FAST IMPLEMENTATION OF TWO-DIMENSIONAL APES AND CAPON
SPECTRAL ESTIMATORS

Erik G. Larsson and Petre Stoica

Dept. of Systems and Control, Uppsala University
P.O. Box 27, SE-751 03 Uppsala, Sweden.
Email: egl@syscon.uu.se

ABSTRACT

The matched-filterbank spectral estimators APES and CAPON

have recently received considerable attention in a number of
applications. Unfortunately, their computational complex-
ity tends to limit their usage in several cases — a problem
that has previously been addressed by different authors. In
this paper, we introduce a novel method to the computa-
tion of the 1D and 2D APES and CAPON spectra, which
is considerably faster than all existing techniques. Numer-
ical examples are provided to demonstrate the application
of APES to synthetic aperture radar (SAR) imaging, and
to illustrate the reduction in computational complexity pro-
vided by our implementation.

1. THE APES AND CAPON ESTIMATORS

Consider the problem of estimating the amplitude spectrum
of a complex-valued two-dimensional signal { X, 5 ivz_ol,;fvzgl
where N x N is the dimension of the data matrix. We re-
quire N > 1 and N > 1, where the special case N = 1 will
be referred to as the 1D case.

The APES and CAPON estimators [7, 1], which we next
describe, are two powerful techniques to solve this problem.
We start by introducing the user parameters M and M,
which are usually referred to as filter lengths. Increasing M
and M typically increases the spectral resolution at the cost
of reducing the statistical stability of the spectral estimates.
Let LAN-—M+1and L 2 N — M+ 1 (in the 1D case
we have M = N = L = 1), and arrange the samples X, 5
in a matrix as

Y £ [yo,o Yr—10 Yo, nyl,Efl] (1)
where
X7 Xyt
Yi1 = vee (: :) 2)
Xl+M—1,i Xl+M—1,f+]\?I—1

and where vec(-) denotes the operation of stacking the columns

of a matrix on top of each other.

THIS WORK WAS PARTLY SUPPORTED BY THE
SWEDISH FOUNDATION FOR STRATEGIC RESEARCH
(SSF).

Define the forward sample covariance matriz

L-1L-1

- 1 " 1 « 7 Y
Rt LSS yi= vy et

=0 =0

and the forward-backward sample covariance matriz
1,. AT
RZ Q(Rf + ¥y Ry ¥) (4)

where Wp denotes a P x P matrix with ones on its anti-
diagonal and zeros everywhere else, (-)7 denotes the trans-
pose and (-)* denotes the conjugate transpose.’

Introduce, for arbitrary integers P and P, the 2D Fourier
vector

ap p(w,w) £ [1 et ei(P_l)“’]T

5
@1 @ ei(ﬁ—l)w]T (5)
where ® denotes the Kronecker product. Define the 2D
Fourier transforms

1 1 L-1L-1 . :
§w,w) = ﬁYaL,L(—wy —w) = 1L Z ; y,je_l(“’H“’l)

1

LL

=0

f/aL, (—w, —@)

i

(6)

where Y is defined in (1) and (2), and Y £ ¥, Y°®, ;.
Here (-)° denotes the complex conjugate.
The amplitude spectrum CAPON (ASC) is defined by

A1

Qi (w,L:))R g(w,d))
paso(w, @) & — - (M)
@ty (DR gy (,@)
and the power spectrum CAPON (PSC) is given by
1
¢rsc(w,®) £ ———1 - (8)
0ty ()R any ()

The APES estimator is defined by

!n this work we treat only the forward-backward estimators.

2. KEY RESULTS

The starting point for deriving the fast implementations is
the following observation.

