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Abstract: 

Optimal detection of a known signal in nonstationary 
noise requires tracking the eigenvalue decomposition 
(EVD) of the noise data over time. To take advantage of 
information in the long-term, as well as short-term, 
correlation lags we turn to EVD over wavelet subspaces. 
In this paper, we develop a multirate EVD updating 
method over multiresolution subspaces and find maximum 
detectability nodes on wavelet binary full-tree structures. 
We use theoretical analysis to justify the effectiveness of a 
hyperspectrum for noise based on time and scale 
evolutionary EVDs. We also show results obtained with 
simulated 1/ f noise and noise collected by hydrophones of 
an underwater sonar communication system. Initial 
results are encouraging as they clearly indicate many 
subspaces, where detectability is significantly higher than 
in the original space prior to wavelet decomposition. 

 
I. INTRODUCTION 

Optimal detection of signals in noise requires the 
computation of noise eigenvalues and vectors, which form 
the Karhunen-Loeve (KL) basis. This is a computationally 
complex operation and is subject to numerical instabilities 
when the size of the covariance matrix is large. Fixed 
transforms such as the Discrete Cosine Transform (DCT) 
and Discrete Wavelet Transform (DWT) [1] are accep-
table approximations to the KL transform and work for 
specific random processes. Many natural or human 
generated noise environments are non-stationary. Some 
examples are the different types of ambient acoustic noise 
through which a cellular telephone [5] user communicates 
and underwater ambient noise [1]. Under such 
circumstances, a fixed transform is not sufficient; and 
there are benefits to be gained from using the KL 
transform, which is based on noise statistics. 

 The underlying reason for obtaining eigenvalues and 
vectors of the noise is to whiten the noise, and follow it by 
matched filtering. If the signal can be designed, then the 
probability of error in the detection process is reduced by 
choosing the signal to reside in the subspace spanned by 
the eigenvector corresponding to the smallest eigenvalue. 
In such cases, matched filtering is equivalent to finding 
the projection of the incoming signal on the signal 
subspace. For a complete development of subspace 

matching techniques, the reader is referred to [9][8]. In a 
non-stationary environment, the KL transform matrix 
must be updated as well. A thorough and comprehensive 
treatment of the different techniques for updating EVD 
and Singular Value Decompositions (SVD) can be found 
in [7]. Update techniques surveyed share a common 
objective: What is the "best" way to find the new 
covariance matrix given the current covariance matrix and 
new data. Does the rank of the update go up, down or stay 
the same? Increasing the rank, computing the eigenvalues 
and then reducing the rank as determined by the 
eigenvalues is theoretically risk free, but computationally 
very expensive. In practice, increase in size of the 
covariance matrix subjects the EVD to numerical 
instabilities. On the other hand, confining the rank to be a 
small number, even when it is coupled by dominant 
subspace tracking, does not take into consideration the 
long-term correlations of the data.  

In this paper, we develop an algorithm for detection on 
sets of nested subspaces: Multiresolution (MR) subspaces 
on the outside and KL subspaces on the inside. The 
process, which is described in the next section, allows for 
optimal detection, uses small KL matrixes, and takes into 
consideration long and short-term autocorrelation lags. It 
is numerically stable and allows for flexibility in signal 
design that may be combined with coding and encryption.  

 Detection of a known signal over multiresolution sub-
spaces was analyzed in our previous works [3][4] and 
applied successfully to voice activity detection in [5]. In 
this paper, the proposed work is extended to include time 
and scale evolution of EVDs. It is applied to simulated 1/f 
noise and real underwater noise. We discuss detection and 
signal design strategies based on the resulting time and 
scale evolutionary EVDs.  

This paper is organized as follows. We review the optimal 
detection problem in Section II. Section III, we highlight 
detection over MR subspaces. In Section IV, we discuss 
the evolution of detectability over scales and eigenvalues 
over time and show computation with simulated 1/f noise 
and real underwater ambient noise. Conclusion section 
follows. 

 
II. REVIEW OF OPTIMAL DETECTION 

A binary detection problem [10] of a known signal 
s= [ ]s[N]...s[2]s[1] T, in noise, n, is described by two 
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hypotheses: :H1 x=s+n and :H0 x=n where n is a zero-
mean Gaussian random noise. The noise autocorrelation 
matrix R has the EVD decomposition R=QΛ QT, 
whereΛ  is the diagonal matrix of eigenvalues, kλ . The 
likelihood ratio (LR) test is derived from probabilistic 
considerations to minimize the risk of making a wrong 
decision. Expressions for LR are useful and efficient 
when stated in terms of noise statistics. The difference 
between LR under the two hypotheses is used as a 
measure of detectability, given by 
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where ks′  are the elements of QT s. The sufficient statistic 
required for making a decision is the first term of the 
exponent of LR as in equation, 

=

=
N

1k k

//

λ
[k][k]sx

g .    (2) 

Decision is made by comparing g to a threshold 
determined by the probability of false detection and 2d . 

