
FAST IMPLEMENTATION OF TWO-DIMENSIONAL APES AND CAPON

SPECTRAL ESTIMATORS

Erik G. Larsson and Petre Stoica

Dept. of Systems and Control, Uppsala University
P.O. Box 27, SE-751 03 Uppsala, Sweden.

Email: egl@syscon.uu.se

ABSTRACT

The matched-�lterbank spectral estimators APES and CAPON
have recently received considerable attention in a number of
applications. Unfortunately, their computational complex-
ity tends to limit their usage in several cases { a problem
that has previously been addressed by di�erent authors. In
this paper, we introduce a novel method to the computa-
tion of the 1D and 2D APES and CAPON spectra, which
is considerably faster than all existing techniques. Numer-
ical examples are provided to demonstrate the application
of APES to synthetic aperture radar (SAR) imaging, and
to illustrate the reduction in computational complexity pro-
vided by our implementation.

1. THE APES AND CAPON ESTIMATORS

Consider the problem of estimating the amplitude spectrum

of a complex-valued two-dimensional signal fXn;�ng
N�1; �N�1
n=0;�n=0

where N � �N is the dimension of the data matrix. We re-
quire N � 1 and �N > 1, where the special case N = 1 will
be referred to as the 1D case.

The APES and CAPON estimators [7, 1], which we next
describe, are two powerful techniques to solve this problem.
We start by introducing the user parameters M and �M ,
which are usually referred to as �lter lengths. Increasing M
and �M typically increases the spectral resolution at the cost
of reducing the statistical stability of the spectral estimates.
Let L , N �M + 1 and �L , �N � �M + 1 (in the 1D case
we have M = N = L = 1), and arrange the samples Xn;�n

in a matrix as

Y ,
�
y0;0 � � � yL�1;0 y0;1 � � � yL�1;�L�1

�
(1)

where

yl;�l , vec

 264
Xl;�l � � � Xl;�l+ �M�1

...
. . .

...
Xl+M�1;�l � � � Xl+M�1;�l+ �M�1

3
75
!

(2)

and where vec(�) denotes the operation of stacking the columns
of a matrix on top of each other.

THIS WORK WAS PARTLY SUPPORTED BY THE
SWEDISH FOUNDATION FOR STRATEGIC RESEARCH
(SSF).

De�ne the forward sample covariance matrix

R̂f ,
1

L�L

L�1X
l=0

�L�1X
�l=0

yl;�ly
�

l;�l =
1

L�L
Y Y

� 2 C
M �M�M �M (3)

and the forward-backward sample covariance matrix

R ,
1

2
(R̂f +	M �MR̂

T

f	M �M) (4)

where 	P denotes a P � P matrix with ones on its anti-
diagonal and zeros everywhere else, (�)T denotes the trans-
pose and (�)� denotes the conjugate transpose.1

Introduce, for arbitrary integers P and �P , the 2D Fourier
vector

aP; �P (!; �!) ,
�
1 ei! � � � ei(P�1)!

�T

�
1 ei�! � � � ei(

�P�1)�!
�T (5)

where
 denotes the Kronecker product. De�ne the 2D
Fourier transforms

�g(!; �!) ,
1

L�L
Y aL;�L(�!;��!) =

1

L�L

L�1X
l=0

�L�1X
�l=0

yl;�le
�i(!l+�!�l)

~g(!; �!) ,
1

L�L
~Y aL;�L(�!;��!)

(6)

where Y is de�ned in (1) and (2), and ~Y , 	M �MY
c	L�L.

Here (�)c denotes the complex conjugate.
The amplitude spectrum CAPON (ASC) is de�ned by

�ASC(!; �!) ,
a�M; �M (!; �!)R̂

�1
�g(!; �!)

a�
M; �M

(!; �!)R̂
�1
aM; �M (!; �!)

(7)

and the power spectrum CAPON (PSC) is given by

�PSC(!; �!) ,
1

a�
M; �M

(!; �!)R̂
�1
aM; �M (!; �!)

(8)

The APES estimator is de�ned by

�APES(!; �!) ,
a�M; �M (!; �!)Q̂

�1
(!; �!)�g(!; �!)

a�
M; �M

(!; �!)Q̂
�1
(!; �!)aM; �M (!; �!)

(9)

where

Q̂(!; �!) , R̂�
1

2

�
�g(!; �!) ~g(!; �!)

� ��g�(!; �!)
~g�(!; �!)

�
(10)

1In this work we treat only the forward-backward estimators.

2. KEY RESULTS

The starting point for deriving the fast implementations is
the following observation.

Lemma 1 Let R̂
�1=2

denote the inverse of the Cholesky

factor of R̂ and let frmg
M �M
m=1 be the columns of R̂

�1=2
.