Lemma 1 Let R71/2 denote the inverse of the Cholesky

—1/2
factor of R and let {rm}MMl be the columns of R .
Consider the following trigonometric polynomials:

Zp(m)* (@, @)™ (@, @ Zp(m) 0, @

pij (W, o)

where

pgm) (w7‘:)) é _—rmYaL,L(_wa _w)
LL
3 (12)

p.‘(s)(w7‘;) £ ErmYaL,L(W, _w)

P (@, @) £ p™" (w, @)p™ (w0, @)

and let

_ 1 (w,w)—2 pos(w,w)

> Nt p22* W ‘)

(w, @) 2 | pis(w,0) p22(w,®) — 2

Then piz(w, @) = pis(w, E))e_i((N_l)‘”+(N_l)‘:'), and further-
more, the ASC, PSC and APES spectra can be expressed as

2y = P2(@,®)

(W, N\
pasl P11 (w,w)

pprsc(w,@) = (13)

P11 (w,w)
and papps(w,®) =

)

€1 &

pio(,@) — & [pro(@,8) prs(w@)] B (w,0) [

=3

2
3)

(
(
()
(

)
)

£ E|& &
€1 &

2
*
2
*
1
*
1

(@) = & [pro(@,8) prs(w@)] B (w,0) [

=S

2
3)

—~

14)

Proof: See [6].
The technique proposed by Liu et al. in [8] for the com-
putation of 1D and 2D APES and ASC evaluates the poly-

nomials in Lemma 1 by using the fact that once R /2,

R?Y ana R7?
polynomial vectors R~

and R71/21~faL,L(—w, —®) can be evaluated using M M 2D
FFTs of size K x K. In [2], Ekman et al. use the same tech-

nique for the evaluation of ASC, with the exception that

L _1/2
the Cholesky factor R is approximated with a struc-
tured matrix obtained by fitting an autoregressive model to
the data. This approximation technique provides efficient

Y were computed, the trigonometric
—1/2

1/2 N _
aM,]VI(w:w): R YaL,E(_w7_w)

means for computing R_I/Q, which is sometimes claimed
to be a bottleneck in the computation of the spectrum (at
least for the 1D case). However, it has turned out that this
technique is not applicable to the computation of the APES
spectrum.

The key observation that leads to our fast implemen-
tation of APES, ASC and PSC is as follows: instead of

computing the values of the MM polynomials pgm)(w,d))
at K x K points, we compute the coefficients of the poly-
nomials p;j(w,) in (11) and upon completion of this com-
putation, each polynomial is evaluated at K x K points
using a single 2D FFT. The computation of the polynomial
coefficients is performed by accumulating the contributions
from p()(w,d)) in the sum in (11).

To exploit this idea optimally, we combine it with some
relevant results on fast computation, which we state next.

Lemma 2 Let w be an arbitrary vector of length MM.
Then the products ™Y and w*Y , where Y and Y are de-
fined above, can be computed in O(NN log(NN)) floating
point operations. The same is true for products of the type
Yu and Yu, where w is a vector of length LL.

Proof: See [6].

The operation count in the lemma should be compared
with direct evaluation of the vector-matrix product u*Y,
which would require O(MMNN) operations. Note that
one, but not the only, useful consequence of Lemma 2 is
that R can be computed in O(MMNN log(NN)) opera-
To see this, note that row k of R equals - ukY*
where u, is the kth row of Y, and apply Lemma 2 MM
times (once for each row). This should be compared with
direct evaluation of (3) etc., which requires O(M?M>*NN)
operations.

tions.

Lemma 3 Let p(w w) — pnp—l np—le ((np—l)w+(np—1)u) +

+ Prp-1,0e" P 4oy, 1ef TS g
po,0, and similarly q(w,®) be two arbitrary 2D trigonometric
polynomials. Then the (np+ng—1)(fp +7qg—1) coefficients
of the polynomial r(w,®) = p*(w,®)q(w,®) as well as the
coefficients of the polynomials 7(w,®) = p* (w,@)q(—w, —©)
and Fw,w) = p*(—w, —@)q(—w, —@) can be computed in

0 ((np +nq)(Tip + 71g) log ((np + ng) (Rp + ﬁq))> operations.

Proof: See [6].

As a remark, note that direct computation of the poly-
nomial coefficients would require O((np + ng)*(Ap + 7ig)?)
operations.

Lemma 4 By using the Generalized Schur algorithm of [5]
together with a factorization result in [6, App. CJ, the

columns {r } ¥ ofR 2 can be computed from the data
mn O(MNN log(NN) + M2]\712N) floating point operations
(O(Nlog(N)+ M?) in the 1D case). Under the further as-
sumption (which will be seen to be valid in our application)
that each T is used directly after its computation, i.e. the
whole Cholesky factor is not stored, running the algorithm
in [6, App. C] requires O(MMN) bits of memory (O(M)
in the 1D case).

