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ABSTRACT
Many applicationsin auditory modeling require analysisfilters
thatapproximatethe frequency selectivity givenby psychophysi-
caldata,e.g.from maskingexperimentsusingnarrow-bandmask-
ers.Thisfrequency selectivity is largelydeterminedby thespectral
decompositionprocessinsidethehumancochlea.Currentlyused
spectraldecompositionschemesfor maskingmodelingin audio
coding generallydo not achieve the non-uniform time and fre-
quency resolutionprovided by the cochlea. Theseapplications
rathertake advantageof the computationalefficiency of uniform
filter banksor transformsat theexpenseof codinggain.

This paperpresentsa suitableanalysisfilter-bank structure
employing cascadedlow-order IIR filters andappropriatedown-
samplingto increaseefficiency. In an applicationexample, the
filter responseswereoptimizedto modelauditorymaskingeffects.
Theresultsshow thatthetimeandfrequency resolutionof thefilter
bankmatchesor exceedsthemaskingproperties.Thus,thefilter
bankenablesimprovedmaskingmodelingfor audiocodingat low
computationalcosts.

1. INTRODUCTION

Humanauditoryfrequency selectivity is largelydeterminedby sig-
nal processingin thecochlea.Thecochleaprovidesband-passfil-
teredversionsof theinput signalthataresubsequentlytransduced
into neuralsignalsby the inner hair cells. The associatedband-
passfilters have increasingbandwidthwith increasingcenterfre-
quency andanasymmetricfrequency response.

In perceptualaudio coding, the audio signal is treatedas a
masker for distortionsintroducedby lossydatacompression.For
this purpose,the masked thresholdis approximatedby a percep-
tual model. Existingperceptualmodels,e.g. [1], employ anFFT-
basedtransformto derive a spectraldecompositionof theacoustic
signalasfirst processingstep. The non-uniformspectralresolu-
tion of theauditorysystemis taken into accountby summingup
theenergiesof theappropriatenumberof neighboringFFTbands.
The phaserelationbetweenspectralcomponentswithin an audi-
tory filter band is not taken into accountby the summationof
energies. The temporalresolutionof the spectraldecomposition
is determinedby the transformsize and is thus constantacross
all auditorybands.This resultsin a significantlylower temporal
resolutionat high centerfrequenciesin comparisonwith the cor-
respondingauditory filters. Thesedeviations lead to inaccurate
modelingof maskingandsuboptimalcodinggain.

A highertemporalresolutionis achieved by thenon-uniform
filter bankin the“AdvancedVersion”of theaudioqualitymeasure-
mentstandard[2]. Eachof those40 critical-bandfilter pairsis re-
alizedasFIR filter. Theoutputof eachfilter pair is a critical-band

signalandits (90 degreesphase-shifted)Hilbert transformwhich
is down-sampledby a factorof 32. Theappropriateauditoryfilter
slopesarecreatedby spectralconvolution with a spreadingfunc-
tion. This complex convolution increasesthe temporalresolution
of the original filters, but the filter bankis computationallycom-
plex andthe linearphaseresponseis not in line with theauditory
system.Furthermore,thedown-samplingcancreatealiasingdis-
tortionsin thehigh frequency bands.

In this paper, a novel filter-bankstructureis proposed.This
structureis suitablefor achieving thetime- andfrequency resolu-
tion necessaryto simulatepsychophysicaldatacloselyrelatedto
cochlearspectraldecompositionproperties,andit overcomesthe
describeddrawbacksof known approaches.Thefilter-bankstruc-
ture is outlinedin Section2. It consistsof a cascadeof low-order
IIR filters. Thecascadestructureinherentlysupportssamplingrate
reductiondueto the continuouslydecreasingcutoff frequency in
thecascade.

In Section3, anexampleis given in which thefilter-bankco-
efficientsareoptimizedfor modelingof maskedthresholdpatterns
of narrow-bandmaskers. Thegeneratedthresholdsareappliedto
perceptualaudiocoding.

Resultsandconclusionsfrom thisstudyaregivenin Section4.