 
III. DETECTION OVER MR SUBSPACES 

For notational clarity, we refer to Figure 1, where all the 
node subscripts are defined as a number pair. Figure 2 
shows a subtree starting at level j, branching into j+1 and 
its synthesis stage.  Signal x j,k at node (j,k) is 
decomposed to its approximation projection, x j+1,2k, and 
its detail, x j+1,2k+1, so that  x j,k= x j+1,2k+ x j+1,2(k+1). The 
approximation coefficients are xj+1,2,k, and the detail 
coefficients are xj+1,2k+1. Subsequent decompositions of 
the approximation coefficient form what is known as a 
half-binary tree wavelet decomposition. If the detail 
coefficients are also decomposed, the structure is said to 
form a full binary tree as shown in Figure 1. The 
approximation (detail) coefficients are generated by 
filtering x by h (g), followed by decimation by two. See, 
e.g. [1] for further clarification. The process can be 
represented as a matrix H (G) operating on the input 
signal vector x. Upsampling and filtering by h' 
(representing h[-n]) (g' ) can also be represented using a 
matrix H' (G').  With this notation we have  

x1,0=Hx            x1,1=Gx    (3a) 

x 1,0=H'x1,0=H'Hx        x 1,1=G'x1,1=G'Gx.  (3b) 

Repetition of this process on x1,0 and x1,1 produces the 
subsequent projections. Matrices H, H', G and G' are 
sparse. Further, using the symmetric matrices Th=HH' 
and Tg=GG', all subsequent projections can be written as 
repeated operations of these matrices. 

     There are other ways of representing wavelet 
transformations.  Use of this format allows us to compute 
the covariance matrices of projections and coefficients, 
which are needed for further analysis.  It also shows that it 
is sufficient to limit the analysis to a two-stage transform.  
Let Rx=E[xxT] be the NxN covariance matrix of x. R1,0, 
R1,1, R 1,0, and R 1,1, are defined similarly. We have 

R1,0=HRxH' R1,1=GRxG'                 (4a) 

R 1,0=H'R1,0H= H'HRxH'H                (4b) 

 R 1,1=G'R1,1G= G'GRxG'G.                (4c)  

H and G are size MxN matrices where M<N. In 
particular, M≅ N/2 reflecting convolution, followed by 
decimation. H' and G' are of size NxM and reflect 
upsampling followed by convolution. For orthogonal 
wavelets, H (G) is the left pseudo inverse of H' (G') so 
that HH'=GG'=IM, the identity matrix of size M. 
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Figure 1. Full-tree wavelet decomposition to define 

notation. 

Figure 2. Analysis/synthesis of wavelet coefficients 

 

The wavelet decomposition is a complete representation 
of a signal. The sets of coefficients on any cutset of the 
analysis subtree contain complete information about the 
input signal, as they can be followed up by the synthesis 
section to reconstruct the input signal. It is well known 
and clear that the branching can continue indefinitely or it 
can be terminated at any subbranch. With reference to the 
full binary tree structure shown in Figure 1, we seek 
answers to the following questions: 
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1. Does there exist a set of subspaces that maximize 
detectability? 

2. If such a set exists, how is it determined and how 
does it vary with time? 

Theoretical and empirical studies have shown that a set of 
subspaces exists where detectability increases 
significantly. To find the set requires a non-linear search 
algorithm as can be seen from the results in Section IV.2. 
When either noise statistics or signal varies with time, the 
set of optimum detectability varies. To track this set 
requires updating of the EVD of the subspaces, as is 
described in Section IV.3.  In the following section, we 
state theoretical background on the EVD and detectability 
over multiresolution subspaces. 

 
IV. EVD AND DETECTABILITY OVER MR 

SUBSPACES  

The full-tree representation shown in Figure1 is the 
analysis section of the filter banks decomposition of a 
signal. It has a corresponding synthesis part, which is 
shown for one scale in Figure 2. The outputs of the 
synthesis filters are the called the projections of the signal. 
The entire analysis/synthesis structure gives us much 
flexibility in choosing nodes on which to consider noise 
and signal characterization and detectability. Given by Eq. 
1, computation of detectability at any node requires the 
computation of the eigenvalues and eigen-vectors of the 
noise process at that node. It is important to know how 
they are related.  

