
ADAPTIVE PLAYOUT SCHEDULING USING TIME-SCALE MODIFICATION
IN PACKET VOICE COMMUNICATIONS

Yi J. Liang, Nikolaus Färber, Bernd Girod

Information Systems Laboratory, Department of Electrical Engineering
Stanford University, Stanford, CA 94305
{yiliang, nfaerber, bgirod}@stanford.edu

ABSTRACT

A new receiver-based playout scheduling scheme is proposed,
which estimates the network delay from past statistics and adap-
tively adjusts the playout time of the voice packets. In contrast
to previous work, the adjustment is not only performed in be-
tween talkspurts, but also within the talkspurts in a highly dy-
namic way. Proper reconstruction of continuous output speech is
achieved by scaling individual voice packets using a time-scale
modification technique which modifies the rate of playout while
preserving voice pitch. Subjective listening tests show that this
operation does not impair audio quality. Simulation results based
on Internet measurement indicate that buffering delay and loss rate
can be significantly reduced by adaptive scheduling.

1. INTRODUCTION

Quality of service (QoS) has been one of the major concerns in the
context of voice communication over packet networks such as the
Internet. Legacy networks and today’s Internet protocol, however,
only provide services on a best-effort basis without any promise
of quality. Transmission delay, delay variation (also known as jit-
ter) and loss have been the major challenges for real-time voice
communications. Considerable efforts have been made in differ-
ent layers of current communication systems to decrease the delay,
smooth the jitter and recover the loss.

One important functionality to be implemented on the appli-
cation layer is the playout scheduling of the voice packets. Playout
scheduling is desired at the receiving end in order to continuously
play out audio despite delay variations on the network, and the
scheduling algorithm greatly affects the quality of service deliv-
ered to the end user. In previous work [1] - [4], a playout buffer
is employed at the receiver to absorb the delay jitter before out-
putting the audio. This introduces additional buffering delay by
holding packets until their scheduled playout time. Any packet
arriving later than the scheduled deadline has to be discarded, re-
sulting in loss. Obviously, there exists a tradeoff between delay
and loss. Scheduling a later deadline increases the possibility of
playing out more packets and results in lower loss rate, but at the
cost of higher buffering delay. Vice versa, it is difficult to decrease
the buffering delay without boosting the loss rate.

In this paper we propose a new playout scheduling scheme to
improve this tradeoff. In this scheme, we adaptively adjust the
playout schedule of each individual packet according to the vary-
ing network condition, even during voiced periods. The proper

This work has been supported by a gift from Netergy Networks, Inc.,
Santa Clara, CA.

reconstruction of continuous output audio is achieved by scaling
the voice packets using a time-scale modification technique. By
adjusting the playout time in a more dynamic way, we are able to
reduce the delay and loss rate significantly and improve the overall
performance.

This paper is organized as follows. Section 2 describes the
basic principle of the new algorithm. Section 3 describes the scal-
ing of the voice packet using time-scaling techniques. Section 4
presents the results of performance comparison of different algo-
rithms and subjective listening tests, and Section 5 presents our
conclusions.

2. ADAPTIVE PLAYOUT SCHEDULING

Fig. 1 (a)-(c) illustrate the three basic scheduling schemes that are
investigated in this paper. The simplest method, denoted as Algo-
rithm 1 in the following, uses a fixed playout deadline for all the
voice packets in a session, as depicted in Fig. 1 (a). It is not very
effective in keeping both delay and loss rate low enough, as the
statistics of the network delay keep changing and a fixed playout
time does not reflect this variation. Improved playout algorithms
were proposed in [1] - [4], which keep monitoring the network de-
lay and adaptively adjust the playout time during unvoiced periods.
This is based on the observation that during a typical conversation,
the session can be grouped into talkspurts gapped by silence peri-
ods. The playout time of a new talkspurt may therefore be adjusted
by extending or shortening the silence periods between talkspurts.
This approach is denoted Algorithm 2 in the following and pro-
vides some advantage over Algorithm 1 as illustrated in Fig. 1 (b).
However, the effectiveness is limited when the talkspurts are long,
and the network delay variation is high within talkspurts.

