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Abstract:

Optimal detection of a known signal in nonstationary
noise requires tracking the eigenvalue decomposition
(EVD) of the noise data over time. To take advantage of
information in the long-term, as well as short-term,
correlation lags we turn to EVD over wavelet subspaces.
In this paper, we develop a multirate EVD updating
method over multiresolution subspaces and find maximum
detectability nodes on wavelet binary full-tree structures.
We use theoretical analysis to justify the effectiveness of a
hyperspectrum for noise based on time and scale
evolutionary EVDs. We also show results obtained with
simulated 1/ f noise and noise collected by hydrophones of
an underwater sonar communication system. Initial
results are encouraging as they clearly indicate many
subspaces, where detectability is significantly higher than
in the original space prior to wavelet decomposition.

I. INTRODUCTION

Optimal detection of signals in noise requires the
computation of noise eigenvalues and vectors, which form
the Karhunen-Loeve (KL) basis. This is a computationally
complex operation and is subject to numerical instabilities
when the size of the covariance matrix is large. Fixed
transforms such as the Discrete Cosine Transform (DCT)
and Discrete Wavelet Transform (DWT) are accep-
table approximations to the KL transform and work for
specific random processes. Many natural or human
generated noise environments are non-stationary. Some
examples are the different types of ambient acoustic noise
through which a cellular telephone user communicates
and underwater ambient noise Under such
circumstances, a fixed transform is not sufficient; and
there are benefits to be gained from using the KL
transform, which is based on noise statistics.

The underlying reason for obtaining eigenvalues and
vectors of the noise is to whiten the noise, and follow it by
matched filtering. If the signal can be designed, then the
probability of error in the detection process is reduced by
choosing the signal to reside in the subspace spanned by
the eigenvector corresponding to the smallest eigenvalue.
In such cases, matched filtering is equivalent to finding
the projection of the incoming signal on the signal
subspace. For a complete development of subspace

matching techniques, the reader is referred to [9][8]] In a
non-stationary environment, the KL transform matrix
must be updated as well. A thorough and comprehensive
treatment of the different techniques for updating EVD
and Singular Value Decompositions (SVD) can be found
in Update techniques surveyed share a common
objective: What is the "best" way to find the new
covariance matrix given the current covariance matrix and
new data. Does the rank of the update go up, down or stay
the same? Increasing the rank, computing the eigenvalues
and then reducing the rank as determined by the
eigenvalues is theoretically risk free, but computationally
very expensive. In practice, increase in size of the
covariance matrix subjects the EVD to numerical
instabilities. On the other hand, confining the rank to be a
small number, even when it is coupled by dominant
subspace tracking, does not take into consideration the
long-term correlations of the data.

In this paper, we develop an algorithm for detection on
sets of nested subspaces: Multiresolution (MR) subspaces
on the outside and KL subspaces on the inside. The
process, which is described in the next section, allows for
optimal detection, uses small KL matrixes, and takes into
consideration long and short-term autocorrelation lags. It
is numerically stable and allows for flexibility in signal
design that may be combined with coding and encryption.

Detection of a known signal over multiresolution sub-
spaces was analyzed in our previous works and
applied successfully to voice activity detection in In
this paper, the proposed work is extended to include time
and scale evolution of EVDs. It is applied to simulated 1/f
noise and real underwater noise. We discuss detection and
signal design strategies based on the resulting time and
scale evolutionary EVDs.

This paper is organized as follows. We review the optimal
detection problem in Section II. Section III, we highlight
detection over MR subspaces. In Section IV, we discuss
the evolution of detectability over scales and eigenvalues
over time and show computation with simulated 1/f noise
and real underwater ambient noise. Conclusion section
follows.

II. REVIEW OF OPTIMAL DETECTION

A Dbinary detection problem m of a known signal
s= [s[l] s[2] s[N]| ', in noise, n, is described by two
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hypotheses: H, :x=s+n and H; :x=n where n is a zero-

mean Gaussian random noise. The noise autocorrelation
matrix R has the EVD decomposition R=Q A Q',
where A is the diagonal matrix of eigenvalues, A, . The

likelihood ratio (LR) test is derived from probabilistic
considerations to minimize the risk of making a wrong
decision. Expressions for LR are useful and efficient
when stated in terms of noise statistics. The difference
between LR under the two hypotheses is used as a
measure of detectability, given by

N s K]
d2 = k—’ (1)
k=1 k

where s} are the elements of Q" s. The sufficient statistic

required for making a decision is the first term of the

exponent of LR as in equation,
N x/[k]s'[K]
= 2
Ay

k=1
Decision is made by comparing g to a threshold
determined by the probability of false detection and d?.

