correspondng to ead element of the feaure vedor, are
modeled via adistinct Gausdan density (or, posshly, a Gaussan
mixture). Also, if the corr‘;"v”is ‘high', it is gill posdble that
corrr;‘}l“ is'low'. Such interadions between the states of different
elements, for a given classof images, are modeled as a Markov
process [5]. This formulation results in a hidden Markov tree
since the state of the mefficient being sampled is 'hidden’, and

the treenature of the feaure vedor C:] .

node j+1

nodej node j,

Figure 2. Hidden Markov Tree

The feaure vedors of theimages can be cat into atreestructure,
similar to the wavelet coefficients for which the HMT was
developed in [4]. Figure 2 shows a 3-level HMT used to classfy
the images belonging to the same dassas the one shown in Fig.
1, and the index p in ead nock of the HMT indicaes that the

noce is occupied by corr™". The rrelation with the EXM

filter of the entire image, corr,™", occupies the position a the

top d the tree Subsequent levels are occupied by the @rrelation
values with templates 2 to P, which for the image shown in Fig.1
correspondto the body and thetires of the ca (for this example).

The EXM-HMT scheme is demonstrated on FLIR images of
vehicles (Sec 5), with the intensity of these images a function
the temperature of the vehicles. As discussed, in such images
'high' and 'low" states correspondto whether a particular part of

the objed is'hat' or 'cold'. The model in Fig. 2 is compatible with
our understanding of the physicd nature of infrared images.
Referring to Figs. 1 and 2 the state of nodes 2 and 3 i.e,
correlation with the templates correspondng to the body of the
ca, are dependent on the state of the crrelation with the entire
image, i.e. node 1. For example, if node 1 isin the 'high' state, it
means that the vehicle is generally 'haot', and therefore it is likely
that the nodes 2 and 3 are dso in the 'high' state. Since parts 4
and 5are doseto 2 states of 4 and 5are likely to be influenced
by the state of 2, and similarly states of 6 and 7 are dependent on
the state of 3. We note, however, that there ae multi ple ways of
devising the tree structure. The goa is to link the decomposition
of the Markov treeto the physicd (thermal) charaderistics of the
target.

All but the lowest HMT nodes are mnneded with two "chil dren”
a a lower level. Referring to Fig. 2, let j, and j, represent the
"children" nodes to the left and right of node j+1. Each nock of
the HMT, as mentioned, is charaderized by a two-state Gausdan
model. Let H and L represent the "high" and "low" states of node
j*1, with H, and L, similarly defined for j. There ae four
possble state transitions from j+1 to j;: the node j+1 could be H
and the dement at j, could be H,, [H,H]]; similarly we could have
[H,L], [LH] or [L,L]. Eacth state transition, listed above, is
charaderized by an asciated probability. A similar set of state
transitions is defined for transition from j+1 to j,. The initial-state
probability for the top noc is defined as the probability that

element corr,™" is in the "high" or "low" state. The hidden

Markov tree is completely charaderized by the dual-state
Gaussan model for eah €eement, the state-transition
probabiliti es, and the initial-state probability for the top noce.
The HMT construct developed here is motivated by [4], in which
it was applied to awavelet decompasition.

4. COMPARISON WITH WAVELET-HMT

Sincethe HMTs were first developed [4] to charaderize wavelet
coefficients, we @mmpare the dassficaion results obtained via
the EXM-HMT algorithm with results from the wavelet-HMT
scheme. The resulting wavelet-HMT structure is a quadtree [4],
in which ead parent noce is conneded to four child nodss (in
the HMT model discussd in Sec 3 ead parent is conreded to
two children). We here amploy a decompasition besed on the
Haa wavelet, athough the study of HMT performance with
dternative wavelets will also be mnsidered. The wavelet
decomposition d the FLIR images is performed to the carsest
level, and quadtree HMTs are developed for the sequence of
high-high, high-low and low-high images, using the marsest and
two subsequent finer levels (a total of threelevels). Due to the
fad that the FLIR images are not spatialy stationary, we do nd
perform tying [4]. Consequently, with the finite imagery
avalable for training, we cana acaraely estimate HMT
parameters for more than threewavelet levels.