In the new scheduling scheme proposed in this paper, the play-
out time is not only adjusted in silence periods, but also within
talkspurts. Each individual packet may have a different scheduled
playout time, which is set according to the varying delay statistics.
This method is denoted as Algorithm 3 and illustrated in Fig. 1 (c).
For the same delay trace, the new algorithm is able to effectively
mitigate loss by adapting the playout time in a more dynamic and
reactive way to the varying network delay.

To describe the dynamic selection of playout times more pre-
cisely, we introduce the following notation illustrated in Fig. 2. We
denote the time when a packet is sent, received, and played out by
tis, t

i
r and tip respectively, where i = 1, 2, . . . N denotes the packet

sequence number. We assume that the sender transmits packets at
a constant packetization time L0, i.e., ti+1s − tis = L0 = const..
The buffering delay is then given by dib = t

i
p − tir, while the net-

50 100 150 200 250
120

140

160

180

de
la

y
(m

s)

50 100 150 200 250
120

140

160

180

de
la

y
(m

s)

50 100 150 200 250
120

140

160

180

de
la

y
(m

s)

Network Delay dn
i

Total End-to-end Delay dt

i

(a)

(b)

(c) Packet sequence number

Fig. 1. Different playout scheduling schemes (a) fixed playout
time (b) between talkspurt adjustment (c) within talkspurt adj.

dn db

Sender

Receiver

Playout

Time

i i+1 i+2 i+3
Packet Sequence Number

tpi

tri

tsi

i+4

Ldmax
i

ts

tr

tp

i

i i

L0

Fig. 2. Timing relationship for adaptive scheduling.

work delay din is given by din = t
i
r−tis. The total end-to-end delay

dit, is the sum of the two quantities above, i.e., dit = d
i
n + d

i
b. We

also denote the number of packets sent in a stream by N , and the
set of received packets by R = {i|tir <∞}.

The task of a particular scheduling scheme is to set the max-
imum allowable total delay dimax (playout deadline) for each
packet. Note that for Algorithms 1 and 2, dimax = dmax = const.
for all i belonging to the session or the same talkspurt respectively.
Only for Algorithm 3, the adaptation is actually performed on a
packet by packet basis. As a result, the length of packets that are
played out may differ for each packet, i.e.,

ti+1p − tip = Li . (1)

where Li is the achieved length (in time) of audio packet i. The
required scaling of voice packets is discussed in Section 3.

When evaluating different scheduling schemes we are primar-
ily interested in two quantities. The first one is the average buffer-
ing delay, which is given by

db =
1

|P|
∑

i∈P
(dimax − din) , (2)

where P = {i|tip > tir} is the set of played packets. The second
quantity is the associated late loss rate, given by

εl = (|R| − |P|)/N . (3)

These two metrics also reflect the above mentioned tradeoff be-
tween loss and delay and are used to compare the performance of

different playout scheduling algorithms in Section 4.1. For com-
pleteness we also define the link loss rate as εn = (N − |R|)/N .
The total loss rate is the sum of these two quantities, i.e., ε =
εn + εl.

The basic operation of the playout process is as follows. When
a new packet i arrives, its network delay din is obtained from the
RTP header it carries. Delay din, together with past delays, is taken
into consideration to estimate delay di+1n and playout time ti+1p
of the next incoming packet. The current packet i is then scaled
immediately, if necessary, according to Li calculated by (1). If
the delay of the next packet is correctly estimated, the next packet
should arrive before the last sample of the current packet is played.
Usually packets are scaled to either retard the speech when the net-
work delay is increasing, or speed up the speech when it is decreas-
ing. It is important to note that this scheme does not introduce any
additional delay other than processing delay.