III. DETECTION OVER MR SUBSPACES

For notational clarity, we refer to Figure 1, where all the
node subscripts are defined as a number pair. Figure 2
shows a subtree starting at level j, branching into j+1 and

its synthesis stage.  Signal x ik at node (j,k) is

decomposed to its approximation projection, X .1, and

its detail, X j+1,2k+1, SO that Xk Xj+l,2k+xj+1,2(k+l)' The
approximation coefficients are X1,k and the detail
coefficients are Xji2+1. Subsequent decompositions of
the approximation coefficient form what is known as a
half-binary tree wavelet decomposition. If the detail
coefficients are also decomposed, the structure is said to
form a full binary tree as shown in Figure 1. The
approximation (detail) coefficients are generated by
filtering x by h (g), followed by decimation by two. See,
e.g. for further clarification. The process can be
represented as a matrix H (G) operating on the input
signal vector x. Upsampling and filtering by h'
(representing h[-n]) (g' ) can also be represented using a
matrix H' (G'). With this notation we have

x1,0=Hx x1,1=Gx (3a)

; I’OZH'XLOZH'HX ; 1’1:G'X1’1:G'GX. (3b)

Repetition of this process on Xy and x;; produces the
subsequent projections. Matrices H, H', G and G' are
sparse. Further, using the symmetric matrices T,=HH'
and T,=GG", all subsequent projections can be written as
repeated operations of these matrices.

There are other ways of representing wavelet
transformations. Use of this format allows us to compute
the covariance matrices of projections and coefficients,
which are needed for further analysis. It also shows that it
is sufficient to limit the analysis to a two-stage transform.
Let R=E[xx'] be the NxN covariance matrix of x. R,

R R and R 1.1, are defined similarly. We have

R ~HRH' R, =GR,G' (4a)
R =H'R, H= H'HR,H'H (4b)
ﬁ 1’1:G'R1’1G= G'GRXG'G. (40)

H and G are size MxN matrices where M<N. In
particular, M[IN/2 reflecting convolution, followed by
decimation. H' and G' are of size NxM and reflect
upsampling followed by convolution. For orthogonal
wavelets, H (G) is the left pseudo inverse of H' (G') so
that HH'=GG'=l,,, the identity matrix of size M.

Figure 1. Full-tree wavelet decomposition to define
notation.
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Figure 2. Analysis/synthesis of wavelet coefficients

The wavelet decomposition is a complete representation
of a signal. The sets of coefficients on any cutset of the
analysis subtree contain complete information about the
input signal, as they can be followed up by the synthesis
section to reconstruct the input signal. It is well known
and clear that the branching can continue indefinitely or it
can be terminated at any subbranch. With reference to the
full binary tree structure shown in Figure 1, we seek
answers to the following questions:

x,{n]



1. Does there exist a set of subspaces that maximize
detectability?

2. If such a set exists, how is it determined and how
does it vary with time?

Theoretical and empirical studies have shown that a set of
subspaces  exists where detectability  increases
significantly. To find the set requires a non-linear search
algorithm as can be seen from the results in Section IV.2.
When either noise statistics or signal varies with time, the
set of optimum detectability varies. To track this set
requires updating of the EVD of the subspaces, as is
described in Section IV.3. In the following section, we
state theoretical background on the EVD and detectability
over multiresolution subspaces.

IV. EVD AND DETECTABILITY OVER MR
SUBSPACES

The full-tree representation shown in Figurel is the
analysis section of the filter banks decomposition of a
signal. It has a corresponding synthesis part, which is
shown for one scale in Figure 2. The outputs of the
synthesis filters are the called the projections of the signal.
The entire analysis/synthesis structure gives us much
flexibility in choosing nodes on which to consider noise
and signal characterization and detectability. Given by Eq.
1, computation of detectability at any node requires the
computation of the eigenvalues and eigen-vectors of the
noise process at that node. It is important to know how
they are related.

IV.1.Eigenvalues

In particular, we want to know how the eigenvalues of the
coefficients and the projections are related. The

eigenvalues of the projection covariance matrix R ; are
the roots of the polynomial

‘M - ﬁl,o‘ = [ - H'R,  H| (5a)
are the same as the roots of

R o| M - H'R, oH]. (5b)
Applying to this, the identity

|AJE - cA™'B| = [E|a - BE"'C] (6)
with A = R™'9,E = A,C = H', B = H, yields
‘KRLO_I - HH" = ‘RLO_IHM ~Ry| )
where use has been made of HH'=I.

