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ABSTRACT

Marny applicationsin auditory modeling require analysisfilters
thatapproximatethe frequeng selectvity given by psychophysi-
caldata,e.g.from maskingexperimentsusingnarrov-bandmask-
ers.Thisfrequeng selectvity is largelydeterminedy thespectral
decompositiorprocesdnsidethe humancochlea.Currentlyused
spectraldecompositiorschemedor maskingmodelingin audio
coding generallydo not achieze the non-uniformtime and fre-
queng resolutionprovided by the cochlea. Theseapplications
rathertake advantageof the computationakfficiencgy of uniform
filter banksor transformsat the expenseof codinggain.

This paperpresentsa suitable analysisfilter-bank structure
emplgying cascadedow-orderlIR filters and appropriatedonn-
samplingto increaseefficiengy. In an applicationexample, the
filter responsewereoptimizedto modelauditorymaskingeffects.
Theresultsshav thatthetime andfrequeng resolutionof thefilter
bankmatchesr exceedsthe maskingproperties.Thus, the filter
bankenablesmproved maskingmodelingfor audiocodingatlow
computationatosts.

1. INTRODUCTION

Humanauditoryfrequeng selectvity is largely determinedy sig-
nal processingn the cochlea.The cochleaprovidesband-paséil-
teredversionsof theinput signalthataresubsequentlyransduced
into neuralsignalsby the inner hair cells. The associatedand-
passfilters have increasingbandwidthwith increasingcenterfre-
gueny andanasymmetridrequeng response.

In perceptualaudio coding, the audio signal is treatedas a
masler for distortionsintroducedby lossydatacompressionFor
this purpose the masled thresholdis approximateddy a percep-
tual model. Existing perceptuamodels.e.g. [1], employ anFFT-
basedransformto derive a spectraldecompositiorof theacoustic
signal asfirst processingstep. The non-uniformspectralresolu-
tion of the auditory systemis taken into accountby summingup
theenegiesof theappropriatenumberof neighboring=FT bands.
The phaserelation betweenspectralcomponentswithin an audi-
tory filter bandis not taken into accountby the summationof
enepies. The temporalresolutionof the spectraldecomposition
is determinedby the transformsize and is thus constantacross
all auditorybands. This resultsin a significantlylower temporal
resolutionat high centerfrequenciesn comparisorwith the cor-
respondingauditory filters. Thesedeviations lead to inaccurate
modelingof maskingandsuboptimalodinggain.

A highertemporalresolutionis achiezed by the non-uniform
filter bankin the“Advancedversion”of theaudioquality measure-
mentstandard?2]. Eachof those40 critical-bandfilter pairsis re-
alizedasFIR filter. The outputof eachfilter pairis a critical-band

signalandits (90 degreesphase-shiftedHilbert transformwhich
is down-sampledby afactorof 32. Theappropriateauditoryfilter
slopesare createdby spectralconvolution with a spreadingunc-
tion. This complex convolution increaseshe temporalresolution
of the original filters, but the filter bankis computationallycom-
plex andthelinear phaseresponsés notin line with the auditory
system.Furthermorethe dovn-samplingcancreatealiasingdis-
tortionsin the high frequeng bands.

In this paper a novel filter-bank structureis proposed. This
structureis suitablefor achiezing thetime- andfrequeng resolu-
tion necessaryo simulatepsychophysicatlatacloselyrelatedto
cochlearspectraldecompositiorproperties,andit overcomeshe
describeddravbacksof knowvn approachesThefilter-bankstruc-
tureis outlinedin Section2. It consistsof a cascadef low-order
IIR filters. Thecascadstructurenherentlysupportsamplingrate
reductiondueto the continuouslydecreasingutof frequeng in
thecascade.

In Section3, anexampleis givenin which thefilter-bankco-
efficientsareoptimizedfor modelingof maskedthresholdoatterns
of narrav-bandmaslers. The generatedhresholdsareappliedto
perceptuahudiocoding.

Resultsandconclusiongrom this studyaregivenin Sectiord.