Proof: See [6].

The operation count in the lemma should be compared
to computation of R via (3) etc. followed by standard
Cholesky factorization and inversion [3] which together re-
quire O(M?M?N N) operations (O(M?N) in the 1D case).
The method of Lemma 4 is usually significantly faster than
inversion and classical Cholesky factorization, provided that

M, M are relatively large (which in effect is the case of in-
terest in practice). As a further remark, note that storage of
the whole Cholesky factor would require O(M?M?) bits of
memory which is typically much more than the storage re-
quirement of the algorithm in [6]. The low memory require-
ment of the algorithm is of value for both possible hardware
implementations and off-line data analysis applications.

Finally, we stress that the lemma gives the inverse of the
exact Cholesky factor, which should not be confused with
the approximations in [4, 2] (the latter are also relatively
computationally efficient but they operate on a structured
Toeplitz approximation of R).

3. FAST IMPLEMENTATION OF APES, ASC
AND PSC

1. Decide whether to use classical Cholesky factoriza-

tion and inversion or the fast technique of Lemma 4
to compute R71/2. If the fast factorization method
is chosen, perform the initialization described in [6,
App. C]. Otherwise, first compute R as indicated in
the remark after Lemma 2 and thereafter compute

R by a direct method [3].
2. Perform the following steps for m = 1,... , M M:

(a) Obtain the mth column 7, of R, If the clas-
sical Cholesky factorization is used, r,, is already
precomputed in Step 1 above — otherwise perform

one iteration of the generalized Schur algorithm
described in [6, App. C].
(b) Compute 75,Y and r5,Y by using Lemma, 2.
(c) Compute the coefficients of the polynomials
pgm)(w,(ﬁ), i =1,2,3, above by using the results
of the substeps (a)-(b) above.

(d) Compute the coefficients of the polynomials pz(;") (w,@

above by using Lemma 3. These coefficients are
summed up to obtain the coefficients of the poly-
nomials p;j(w,®) in (11).

3. Evaluate the polynomials p;; (w,©) at K x K points by
using a single 2D FFT (per polynomial) and compute
the ASC, PSC or APES spectrum according to (13)
or (14).

4. NUMERICAL EXAMPLES

Ezample 1: Complezity comparison for the 1D case (N =
M = L =1). Random data with varying length N and the
filter length M = N/2 are used, and the spectrum is evalu-
ated on a frequency grid with K = 4096 points. The com-
parison is carried out by measuring the number of floating
point operations used by a Matlab implementation. Fig-
ure 1 shows the results. We compare our implementation
of APES with the technique suggested by Liu et al. in [8].
It can be observed that our algorithm requires around 5%-
10% of the floating point operations needed by the method
of [8]. We stress that our algorithm, as well as the method
of [8], computes the exact spectrum. In Figure 1 we also
show a comparison of our implementation of ASC with the

(approximate) technique suggested by Ekman et al. in [2].
It is clear that also in this case our technique is consider-
ably faster, despite the fact that [2] computes only a (fast)
approximation of ASC.

Ezample 2: Complezity comparison for the 2D case. A
(randomly generated) square data matrix of varying size
N = N is considered. The filter lengths are M = N/2
and M = N/2 for N = N < 64, and M = M = 32 for
N = N > 64. The spectrum is evaluated on a grid with
K = K = 1024 points. Figure 2 shows the results. We
compare the computation of the APES spectrum using the
technique of Liu et al. [8] with the algorithm proposed in
this paper. For a data matrix of size 64 x 64, our technique
is about 50 times faster.

In [4], Jakobsson et al. propose an algorithm for the
fast computation of the PSC spectrum. Note that the com-
putation of PSC is simpler than that of APES or ASC and
hence the former can presumably be organized in a more
efficient manner than the latter (the fast implementation
of the latter has been the main objective of this paper).
Furthermore, in contrast to our technique, the algorithm
of [4] does not compute the exact PSC as defined herein,
but an approximation of it based on a structured (block-
Toeplitz) version of the sample covariance matrix. Despite
these facts, we observe from Figure 2 that for sufficiently
large data sets (which may be the case of interest in prac-
tice) the effort for computing the PSC using our method
is somewhat lower than that needed by the fast PSC algo-
rithm of [4].