Consider the following trigonometric polynomials:

pij(!; �!) ,

M �MX
m=1

p
(m)�
i (!; �!)p

(m)
j (!; �!) =

M �MX
m=1

p
(m)
ij (!; �!)

(11)

where

p
(m)
1 (!; �!) , r�maM; �M(!; �!)

p
(m)
2 (!; �!) ,

1

L�L
r
�

mY aL;�L(�!;��!)

p
(m)
3 (!; �!) ,

1

L�L
r
�

m
~Y aL;�L(�!;��!)

p
(m)
ij (!; �!) , p

(m)�
i (!; �!)p

(m)
j (!; �!)

(12)

and let

�(!; �!) ,
1

2

�
p22(!; �!)� 2 p23(!; �!)
p�23(!; �!) p22(!; �!)� 2

�

Then p�13(!; �!) = p�12(!; �!)e
�i((N�1)!+(�N�1)�!), and further-

more, the ASC, PSC and APES spectra can be expressed as

�ASC(!; �!) =
p12(!; �!)

p11(!; �!)
; �PSC(!; �!) =

1

p11(!; �!)
(13)

and �APES(!; �!) =

p12(!; �!)�
1
2

�
p12(!; �!) p13(!; �!)

�
��1(!; �!)

�
p22(!; �!)
p�23(!; �!)

�

p11(!; �!)�
1
2

�
p12(!; �!) p13(!; �!)

�
��1(!; �!)

�
p�12(!; �!)
p�13(!; �!)

�
(14)

Proof: See [6].
The technique proposed by Liu et al. in [8] for the com-

putation of 1D and 2D APES and ASC evaluates the poly-

nomials in Lemma 1 by using the fact that once R̂
�1=2

,

R̂
�1=2

Y and R̂
�1=2 ~Y were computed, the trigonometric

polynomial vectors R̂
�1=2

aM; �M (!; �!), R̂
�1=2

Y aL;�L(�!;��!)

and R̂
�1=2 ~Y aL;�L(�!;��!) can be evaluated usingM �M 2D

FFTs of size K� �K. In [2], Ekman et al. use the same tech-
nique for the evaluation of ASC, with the exception that

the Cholesky factor R̂
�1=2

is approximated with a struc-
tured matrix obtained by �tting an autoregressive model to
the data. This approximation technique provides eÆcient

means for computing R̂
�1=2

, which is sometimes claimed
to be a bottleneck in the computation of the spectrum (at
least for the 1D case). However, it has turned out that this
technique is not applicable to the computation of the APES
spectrum.

The key observation that leads to our fast implemen-
tation of APES, ASC and PSC is as follows: instead of

computing the values of the M �M polynomials p
(m)
i (!; �!)

at K � �K points, we compute the coeÆcients of the poly-
nomials pij(!; �!) in (11) and upon completion of this com-
putation, each polynomial is evaluated at K � �K points
using a single 2D FFT. The computation of the polynomial
coeÆcients is performed by accumulating the contributions

from p
(m)
ij (!; �!) in the sum in (11).

To exploit this idea optimally, we combine it with some
relevant results on fast computation, which we state next.

Lemma 2 Let u be an arbitrary vector of length M �M .
Then the products u�Y and u� ~Y , where Y and ~Y are de-
�ned above, can be computed in O

�
N �N log(N �N)

�

oating

point operations. The same is true for products of the type
Y u and ~Y u, where u is a vector of length L�L.

Proof: See [6].
The operation count in the lemma should be compared

with direct evaluation of the vector-matrix product u�Y ,
which would require O(M �MN �N) operations. Note that
one, but not the only, useful consequence of Lemma 2 is
that R̂ can be computed in O

�
M �MN �N log(N �N)

�
opera-

tions. To see this, note that row k of R̂ equals 1
L�L
u�kY

�

where u�k is the kth row of Y , and apply Lemma 2 M �M
times (once for each row). This should be compared with
direct evaluation of (3) etc., which requires O(M2 �M2N �N)
operations.

Lemma 3 Let p(!; �!) = pnp�1;�np�1e
i
�
(np�1)!+(�np�1)�!

�
+

� � � + pnp�1;0e
i(np�1)! + � � � + p0;�np�1e

i(�np�1)�! + � � � +
p0;0, and similarly q(!; �!) be two arbitrary 2D trigonometric
polynomials. Then the (np+nq�1)(�np+�nq�1) coeÆcients
of the polynomial r(!; �!) = p�(!; �!)q(!; �!) as well as the
coeÆcients of the polynomials ~r(!; �!) = p�(!; �!)q(�!;��!)
and r̂(!; �!) = p�(�!;��!)q(�!;��!) can be computed in

O
�
(np+nq)(�np+ �nq) log

�
(np+nq)(�np+ �nq)

��
operations.