2. FILTER-BANK STRUCTURE

The peripheralauditorysystemperformsspectralanalysisof the
inputacousticsignalwith spectrallyhighly overlappingband-pass
filters. The non-uniformfrequency resolutionandbandwidthsof
thesefilters is approximatedin theproposedstructureby cascaded
IIR filters. Figure1 shows theproposedfilter bankstructurewith
low-pass(LPF) andhigh-pass(HPF)filters. TheLPFsin thecas-
cadehave a decreasingcutoff frequency from left to right (see
Fig. 1). EachLPF outputis connectedto anHPF. TheHPFcutoff
frequency is equalto thecutoff frequency of theLPFcascadeseg-
mentbetweenthe filter-bankinput andthe HPF input. Thus,the
outputof eachHPFhasa band-passcharacteristicwith respectto
thefilter-bankinput signal. Thebasicblock of anLPF connected
to anHPF, asshown in Fig. 1, is calleda filter-banksection.

Figure1: Block diagramof filter-bankstructure.



The decreasingcutoff frequency of the LPF cascadepermits
a reductionof samplingrate,which reducescomputationalcom-
plexity. A simpleandefficient way to implementa “stage-wise”
samplingrate reductionis shown in Fig. 2, wherea stagecom-
prisesa groupof all cascadedfilter-banksectionswith equalsam-
pling rate. The rate reductionby a factorof two is achieved by
leaving out every secondsampleat the stageinput. It is applied
whenthe cutoff frequency of the LPF cascadeoutput is below a
givenratio with respectto thesamplingfrequency in thatstageto
limit aliasing.

Figure2: Down-samplingschemeof filter-bank.

Thefilter ordersof all HPFsaswell astheordersof all LPFs
are the same. The LPF andHPF order can be chosenindepen-
dentlyandshouldbelargeenoughto accuratelymodelthespectral
decompositionfeaturesfoundin relevantpsychophysicaldata.The
examplebelow shows thatanLPF orderof 2 andanHPForderof
4 is sufficient to modelmasking. After the ordersarefixed, the
filter coefficientscanbedeterminedby anoptimizationalgorithm,
which minimizesanerrorfunctionof theresponsesof thedesired
filters andthe proposedfilter bank. The responsesof the desired
filters aregenerallyderivedfrom psychophysicalmeasurements.

3. APPLICATION EXAMPLE

This sectionoutlinestheperformanceof thefilter bankfor anap-
plicationexample.Thedesiredmagnitudefrequency responsesof
thefiltersarederivedfrom psychophysicalmaskingdata.Thefilter
ordersof theHPFsandLPFsdeterminetheachievableaccuracy of
thedesiredfrequency-responseapproximation.They werechosen
aslow aspossibleto minimizecomputationalcomplexity.

A simplifiedblock diagramof themasked thresholdmodelis
given in Fig. 3. It is basedon a psychophysiologicalmodelde-
scribedin [3]. Thecochlearfilters of that modelarereplacedby
the proposedfilter bank. The input acousticsignal is processed
by anouter- andmiddle-ear(OME) filter, which approximatesthe
filter characteristicof thesepartsof theauditorysystem.Theout-
put signal is spectrallydecomposedby the filter bank,which ap-
proximatesthe frequency-dependentspreadof masking.The en-
velopeof eachband-passsignal is approximatedby rectification
andlow-passfiltering. Theamountof envelopefluctuationis esti-
matedandusedto adjustthemaskedthresholdlevel by subtracting
a fluctuation-dependentoffset from the envelopelevel. For high
fluctuationsthemaskedthresholdis assumedto haveahigherlevel
thanfor low fluctuationsat thesameenvelopelevel. Thisproperty
is relatedto the asymmetryof masking[4], which othermodels
take into accountby a tonality estimation.Temporalsmearingis
appliedto theoffset-adjustedthresholdsin orderto take properties
of temporalmasking,e.g. pre- andpost-masking,into account.
The smearingis motivatedby the fact that temporalmaskingis
mainlycreatedin theauditorysystemaftercochlearfiltering.

Figure3: Block diagramof maskedthresholdmodel.

Theaim of themodelis to derive themasked thresholdlevel
at the outputof eachchannelfor an assumedprobeat the center
frequency of thatchannel.Thedesiredfrequency responsesof the
filter bankarederivedfrom maskingpatternsof narrow-bandnoise
maskers. For this type of masker, the envelopefluctuationat the
filter outputsis assumedto be at the upperbound. Due to the
stationarymasker, temporalmaskingeffectscanbeneglectedand
theoutputmasked thresholdof themodeldependsmainly on the
filter-bankandOME-filter characteristic.