It can be observed from (2) that for Algorithm 3, if the playout
deadline dimax is chosen close enough to din, the buffering delay
can be reduced. At time i, we set di+1max and hence the playout
time ti+1p for the next packet based on past delay statistics. The
data and histogram of the past w packet delays are collected and
kept, and the histogram of past delays accumulated at time i is
denoted by hi(dn), with the superscript i indicating the time when
the histogram is updated. According to the user-specified loss rate
ε̂l, di+1max is set to the smallest value satisfying

ε̂l ≤
∞∑

dn=d
i+1
max

hi(dn)/
∞∑

dn=0

hi(dn) . (4)

The expected buffering delay d̂i+1b , given that packet i+1 is played
out (i.e., di+1n < di+1max), is

d̂i+1b =

di+1max∑

dn=0

(di+1max − dn)hi(dn)/
di+1max∑

dn=0

hi(dn) . (5)

Stored past delays are updated continuously, with the oldest values
being discarded and the most recent added. A good feature about
the histogram-based estimation is that the resulting performance
can be directly associated with QoS parameters such as the loss
rate. The user has the option in setting the parameter. In practice,
due to the stringent budget of the end-to-end delay and the good
performance of available loss concealment techniques, we usually
tend to trade the loss rate for even lower delay in order to achieve
better overall performance.

3. SCALING OF VOICE PACKETS

The scaling of voice packets is realized by time-scale modification
based on the Waveform Similarity Overlap-Add (WSOLA) algo-
rithm, which is an interpolation-based method operating entirely
in the time domain. This technique was first used in [5] to scale
long audio blocks, and modified and improved in [6] and [7] for
loss concealment by expanding a block of several packets, where
a delay of 2–3 packet times is introduced due to the multi-packet
operation. Here we have tailored the WSOLA algorithm and im-
proved it to work on only one packet, so that no algorithm delay
will be introduced during the packet scaling - playout process.

To scale an audio packet, we first define a template segment of
constant length in the input, and then search for the similar seg-
ment which has the maximum similarity to the template segment.

The start of the similar segment is searched in a search region, as
is shown in Fig. 3. When working on a single packet, it is more
difficult to locate a similar segment in the input through correlation
calculation, since the realignment of the similar segments must be
done in units of pitch periods and there are fewer pitch periods
in one short packet. To work out this problem, we modified the
WSOLA algorithm to decrease the segment length for correlation
calculation, and to position the first template segment at the be-
ginning of the input packet, as shown in Fig. 3(a). For expanding
short packets, we also move the search region for the first similar
segment to the prior packet in order to have a larger range to look
for similar waveforms, as is suggested by [6]. Although the prior
packet has already been played out at the time of scaling, similar
waveforms can still be extracted from it to construct new output
without delaying the prior packet. Once the similar segment is
found, it is weighted by a rising window and the template segment
weighted by a symmetric falling window. The similar segment fol-
lowed by the rest of the samples in the packet is then shifted and
superimposed with the template segment to generate the output.
The resulting output is longer than the input due to the relative
position of the similar segment found and the shift of the simi-
lar segment, as is shown in Fig. 3(a). The amount of expansion
depends on the position and size of search region defined.

In Fig. 3(a), we can observe from the output waveform that
one extra pitch is created and added as a result of realignment and
superposition of the extracted segments from the input. However,
the extra pitch is not just a simple replication of any pitch from the
input, but the interpolation of several pitches instead. This explains
the reason why the sound quality by time-scale modification is bet-
ter than that by pitch repetition (described in [8]). Same is true for
compressing a packet, where the information carried by a chopped
pitch is preserved and shared by the remaining ones. However, the
single-packet operation described above has the same advantage
as pitch repetition in terms of no added delay.

Packet compression is done in a similar way, with the only dif-
ference being the search region position due to the smaller output
length desired. Comparing the input and output waveforms in Fig.
3 (a) or (b), it becomes obvious that the operation does not mod-
ify the pitch period, or tone, of the input speech. The only thing
changed is the packet length and hence the rate of speech.

An important feature of the operation illustrated in Fig. 3 is
that the beginning and ending samples of the output are kept the
same as those in the input, so that the output and input have the
same interface for concatenation. Modified packets can be sent to
the output queue one after another, back to back, with no need for
merging. This kind of “black box” operation is independent for
each single packet and is very flexible, which is ideal for adaptive
playout time adjustment.