2. FILTER-BANK STRUCTURE

The peripheralauditory systemperformsspectralanalysisof the
input acousticsignalwith spectrallyhighly overlappingband-pass
filters. The non-uniformfrequeng resolutionand bandwidthsof
thesdfiltersis approximatedn the proposedstructureby cascaded
IIR filters. Figurel shavs the proposedilter bankstructurewith
low-pass(LPF) andhigh-pasgHPF)filters. The LPFsin the cas-
cadehave a decreasingcutoff frequeng from left to right (see
Fig. 1). EachLPF outputis connectedo anHPFE The HPF cutof
frequeny is equalto the cutof frequeng of the LPF cascadesey-
mentbetweernthe filter-bankinput andthe HPF input. Thus,the
outputof eachHPF hasa band-passharacteristiavith respecto
thefilter-bankinput signal. The basicblock of an LPF connected
to anHPF, asshavn in Fig. 1, is calledafilter-banksection.
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Figurel: Block diagramof filter-bankstructure.



The decreasingutof frequeng of the LPF cascadgermits
a reductionof samplingrate, which reducescomputationaktom-
plexity. A simpleandefficient way to implementa “stage-wise”
samplingrate reductionis shavn in Fig. 2, wherea stagecom-
prisesa groupof all cascadedilter-banksectionswith equalsam-
pling rate. The rate reductionby a factor of two is achieved by
leaving out every secondsampleat the stageinput. It is applied
whenthe cutoff frequeng of the LPF cascadeutputis belov a
givenratio with respecto the samplingfrequeng in thatstageto
limit aliasing.
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Figure2: Down-samplingschemeof filter-bank.

Thefilter ordersof all HPFsaswell asthe ordersof all LPFs
arethe same. The LPF and HPF order can be chosenindepen-
dentlyandshouldbelargeenougtto accuratelymodelthe spectral
decompositiorieaturegoundin relevantpsychophysicalata. The
examplebelov shavs thatan LPF orderof 2 andanHPF orderof
4 is sufiicient to modelmasking. After the ordersarefixed, the
filter coeficientscanbedeterminedy anoptimizationalgorithm,
which minimizesan errorfunction of the responsesf the desired
filters andthe proposedilter bank. The responsesf the desired
filters aregenerallyderived from psychophysicamneasurements.

3. APPLICATION EXAMPLE

This sectionoutlinesthe performanceof the filter bankfor anap-
plicationexample. The desiredmagnituderequenyg responsesf

thefiltersarederivedfrom psychophysicainaskingdata. Thefilter

ordersof theHPFsandLPFsdetermingheachiezableaccurag of

the desiredfrequeng-responsapproximation.They werechosen
aslow aspossibleto minimize computationatompleity.

A simplified block diagramof the masled thresholdmodelis
givenin Fig. 3. It is basedon a psychophysiologicainodel de-
scribedin [3]. The cochlearfilters of that modelarereplacedby
the proposedfilter bank. The input acousticsignalis processed
by anouter andmiddle-eafOME) filter, which approximateshe
filter characteristiof thesepartsof the auditorysystem.The out-
put signalis spectrallydecomposedby the filter bank, which ap-
proximatesthe frequeng-dependenspreadof masking. The en-
velopeof eachband-passignalis approximatedy rectification
andlow-passfiltering. The amountof envelopefluctuationis esti-
matedandusedto adjustthemasledthresholdevel by subtracting
a fluctuation-dependentffset from the envelopelevel. For high
fluctuationghemasledthresholds assumedio have ahigherlevel
thanfor low fluctuationsatthe sameervelopelevel. This property
is relatedto the asymmetryof masking[4], which other models
take into accountby a tonality estimation. Temporalsmearingis
appliedto the offset-adjustedhresholdsn orderto take properties
of temporalmasking,e.g. pre- and post-maskingjnto account.
The smearingis motivated by the fact that temporalmaskingis
mainly createdn the auditorysystemafter cochleaffiltering.
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Figure3: Block diagramof masledthresholdmodel.

The aim of the modelis to derive the masled thresholdlevel
at the output of eachchannelfor an assumedrobeat the center
frequeng of thatchannel.The desiredfrequeng responsesf the
filter bankarederivedfrom maskingpatternf narrav-bandnoise
maslers. For this type of masler, the ervelopefluctuationat the
filter outputsis assumedo be at the upperbound. Due to the
stationarymasler, temporalmaskingeffectscanbe neglectedand
the outputmasled thresholdof the modeldependsnainly on the
filter-bankandOME-filter characteristic.