Proof: See [6].
As a remark, note that direct computation of the poly-

nomial coeÆcients would require O
�
(np + nq)

2(�np + �nq)
2
�

operations.

Lemma 4 By using the Generalized Schur algorithm of [5]
together with a factorization result in [6, App. C], the

columns frkg
M �M
k=1 of R̂

�1=2
can be computed from the data

in O
�
MN �N log(N �N)+M2 �M2N

�

oating point operations

(O
�
�N log(�N)+ �M2

�
in the 1D case). Under the further as-

sumption (which will be seen to be valid in our application)
that each rk is used directly after its computation, i.e. the
whole Cholesky factor is not stored, running the algorithm
in [6, App. C] requires O(M �MN) bits of memory (O(�M)
in the 1D case).

Proof: See [6].
The operation count in the lemma should be compared

to computation of R̂ via (3) etc. followed by standard
Cholesky factorization and inversion [3] which together re-
quire O(M2 �M2N �N) operations (O(�M2 �N) in the 1D case).
The method of Lemma 4 is usually signi�cantly faster than
inversion and classical Cholesky factorization, provided that

M; �M are relatively large (which in e�ect is the case of in-
terest in practice). As a further remark, note that storage of
the whole Cholesky factor would require O(M2 �M2) bits of
memory which is typically much more than the storage re-
quirement of the algorithm in [6]. The low memory require-
ment of the algorithm is of value for both possible hardware
implementations and o�-line data analysis applications.

Finally, we stress that the lemma gives the inverse of the
exact Cholesky factor, which should not be confused with
the approximations in [4, 2] (the latter are also relatively
computationally eÆcient but they operate on a structured
Toeplitz approximation of R̂).

3. FAST IMPLEMENTATION OF APES, ASC

AND PSC

1. Decide whether to use classical Cholesky factoriza-
tion and inversion or the fast technique of Lemma 4

to compute R̂
�1=2

. If the fast factorization method
is chosen, perform the initialization described in [6,

App. C]. Otherwise, �rst compute R̂ as indicated in
the remark after Lemma 2 and thereafter compute

R̂
�1=2

by a direct method [3].

2. Perform the following steps for m = 1; : : : ;M �M :

(a) Obtain themth column rm of R̂
�1=2

. If the clas-
sical Cholesky factorization is used, rm is already
precomputed in Step 1 above { otherwise perform
one iteration of the generalized Schur algorithm
described in [6, App. C].

(b) Compute r�mY and r�m ~Y by using Lemma 2.

(c) Compute the coeÆcients of the polynomials

p
(m)
i (!; �!), i = 1; 2; 3, above by using the results
of the substeps (a)-(b) above.

(d) Compute the coeÆcients of the polynomials p
(m)
ij (!; �!)

above by using Lemma 3. These coeÆcients are
summed up to obtain the coeÆcients of the poly-
nomials pij(!; �!) in (11).

3. Evaluate the polynomials pij(!; �!) atK� �K points by
using a single 2D FFT (per polynomial) and compute
the ASC, PSC or APES spectrum according to (13)
or (14).

4. NUMERICAL EXAMPLES

Example 1: Complexity comparison for the 1D case (N =
M = L = 1). Random data with varying length �N and the
�lter length �M = �N=2 are used, and the spectrum is evalu-
ated on a frequency grid with �K = 4096 points. The com-
parison is carried out by measuring the number of
oating
point operations used by a Matlab implementation. Fig-
ure 1 shows the results. We compare our implementation
of APES with the technique suggested by Liu et al. in [8].
It can be observed that our algorithm requires around 5%-
10% of the
oating point operations needed by the method
of [8]. We stress that our algorithm, as well as the method
of [8], computes the exact spectrum. In Figure 1 we also
show a comparison of our implementation of ASC with the

(approximate) technique suggested by Ekman et al. in [2].
It is clear that also in this case our technique is consider-
ably faster, despite the fact that [2] computes only a (fast)
approximation of ASC.

Example 2: Complexity comparison for the 2D case. A
(randomly generated) square data matrix of varying size
N = �N is considered. The �lter lengths are M = N=2
and �M = �N=2 for N = �N � 64, and M = �M = 32 for
N = �N � 64. The spectrum is evaluated on a grid with
K = �K = 1024 points. Figure 2 shows the results. We
compare the computation of the APES spectrum using the
technique of Liu et al. [8] with the algorithm proposed in
this paper. For a data matrix of size 64� 64, our technique
is about 50 times faster.