However, as one notices from Fig. 3, the increment and decre-
ment of the packet size has to be at least one pitch period to pre-
serve the tone of speech and the same packet interface for con-
catenation. This discretization of the scaling ratio is in contrast
to the desired playout time and packet length being continuous
quantities. For this reason, we define expansion and compression
thresholds for packet scaling. Only when the desired playout time
advances the current playout time by more than the compression
threshold, do we actually compress a packet to speed up the play-
out. This threshold is usually greater than a typical pitch period of
the present speech. The same is true for stretching a packet, ex-
cept that the two thresholds are asymmetric. To prevent unneces-
sary late loss, we do packet compression conservatively enough to

Fig. 3. Scaling of a voice packet using time-scale modification (a)
extension (b) compression.

avoid dropping the playout time below what we targeted. On the
other hand, by defining smaller expansion thresholds, we stretch
the packet and slow down the playout more readily in order to
adapt to sudden increase of the network delay faster and thus to
avoid any late loss. This kind of asymmetry can be clearly ob-
served in Fig. 1(c). The use of thresholds also introduces hystere-
sis into the algorithm and helps to smooth out the playout jitter.

4. PERFORMANCE COMPARISON AND RESULTS

4.1. Performance Comparison

We compare the performance of the three playout scheduling
schemes described in Section 2, i.e., Algorithms 1-3. We collected
packet delay traces over the Internet by transmitting RTP streams
from a host at Stanford University to remote hosts in 1) Chicago,
2) Germany, 3) MIT, and 4) China, referred to as Traces 1-4 re-
spectively. The measured data represent one-way delay of UDP
packets with payload size of 160 bytes, reflecting 20 ms G.711
coded voice packet using 8-bit quantization and 8 KHz sampling
rate. Each trace covers 9000 packets. The playout of the voice
packets is simulated over each trace using the three algorithms un-
der comparison. The continuous curves with different loss rate and
buffering delay in Fig. 4 are obtained by varying the control pa-
rameters of each particular algorithm, e.g., the user-specified loss
rate determining the playout deadline in Algorithm 3.

Fig. 4 shows the total loss rate (equivalent to the late loss
rate)/link loss rate vs. average buffering delay using different al-
gorithms for the four traces. If targeting a total loss rate of 5% for
Trace 1, the average buffering delay is reduced by 40.0 ms when
using Algorithm 3 instead of 1. Comparing Algorithm 3 with 2 the
gain is still 31.5 ms. If allowing the same buffering delay for dif-
ferent algorithms, Algorithm 3 results in the lowest loss rate. For
Trace 1, if the same 40 ms average buffering time is allowed, the
total loss rate resulting from Algorithm 3 is more than 10% lower
than that from Algorithms 1 and 2. Similar reductions in buffering
delay and loss rate are also obtained in Traces 2-4.

The performance gain of Algorithm 3 over Algorithms 1 and 2

20 40 60 80 100 120
0

5

10

15

20

Lo
ss

 R
at

e
(%

)

Average Buffering Delay (ms)

Trace 1

Total Loss, Alg. 1
Total Loss, Alg. 2
Total Loss, Alg. 3
Link Loss

20 40 60 80
15

20

25

30

Lo
ss

 R
at

e
(%

)

Average Buffering Delay (ms)

Trace 2

10 15 20 25 30 35
0

5

10

Lo
ss

 R
at

e
(%

)

Average Buffering Delay (ms)

Trace 3

20 40 60 80
0

5

10

15

20
Lo

ss
 R

at
e

(%
)

Average Buffering Delay (ms)

Trace 4

Fig. 4. Performance of three playout scheduling algorithms.

Table 1. Subjective test results of packet scaling.
STD of STD of

Network Network End-to- % of
Cond. Delay end Delay Packet Score

(ms) (ms) Scaled

1 19.6 7.5 17.8 4.7
2 20.9 10.5 18.4 4.5
3 65.0 28.2 24.1 4.6

differs from trace to trace though. The performance of Algorithm
3 depends on the accurate prediction of the next delay based on
past delays, and the gain over the other algorithms also depends
on the jitter statistics. For Trace 3, the link between Stanford and
MIT has high throughput, and the jitter is the mildest among all
traces, which explains the lowest gain.