Dueto the asymmetridrequeng spreadof masking,a probe
at a higherfrequeny thanthe masler frequeng is exposedto a
largermaskingeffectthanaprobeatalowerfrequeng. Thisasym-
metrycanbemodeledby afilter thatproducesnoreattenuatiorfor
amasler abore the centerfrequeng thanfor a masler below the
centerfrequeny. Thus,theband-pas§lter slopeshouldbeasym-
metricalwith a moreshallav slopetowardslower frequenciesin
simplemaskingmodels which areadoptechere maskingpatterns
are often describedby two constantslopeson a level vs. Bark
scale. Theseslopesarechoserto be 8 dB/Barkand-25 dB/Bark.
For simplicity, the Bark scaleis approximatedoy a logarithmic
frequeng scale. This approximationis in good agreementvith
psychophysicatiatafor frequenciesabore 1 kHz.

3.1. Desired Frequency Responses

Thedesiredilter-bankcenterfrequenciesireuniformly distributed
on alogarithmicscale,coveringthefull rangeof audiblefrequen-
cies. The spacingis a quarterof a critical bandandthe critical-
bandwidth is assumedo be equalto 20% of the centerfrequeng.
Thus, thefilter centerfrequeny f.(k) of channelk is relatedto
channelk — 1 by (1). Thedesiredmagnituderequeny response
|H(f)| of onechannekwith the cutof at f. is definedin (2).
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The first termin (2) describeghe steepfilter slopetowards
high frequencieswith a steepnes®f Sip. The low-frequeny



slopeis determinedy thesecondermandhasasteepnessf Sup.
Thetransitionbetweerthetwo slopesis controlledby aresonance
quality factorg.

3.2. Filter-Bank Response and Model Output

In orderto minimizecomputationatompleity, theLPFsandHPFs
arerealizedaslIR filters. Additional advantagesf IIR over FIR
filters consistof the reducedgroup delay and a phaseresponse
bettermatchedwith the auditory system. Given the desiredfre-
queng responsesheir filter coeficients canbe optimizedusing
standardechniquesge.g. the dampedGauss-Neton methodfor
iterative search5] availablein MATLAB ™. A reasonablygood
approximationof the desiredresponsess alreadyachievzed by an
HPF order of 4 andan LPF orderof 2. Figure4 shavs the de-
siredandtheresultingmagnitudefrequeng responsef the filter
at 1002 Hz centerfrequeng. Nearthe centerfrequeny f., the
deviationis small. At low frequenciesthedeviationreachesbout
10 dB at 100 Hz. However, dueto the high dampingin this fre-
queng rangefar from the centerfrequeng, this deviation is con-
sideredo have only minor effectsfor applicationdgn audiocoding.
Thedistribution of theapproximatiorerrorcanbecontroledby us-
ing a frequeng-dependentveightingfunction for the errorin the
optimizationalgorithm.
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Figure 4: Desired(dashed)and achieved (solid) magnitudere-
sponseof the filter-bank channelat fo = 1002 Hz. Theinset
shaws in detail the responsenearthe centerfrequeng. Theinput
audiosamplingfrequeny is 44.1kHz.

Figure5 shaws the resultingfilter-bankresponsesf stage2.
Thefrequeng scaleis normalizedby half the samplingfrequeng
of that stage. The responsesave basicallythe sameshapeon a
logarithmicscale. They areshifted accordingto their centerfre-
queng andarehighly overlapping.

The phaseresponsesf the filter-bank channelin Fig. 4 and
its neighborsareshavn in Fig. 6. Thesephaseresponsearede-
terminedby the minimum-phasedesignof all LPFs and HPFs,
which waschosenin accordancevith knovn modelsof cochlear
hydromechanicsThus, the phasequalitatively agreeswith mea-
surement®f basilarmembranemotionin the cochleg6].

Figure 7 shavs the location of the LPF polesand zerosin
stage2. Due to their distancefrom the unit circle, implementa-
tion problemscausedy limited arithmeticprecisionareunlikely.
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Figure5: Magnitudefrequeng responsesf the filter-bankchan-
nelsin stage2.
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Figure 6: Phaseresponse®f the filter-bank channelat f. =
1002 Hz andneighboringchannels.
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Figure 7: Pole-zeroplot of the LPF cascaden stage2 (o Zero,
x Pole).