This proves that the eigenvalues of R 1,0 are identical to
the eigenvalues of R, and the remaining N-M
eigenvalues are zero. Thus we deduce that not only can

we, but also we must confine our analysis to the
coefficients.

IV.2. Detectability

Given by Eq.l, detectability is a metric of distance
between the vector s' and y =[1/A;,l/X,,...,1/A] where

s' is the KL transform (with respect to the noise EVD) of
the signal s. If noise is white, then d” is the signal-to-noise
ratio, otherwise it is a quantity between 0 and infinity and
has to do with the relative distribution of the signal and
eigenvalues. The relationship between detectability at
scales j and j+1 is based on the principle of energy
conservation. For simplicity, we will consider scale j=0.
Let the KL-transform of the signal coefficients at nodes
(0,0), (1,0) and (1,1) be given s, s, and s; respectively.
Also, let the vectors of noise eigenvalues be given as

Y, 0, yl respectively. We have

M= A+ A, ®)
s’k]= [sg[k]+s;[k]]and ©)
2 2
- S el ST gy (10)
Ay Mk

If noise is white, the detectability in parent-children
subspaces are related by
2 2

o c

2 0 2 2

d*=—-d+ —-d, (12)
c c

where 6° = o + oj are the respective noise variances.

Clearly, detectability in any subspace is highly affected by
the noise eigenvalues. A redistribution causing one of
them to be close to zero may result in near perfect
detection. This is a very encouraging reason to do
detection over multiresolution subspaces. Tables 1 and 2
show detectability computed at each node of the full
binary tree for simulated pink noise and ambient ocean
noise. The signal used was a windowed sinusoid.

Nd | & [ Nd| & [ Nd| & | Nd d’

(0,0) | 12.5 [ (1,0) | 54.7 | (2,0) | 1.42 | (3,0) | 0.0143

(L) | 199 [ (2,1) [ 203 | 3.1) | 53

22) | 132132 ] 0576

(23) | 412 (33) | 455

(3.4) | 0.0384
(3.5 | 2.83
(3,6) | 0.0354
G.7) | 123

Table 1. Detectability of sinusoidal signal in pink noise.

Detectability (d”) is shown at each node (Nd) numbered
according to the convention defined by Figure 1. We note
that for pink noise, detectability of 12.5 at node (0,0)
nearly quadruples at node (1,0) and reaches a local



maximum, suggesting that no further decomposition past
the first stage is necessary. Data in Table 2 were obtained
from ambient ocean noise recorded by a hydrohone. Local
maximum for detectability is reached at node (2,0). The
two sets of data have the same signal-to-noise ratio.

Nd [ Nd | & | Nd | & | Nd d

0,0) | 45 | (1,0) | 17.6 | (2,0) | 72.3 | (3,0) | 2.14

(L) | 0.07 [ 2,1) [ 335 3,1) | 65.8

2,2 [0.08](3.2) | 0.05

(2,3) | 0.08 [ (3,3) | 684

(3,4) | 0.002
(3,5) | 0.037
(3,6) | 0.001
(3,7) | 0217

Table 2. Detectability of sinusoidal signal in sonar ocean
noise.

IV.3. Time evolution of the noise eigenvalues

Since detectability is highly affected by noise distribution,
it follows naturally that we observe the variation of the
noise eigenvalues with time. The motivation for this
computation is to see if the change was significant and
updating the EVD at the nodes of the wavelet tree was
necessary. A sample computation at node (1,0) for ocean
noise is given in Figure 3. We note that a dominant
eigenvalue fluctuates significantly in time at that node.

Eigenvalue tracking on node (1,0)
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Figure 3. Time evolution of eigenvalues in node (1,0).

V. CONCLUSION
A method of detection of a known signal in nonstationary
Gaussian noise has been proposed. It has been argued that
applying optimal detection techniques over multiresolution
subspaces has advantages over traditional subspace
matching or whitening plus matched filtering methods.
They are increased detectability and numerical stability.
We have shown theoretically and empirically that there

exist multiresolution subspaces that show significant
increase in detectability, that they can be found by a search
through the full-tree wavelet decomposition structure. The
significance of updating the EVD of the noise at the nodes
of the wavelet decomposition tree has been evidenced,
indicating the need for a scale and time evolutionary
spectral representation for reliable detection.
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