The figures indicate that the new implementation im-
proves significantly over the available techniques. Most
likely the program codes for the implementation proposed
in this paper as well as for the implementations in [8, 2]
can be “polished” to reduce the constant factor in the cor-
responding operation counts. The important point however
is that the difference in computational complexity between
these implementations increases with increasing data sam-
ple lengths, and with increasing % and % In particular,
our implementation is practically insensitive to the density
of the frequency grid (K, K), unlike those in [8, 2].

Exampe 3: Application of APES to SAR imaging. We
consider a 100 x 100 matrix of phase history data of an
object (at 0° azimuth angle) generated by XPATCH, a
high frequency electromagnetic scattering prediction code
for complex 3D-objects. A photo of the object under con-
sideration (taken at 45° azimuth angle) is shown in Figure 3.
Figures 4 and 5 show the SAR image obtained by applying
APES with M x M equal to 8 x 8 and 30 x 30, respectively.
In all figures, the spectrum was evaluated on a 1024 x 1024
grid. From Figures 4 and 5, it is clear that the increase in
filter lengths improves the quality of the SAR image signif-
icantly. The latter observation is particularly important in
providing the motivation for this paper, as the computation
of the image in Figure 5 using the existing techniques for
the evaluation of the APES spectrum (such as that in [8])
would have been computationally extremely expensive.

Mflops

X — Liu, etal. APES
. S —x— Ekman, et al. ASC
wr - - - Fast APES
/ /X -% - Fast ASC
500 1000 1500 2000
N

Figure 1: Complexity comparison in the 1D case. In Figure
1 and 2, “Fast APES, ASC and PSC” refers to our new
computational method.

5. ACKNOWLEDGEMENT

The authors are grateful to A. Jakobsson and T. Ekman for
providing the Matlab code of their 2D PSC and 1D ASC
implementations, which was used for comparison purposes,
and to Prof. J. Li for providing the SAR data.

6. REFERENCES

[1] J. Capon, “Maximum-likelihood spectral estimation,”
in Nonlinear Methods of Spectral Analysis (S. Haykin,
ed.), Springer-Verlag, 1983.

[2] T. Ekman, A. Jakobsson, and P. Stoica, “On efficient
implementation of the CAPON algorithm,” in Proc.
of European Signal Processing Conference (EUSIPCO),
(Tampere, Finland), 2000.

[3] G.H. Golub and C. F. van Loan, Matriz Computations.
Maryland, USA: The Johns Hopkins University Press,
1989.

[4] A. Jakobsson, S. L. Marple, Jr., and P. Stoica, “Two-
dimensional CAPON spectral analysis,” IEEE Transac-
tions on Signal Processing, vol. 48, pp. 2651-2661, Sept.
2000.

[6] T. Kailath and A. Sayed, Fast Reliable Algorithms for
Matrices with Structure. Philadelphia, USA: SIAM,
1999.

[6] E. G. Larsson and P. Stoica, “Efficient implementation
of two-dimensional CAPON and APES for spectral esti-
mation,” Multidimensional Systems and Signal Process-
ing, 2000. Submitted.

[7] J. Li and P. Stoica, “An adaptive filtering approach to
spectral estimation and SAR imaging,” IFEE Transac-
tions on Signal Processing, vol. 44, pp. 1469-1484, June
1996.

[8] Z.-S. Liu, H. Li, and J. Li, “Efficient implementa-
tion of CAPON and APES for spectral estimation,”
IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 34, pp. 1314-1319, Oct. 1998.

. ,
10 -7
-)

— Liu, etal. APES
--- Fast APES

—-©- Jakobsson, et al. PSC
-O- Fast PSC
104 L 1 Q T T
50 100 150 200 250

N

Figure 2: Complexity comparison in the 2D case. The miss-
ing points correspond to computations which would have
taken unreasonably long time to perform on our worksta-
tion.

Figure 3: Photograph of the object (taken at 45° azimuth
angle).

Figure 4: SAR image obtained via APES with M = M = 8.

Figure 5: SAR image obtained via APES with M = M =
30.