Dueto theasymmetricfrequency spreadof masking,a probe
at a higher frequency thanthe masker frequency is exposedto a
largermaskingeffectthanaprobeatalowerfrequency. Thisasym-
metrycanbemodeledbyafilter thatproducesmoreattenuationfor
a masker above thecenterfrequency thanfor a masker below the
centerfrequency. Thus,theband-passfilter slopesshouldbeasym-
metricalwith a moreshallow slopetowardslower frequencies.In
simplemaskingmodels,whichareadoptedhere,maskingpatterns
are often describedby two constantslopeson a level vs. Bark
scale.Theseslopesarechosento be8 dB/Barkand-25 dB/Bark.
For simplicity, the Bark scaleis approximatedby a logarithmic
frequency scale. This approximationis in good agreementwith
psychophysicaldatafor frequenciesabove 1 kHz.

3.1. Desired Frequency Responses

Thedesiredfilter-bankcenterfrequenciesareuniformlydistributed
on a logarithmicscale,coveringthefull rangeof audiblefrequen-
cies. The spacingis a quarterof a critical bandandthe critical-
bandwidth is assumedto beequalto 20%of thecenterfrequency.
Thus, the filter centerfrequency
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The first term in (2) describesthe steepfilter slopetowards

high frequencieswith a steepnessof

3 485 . The low-frequency



slopeisdeterminedby thesecondtermandhasasteepnessof

3 G�5 .
Thetransitionbetweenthetwo slopesis controlledby aresonance
quality factor K .
3.2. Filter-Bank Response and Model Output

In orderto minimizecomputationalcomplexity, theLPFsandHPFs
arerealizedasIIR filters. Additional advantagesof IIR over FIR
filters consistof the reducedgroup delay and a phaseresponse
bettermatchedwith the auditorysystem. Given the desiredfre-
quency responses,their filter coefficientscanbe optimizedusing
standardtechniques,e.g. the dampedGauss-Newton methodfor
iterative search[5] availablein MATLAB RTS . A reasonablygood
approximationof thedesiredresponsesis alreadyachieved by an
HPF orderof 4 andan LPF orderof 2. Figure4 shows the de-
siredandtheresultingmagnitudefrequency responseof thefilter
at 1002Hz centerfrequency. Near the centerfrequency
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deviation is small.At low frequencies,thedeviationreachesabout
10 dB at 100 Hz. However, dueto the high dampingin this fre-
quency rangefar from thecenterfrequency, this deviation is con-
sideredto haveonly minoreffectsfor applicationsin audiocoding.
Thedistributionof theapproximationerrorcanbecontroledby us-
ing a frequency-dependentweightingfunction for theerror in the
optimizationalgorithm.
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Figure 4: Desired(dashed)and achieved (solid) magnitudere-
sponseof the filter-bank channelat
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. The inset

shows in detail theresponsenearthecenterfrequency. The input
audiosamplingfrequency is 44.1kHz.

Figure5 shows the resultingfilter-bankresponsesof stage2.
Thefrequency scaleis normalizedby half thesamplingfrequency
of that stage. The responseshave basicallythe sameshapeon a
logarithmicscale. They areshiftedaccordingto their centerfre-
quency andarehighly overlapping.

The phaseresponsesof the filter-bankchannelin Fig. 4 and
its neighborsareshown in Fig. 6. Thesephaseresponsesarede-
terminedby the minimum-phasedesignof all LPFs and HPFs,
which waschosenin accordancewith known modelsof cochlear
hydromechanics.Thus, the phasequalitatively agreeswith mea-
surementsof basilarmembranemotionin thecochlea[6].

Figure 7 shows the location of the LPF polesand zerosin
stage2. Due to their distancefrom the unit circle, implementa-
tion problemscausedby limited arithmeticprecisionareunlikely.
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Figure5: Magnitudefrequency responsesof thefilter-bankchan-
nelsin stage2.
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Figure 6: Phaseresponsesof the filter-bank channelat
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andneighboringchannels.
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Figure7: Pole-zeroplot of the LPF cascadein stage2 ( \ Zero,] Pole).