4.2. Subjective Listening Test Results

As seen from previous sections, the superior performance of Al-
gorithm 3 depends on adaptive playout time adjustment, which is
enabled by packet scaling. We performed subjective listening tests
on scaled audio following the degradation category rating (DCR)
method described in Annex D of Recommendation P.800 [9]. In
DCR the speech samples are presented in pairs, in the format of
“original sample - processed sample”. The listeners are asked to
rate the processed sample on a 5-point scale with grades corre-
sponding to 5-degradation inaudible, 4-audible but not annoying,
3-slightly annoying, 2-annoying, 1-very annoying.

Three short traces are extracted from the delay data collected,
which represent medium jitter, high jitter, and extremely high jit-
ter situations, respectively. This yields three processing conditions
listed in Table 1. We simulated playing out six speech samples un-
der each condition using Algorithm 3 with packet scaling to meet
the timing requirement of adaptive scheduling, and generated the
samples to be rated. The scaling ratio (output length/input length)
of the voice packet is between 0.35 and 2.30. In order to focus on
testing the scaling effect, the processed samples do not include any
packet loss. The scores are the averages from eighteen listeners.

As can be seen from Table 1, the degradation due to audio

scaling is almost inaudible, even for extreme cases. One reason for
this finding is that packets actually do not have to be scaled very
frequently as shown in column 4 of Table 1. Even for Condition 3,
fewer than one fourth of the packets were actually scaled to satisfy
the timing requirement of adaptive scheduling.

Also listed in Table 1 are the standard deviation (STD) of the
network delay, which reflects the jitter characteristics for each con-
dition, as well as the standard deviation of the total end-to-end de-
lay, which characterizes the variation of the playout rate, or playout
jitter, within talkspurts. For Algorithm 1, the latter quantity would
be zero. For Algorithm 3, the playout is not necessarily jitter-free.
However the jitter is significantly smoothed by the scheduling al-
gorithm, as is observed from columns 2 and 3 in the table.

5. CONCLUSIONS

In this paper we presented a new receiver-based playout schedul-
ing scheme which improves the end-to-end quality for voice com-
munication over packet networks. The proposed algorithm ef-
fectively reduces buffering delay and loss rate by adapting the
playout schedule to the varying network delay in a highly dy-
namic way. Simulation results based on Internet measurement
have shown significant reductions in average buffering delay and
loss rate produced by the proposed playout scheme. Subjective lis-
tening test results have also substantiated the good quality of the
scaled speech.

6. REFERENCES

[1] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adap-
tive playout mechanisms for packetized audio applications in
wide-area networks,” in Proc. IEEE INFOCOM ’94, June
1994, vol. 2, pp. 680–688.

[2] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio play-
out delay adjustment: Performance bounds and algorithms,”
Multimedia Systems, vol. 6, no. 1, pp. 17–28, Jan. 1998.

[3] J. Pinto and K. J. Christensen, “An algorithm for playout of
packet voice based on adaptive adjustment of talkspurt silence
periods,” in Proc. 24th Conference on Local Computer Net-
works, Oct. 1999, pp. 224–231.

[4] P. DeLeon and C.J. Sreenan, “An adaptive predictor for media
playout buffering,” in Proc. ICASSP99, Mar. 1999, vol. 6, pp.
3097–3100.

[5] W. Verhelst and M. Roelands, “An overlap-add technique
based on waveform similarity (WSOLA) for high quality
time-scale modification of speech,” in Proc. ICASSP 93, Apr.
1993, pp. 554–557.

[6] A. Stenger, K. Ben Younes, R. Reng, and B. Girod, “A new er-
ror concealment technique for audio transmission with packet
loss,” in Proc. European Signal Processing Conf., Sept. 1996.

[7] H. Sanneck, A. Stenger, K. Ben Younes, and B. Girod, “A
new technique for audio packet loss concealment,” in IEEE
GLOBECOM, Nov. 1996, pp. 48–52.

[8] D. J. Goodman et al., “Waveform substitution techniques for
recovering missing speech segments in packet voice commu-
nications,” IEEE Trans. ASSP, vol. ASSP-34, no. 6, pp. 1440–
1448, Dec. 1986.

[9] ITU-T Recommendation P.800, Methods for Subjective De-
termination of Transmission Quality, Aug. 1996.