Figure8 shavsthelogarithmof theimpulseresponservelope
for afilter centerfrequeng of 1002Hz. The modelingof tempo-
ral maskingrequiresthat the temporalspreadof a filter which is
reflectedby its impulseresponseloesnot exceedthelimits of pre-
andpost-masking.Premaskings generallyconsideredo lastfor
a few millisecondsbeforea masler is switchedon. Thetemporal
filter responsés in the sametime range sinceit reacheshe max-
imum after 3 ms. Post-maskingcanlast for about200 ms after
a masler is switchedoff [7]. Sincethe temporalfilter response



shavs adampingof morethan100dB after36 msfrom the maxi-
mum, it fulfills the conditionsabove.

Thetime neededor theernvelopeto fall belav a giventhresh-
old decreasewith increasindilter centerfrequeng. Thisduration
is approximatelyinversely proportionalto the centerfrequeng.
Thus, thefilter responseabove 1002Hz do not exceedthe limits
of temporalmasking. Thetime for reachingtheimpulseresponse
maximumexceeds3 msatcenterfrequenciesvell belov 1002Hz.
It is assumedherethatpremaskinglurationincreasestlower fre-
guenciesaswell, sothatthe premaskinglurationis not exceeded.
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Figure8: Envelopeof impulseresponsef thefilter-bankchannel
at fo = 1002 Hz.

Preliminaryresultsfrom the model shawvn in Fig. 3 for the
masled thresholdof a 160 Hz-wide Gaussiamoisemasler cen-
teredat 1 kHz areoutlinedin Fig. 9. Thedifferentmaskingcurves
arerandomlyselectedsampledrom differenttime instancesand
reflectthefluctuatingnatureof the masler. The masledthreshold
attheoutputof eachmodelchanneis assignedo thechanneken-
terfrequeng. E.g.,aprobesignalata channekenterfrequeny is
assumedo beinaudible,if its level is below thecalculatednasled
threshold.
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Figure9: Simulatednasledthresholdor 160-Hzwide 60dB SPL
Gaussiamoisecenteredat 1 kHz. The thresholdpatternswere
generatedby themodelin Fig. 3 atfour randomlyselectedimes

4. RESULTSAND CONCLUSIONS

The modelof Fig. 3 wasappliedto a pre-filterbasedaudiocoder
[8]. This coderis designedto supportquantizationnoise shap-
ing with non-uniformspectraresolutionaccordingo theauditory

system.Codingresultswith the aim of transparencweresubjec-
tively comparedwith the referencecoder[8], which is controlled
by aperceptuamodelbasedon auniform spectraldecomposition.

An informal subjectve assessmertf codedsignalsindicates
an overall improved quality anda significantly higherquality for
themostcritical speectandmusicmaterialatthe sameaveragebit-
rate. Thisresultsuggests superiomperformancef the perceptual
modelwith the proposedilter bank.

In the applicationexample,the proposedilter bank needsa
total of 517 multiply-accumulatenstructionsfor the processingf
oneinputsampleatasamplingrateof 44.1kHz. A rangeof center
frequenciesrom 20Hz to 20kHz is coveredby 150filter channels
or sections.This is in contrastto thefilter bankin [2], which has
265%the compleity andonly 27%the numberof channels.

Thefilter bankcanbe adaptedo applicationghatrequirefre-
queng responsedlifferent from the exampleabore. This flex-
ibility also permitsdifferent frequeng spacingsor bandwidths,
e.g. accordingto a Bark or ERB scale[9], by defining the ap-
propriatedesiredrequeny responsed (f) for eachfilter channel.
Thusthe proposedilter-bankstructureprovidesa flexible frame-
work for approximatingthe auditorytime- andfrequeng resolu-
tion in differentapplicationsln contrasto a uniformtransformor
FIR filters, it achievesa phaseresponseén betteragreementwith
cochleaffilters andpreseresthe phase-relatethteractionof fre-
guengy componentsn eachcritical band. It hassignificantlyless
computationatompleity thanthefilter bankin [2].
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