As indicaed, there is a wavelet quadtree for the sequence of
high-high, high-low and low-high FLIR imagery (for three
levels), with these here taken as gsatisticdly independent, for
simplicity. Therefore, the total likelihood that a given image is



asciated with a given classis computed as the product of the
likelihoods of the three sociated wavelet-quadtreeHMTs.

5. CLASSIFICATION RESULTS

We amploy the EXM-HMT clasdficaion technique to classfy
FLIR images of four distinct vehicles: threetanks and ore truck.
We observe that the images, formed at 5° intervals around the
vehicle, vary as afunction d the target-sensor orientation (and as
a function d target history). We identify two sets of angular
regions (classes) for eath vehicle over which the images are
relatively unchanged (stationary). Let 0° be defined as looking at
the front end d the vehicle. Class1 of atarget type is defined as
FLIR images of the front and rea of the vehicle (angles 0-15°,
345360° and 165195), and class 2 comprises images of the
sides of the vehicle (angle 20-160° and 200634C"). There is not
sufficient resolution and training data to separately distinguish
the front and badk of the targets. Since there ae two classs for
ead vehicle, there are a tota of M=8 image daswes (four
vehicles with 2 classes per vehicle). The data was provided by
the US Army Reseach Laboratory [7], with example FLIR
images $hown in Fig. 3. For vehicle 1, class1 and class 2, a set
of N,=260 images are used to train the HMT. For the other
image dases, N,=152 Seven EXM filters are developed for
ead image: one for eat subimage (see Fig. 1), and ore EXM
filter for the entire image. We perform KLT, and Ngg is st such
that 90% of the energy in the original set of filters can be
extraded by the eigen-detedors. For vehicle 1, class1 and class
2, Neig =30, and for the rest Ngiq =50.

The average orred clasdficaion d the EXM-HMT was 92%
(the sssociated confusion matrix is shown in Table 1), while the
wavelet-based HMT yielded 726 corred classfication (Haa
wavelets). The testing and training data was completely
independent.

6. CONCLUSIONS

We have designed a hidden Markov tree (HMT) for target
clasdficaion, based onexpansion-matching filters. Such a model
has been developed previously based on a wavelet
decompaosition. The principal contribution reported here is an
extension d the

HMT to more generd filters, in particular to EXM (Wiener)
filters [5] matched to fundamental comporents of the targets of
interest. The method was tested onFLIR data from similar targets
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V1,C1 V1,C2 V2,C1 V2,C2
V3,Cl V3,C2 V4,Cl V4,C2

Fig. 3. Example FLIR imagery from targets V 1-V4, with two
clases (C1 and C2) per target.

Vi | Vi1 V2 V2 V3 V3 V4 V4

Cl C2 C1l C2 Cl C2 C1l C2
VIC1 | 955 (O 038 | 0 231 |0 231 |0
ViCc2 | 0 9654 [ 0.77 | O 192 |0 0.38 | 0.38
V2Cl1 [ 067 | 263 [ 8224|132 |1250(| 0 066 | 0
v2C2 {0 0 0.66 | 98.03]066 |0 066 [0
V3Cl1l [197 1461 [789 |0 8487 | 0 066 [0
v3C2 [0 0 132 [066 | O 98.03 | 0 0
V4Cl1 (132 ]132 [197 |0 789 |0 85.53 [ 1.97
V4C2 [ 0 0 263 | 0O 0 0 197 | 95.39

Table 1. Confusion matrix of EXM-HMT agorithm for four vehicles (V1, V2, V3 and V4), with two classs per target (C1 and

C2). Testing and training data is independent.