IV.1.Eigenvalues 

In particular, we want to know how the eigenvalues of the 
coefficients and the projections are related. The 
eigenvalues of the projection covariance matrix R 1,0 are 
the roots of the polynomial  

HRHIRI 0,10,1 'λλ −=−    (5a) 

are the same as the roots of 

0,1R HRHI 0,1'λ − .    (5b) 

Applying to this, the identity 

CBEAEBCAEA 11 −− −=−    (6) 

with HB,HCλI,E,RA ==== − '0,1
1 , yields 

0,10,10,1 λλ RIRHH'R 11 −=− −−    (7) 

where use has been made of HH'=I. 

This proves that the eigenvalues of R 1,0 are identical to 
the eigenvalues of R1,0, and the remaining N-M 
eigenvalues are zero. Thus we deduce that not only can 

we, but also we must confine our analysis to the 
coefficients.  
 

IV.2. Detectability 
 

Given by Eq.1, detectability is a metric of distance 
between the vector s' and ],...,1/λ,1/λλ/1[ N21=γ  where 
s' is the KL transform (with respect to the noise EVD) of 
the signal s. If noise is white, then d2 is the signal-to-noise 
ratio, otherwise it is a quantity between 0 and infinity and 
has to do with the relative distribution of the signal and 
eigenvalues. The relationship between detectability at 
scales j and j+1 is based on the principle of energy 
conservation. For simplicity, we will consider scale j=0. 
Let the KL-transform of the signal coefficients at nodes 
(0,0), (1,0) and (1,1) be given s, s0 and s1 respectively. 
Also, let the vectors of noise eigenvalues be given as 

10, γ,γγ respectively. We have  
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If noise is white, the detectability in parent-children 
subspaces are related by  
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2 σσσ += are the respective noise variances. 
Clearly, detectability in any subspace is highly affected by 
the noise eigenvalues. A redistribution causing one of 
them to be close to zero may result in near perfect 
detection. This is a very encouraging reason to do 
detection over multiresolution subspaces. Tables 1 and 2 
show detectability computed at each node of the full 
binary tree for simulated pink noise and ambient ocean 
noise. The signal used was a windowed sinusoid.   
 
Nd d2 Nd d2 Nd d2 Nd d2 

(0,0) 12.5 (1,0) 54.7 (2,0) 1.42 (3,0) 0.0143 
  (1,1) 1.99 (2,1) 20.3 (3,1) 5.3 
    (2,2) 1.32 (3,2) 0.576 
    (2,3) 4.12 (3,3) 45.5 
      (3,4) 0.0384 
      (3,5) 2.83 
      (3,6) 0.0354 
      (3,7) 12.3 

Table 1. Detectability of sinusoidal signal in pink noise. 

Detectability (d2) is shown at each node (Nd) numbered 
according to the convention defined by Figure 1. We note 
that for pink noise, detectability of 12.5 at node (0,0) 
nearly quadruples at node (1,0) and reaches a local 



maximum, suggesting that no further decomposition past 
the first stage is necessary. Data in Table 2 were obtained 
from ambient ocean noise recorded by a hydrohone. Local 
maximum for detectability is reached at node (2,0). The 
two sets of data have the same signal-to-noise ratio. 
 
Nd d2 Nd d2 Nd d2 Nd d2 

(0,0) 45 (1,0) 17.6 (2,0) 72.3 (3,0) 2.14 
  (1,1) 0.07 (2,1) 33.5 (3,1) 65.8 
    (2,2) 0.08 (3,2) 0.05 
    (2,3) 0.08 (3,3) 68.4 
      (3,4) 0.002 
      (3,5) 0.037 
      (3,6) 0.001 
      (3,7) 0.217 

Table 2. Detectability of sinusoidal signal in sonar ocean 
noise. 

IV.3. Time evolution of the noise eigenvalues 

Since detectability is highly affected by noise distribution, 
it follows naturally that we observe the variation of the 
noise eigenvalues with time. The motivation for this 
computation is to see if the change was significant and 
updating the EVD at the nodes of the wavelet tree was 
necessary. A sample computation at node (1,0) for ocean 
noise is given in Figure 3. We note that a dominant 
eigenvalue fluctuates significantly in time at that node. 
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    Figure 3. Time evolution of eigenvalues in node (1,0). 

 
V. CONCLUSION 

A method of detection of a known signal in nonstationary 
Gaussian noise has been proposed. It has been argued that 
applying optimal detection techniques over multiresolution 
subspaces has advantages over traditional subspace 
matching or whitening plus matched filtering methods. 
They are increased detectability and numerical stability. 
We have shown theoretically and empirically that there 

exist multiresolution subspaces that show significant 
increase in detectability, that they can be found by a search 
through the full-tree wavelet decomposition structure. The 
significance of updating the EVD of the noise at the nodes 
of the wavelet decomposition tree has been evidenced, 
indicating the need for a scale and time evolutionary 
spectral representation for reliable detection. 
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