In [4], Jakobsson et al. propose an algorithm for the
fast computation of the PSC spectrum. Note that the com-
putation of PSC is simpler than that of APES or ASC and
hence the former can presumably be organized in a more
eÆcient manner than the latter (the fast implementation
of the latter has been the main objective of this paper).
Furthermore, in contrast to our technique, the algorithm
of [4] does not compute the exact PSC as de�ned herein,
but an approximation of it based on a structured (block-
Toeplitz) version of the sample covariance matrix. Despite
these facts, we observe from Figure 2 that for suÆciently
large data sets (which may be the case of interest in prac-
tice) the e�ort for computing the PSC using our method
is somewhat lower than that needed by the fast PSC algo-
rithm of [4].

The �gures indicate that the new implementation im-
proves signi�cantly over the available techniques. Most
likely the program codes for the implementation proposed
in this paper as well as for the implementations in [8, 2]
can be \polished" to reduce the constant factor in the cor-
responding operation counts. The important point however
is that the di�erence in computational complexity between
these implementations increases with increasing data sam-
ple lengths, and with increasing K

N
and

�K
�N
. In particular,

our implementation is practically insensitive to the density
of the frequency grid (K; �K), unlike those in [8, 2].

Exampe 3: Application of APES to SAR imaging. We
consider a 100 � 100 matrix of phase history data of an
object (at 0Æ azimuth angle) generated by XPATCH, a
high frequency electromagnetic scattering prediction code
for complex 3D-objects. A photo of the object under con-
sideration (taken at 45Æ azimuth angle) is shown in Figure 3.
Figures 4 and 5 show the SAR image obtained by applying
APES withM � �M equal to 8�8 and 30�30, respectively.
In all �gures, the spectrum was evaluated on a 1024� 1024
grid. From Figures 4 and 5, it is clear that the increase in
�lter lengths improves the quality of the SAR image signif-
icantly. The latter observation is particularly important in
providing the motivation for this paper, as the computation
of the image in Figure 5 using the existing techniques for
the evaluation of the APES spectrum (such as that in [8])
would have been computationally extremely expensive.

500 1000 1500 2000

10
1

10
2

10
3

10
4

N

M
flo

ps

Liu, et al. APES
Ekman, et al. ASC
Fast APES
Fast ASC

Figure 1: Complexity comparison in the 1D case. In Figure
1 and 2, \Fast APES, ASC and PSC" refers to our new
computational method.

5. ACKNOWLEDGEMENT

The authors are grateful to A. Jakobsson and T. Ekman for
providing the Matlab code of their 2D PSC and 1D ASC
implementations, which was used for comparison purposes,
and to Prof. J. Li for providing the SAR data.

6. REFERENCES

[1] J. Capon, \Maximum-likelihood spectral estimation,"
in Nonlinear Methods of Spectral Analysis (S. Haykin,
ed.), Springer-Verlag, 1983.

[2] T. Ekman, A. Jakobsson, and P. Stoica, \On eÆcient
implementation of the CAPON algorithm," in Proc.
of European Signal Processing Conference (EUSIPCO),
(Tampere, Finland), 2000.

[3] G. H. Golub and C. F. van Loan, Matrix Computations.
Maryland, USA: The Johns Hopkins University Press,
1989.

[4] A. Jakobsson, S. L. Marple, Jr., and P. Stoica, \Two-
dimensional CAPON spectral analysis," IEEE Transac-
tions on Signal Processing, vol. 48, pp. 2651{2661, Sept.
2000.

[5] T. Kailath and A. Sayed, Fast Reliable Algorithms for
Matrices with Structure. Philadelphia, USA: SIAM,
1999.

[6] E. G. Larsson and P. Stoica, \EÆcient implementation
of two-dimensional CAPON and APES for spectral esti-
mation," Multidimensional Systems and Signal Process-
ing, 2000. Submitted.

[7] J. Li and P. Stoica, \An adaptive �ltering approach to
spectral estimation and SAR imaging," IEEE Transac-
tions on Signal Processing, vol. 44, pp. 1469{1484, June
1996.

[8] Z.-S. Liu, H. Li, and J. Li, \EÆcient implementa-
tion of CAPON and APES for spectral estimation,"
IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 34, pp. 1314{1319, Oct. 1998.

50 100 150 200 250
10

2

10
3

10
4

10
5

N

M
flo

ps

Liu, et al. APES
Fast APES
Jakobsson, et al. PSC
Fast PSC

Figure 2: Complexity comparison in the 2D case. The miss-
ing points correspond to computations which would have
taken unreasonably long time to perform on our worksta-
tion.

Figure 3: Photograph of the object (taken at 45Æ azimuth
angle).

Figure 4: SAR image obtained via APES withM = �M = 8.

Figure 5: SAR image obtained via APES with M = �M =
30.