Figure8 showsthelogarithmof theimpulseresponseenvelope
for a filter centerfrequency of 1002Hz. Themodelingof tempo-
ral maskingrequiresthat the temporalspreadof a filter which is
reflectedby its impulseresponsedoesnotexceedthelimits of pre-
andpost-masking.Premaskingis generallyconsideredto last for
a few millisecondsbeforea masker is switchedon. Thetemporal
filter responseis in thesametime range,sinceit reachesthemax-
imum after 3 ms. Post-maskingcan last for about200 ms after
a masker is switchedoff [7]. Sincethe temporalfilter response



shows a dampingof morethan100dB after36msfrom themaxi-
mum,it fulfills theconditionsabove.

Thetimeneededfor theenvelopeto fall below a giventhresh-
old decreaseswith increasingfilter centerfrequency. Thisduration
is approximatelyinverselyproportionalto the centerfrequency.
Thus,thefilter responsesabove 1002Hz do not exceedthelimits
of temporalmasking.Thetime for reachingtheimpulseresponse
maximumexceeds3 msatcenterfrequencieswell below 1002Hz.
It is assumedherethatpremaskingdurationincreasesat lower fre-
quenciesaswell, sothatthepremaskingdurationis not exceeded.

0 5 10 15 20 25 30 35 40
−120

−100

−80

−60

−40

−20

0

time [ms]

le
ve

l [
dB

]

Figure8: Envelopeof impulseresponseof thefilter-bankchannel
at
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Preliminaryresultsfrom the model shown in Fig. 3 for the
masked thresholdof a 160 Hz-wide Gaussiannoisemasker cen-
teredat1 kHz areoutlinedin Fig. 9. Thedifferentmaskingcurves
arerandomlyselectedsamplesfrom different time instancesand
reflectthefluctuatingnatureof themasker. Themaskedthreshold
at theoutputof eachmodelchannelis assignedto thechannelcen-
ter frequency. E.g.,a probesignalat a channelcenterfrequency is
assumedto beinaudible,if its level is below thecalculatedmasked
threshold.
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Figure9: Simulatedmaskedthresholdfor 160-Hzwide60dB SPL
Gaussiannoisecenteredat 1 kHz. The thresholdpatternswere
generatedby themodelin Fig. 3 at four randomlyselectedtimes

4. RESULTS AND CONCLUSIONS

Themodelof Fig. 3 wasappliedto a pre-filter-basedaudiocoder
[8]. This coderis designedto supportquantizationnoiseshap-
ing with non-uniformspectralresolutionaccordingto theauditory

system.Codingresultswith theaim of transparency weresubjec-
tively comparedwith the referencecoder[8], which is controlled
by aperceptualmodelbasedonauniformspectraldecomposition.

An informal subjective assessmentof codedsignalsindicates
an overall improved quality anda significantlyhigherquality for
themostcritical speechandmusicmaterialatthesameaveragebit-
rate.This resultsuggestsa superiorperformanceof theperceptual
modelwith theproposedfilter bank.

In the applicationexample,the proposedfilter bankneedsa
totalof 517multiply-accumulateinstructionsfor theprocessingof
oneinputsampleatasamplingrateof 44.1kHz. A rangeof center
frequenciesfrom 20Hz to 20kHz is coveredby 150filter channels
or sections.This is in contrastto thefilter bankin [2], which has
265%thecomplexity andonly 27%thenumberof channels.

Thefilter bankcanbeadaptedto applicationsthatrequirefre-
quency responsesdifferent from the exampleabove. This flex-
ibility also permitsdifferent frequency spacingsor bandwidths,
e.g. accordingto a Bark or ERB scale[9], by defining the ap-
propriatedesiredfrequency response

� �����
for eachfilter channel.

Thustheproposedfilter-bankstructureprovidesa flexible frame-
work for approximatingtheauditorytime- andfrequency resolu-
tion in differentapplications.In contrastto auniformtransformor
FIR filters, it achievesa phaseresponsein betteragreementwith
cochlearfilters andpreservesthephase-relatedinteractionof fre-
quency componentsin eachcritical band. It hassignificantlyless
computationalcomplexity thanthefilter bankin [2].
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