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ABSTRACT matrix A into a vector [2]. The-th largest eigenvalue and the
corresponding eigenvector of matriX is denoted by ; [A] and

ev; [A], respectively. We assume that perfect estimates of CSl are
available at the transmitter and receiver. We also assume that the
maximum transit time across the array is assumed small compared
to the inverse bandwidth of the signal.

An orthogonal decomposition of a general wideband space-time
multipath channel is derived assuming antenna arrays at both the
transmitter and receiver. This decomposition provides a frame-
work for efficiently managing the available space-time channel di-
mensions using channel state information at the transmitter and re-
ceiver. Signaling and receiver designs for high throughput applica-
tions are derived using this decomposition. For a fixed throughput 2. GENERAL SINGLE-USER MULTI-ANTENNA
system, we investigate a power allocation scheme that minimizes FRAMEWORK

the effective bit-error rate. In addition, a strategy to maximize the _ _ ) )
average throughput is discussed. Consider a system witl? transmit and? receive antennas. We

assume that each component of the transmitted sigfgl =
T . .
1. INTRODUCTION [xl_(t) , x2(t) -, zp(t)]" has duratiol” and bandwidth3,

which propagates over arpath P-input, @-output fading chan-
Use of antenna arrays at both the base station and mobile is envi-"€l with delays{r,,---,7.}. We consider a typical wideband
sioned in future wireless communication systems. Channel infor- multipath channel where, < T for all I. Hence, intersymbol in-
mation can be used at the transmitter to design efficient signaling terference is negligible and the baseband signal af-thereceive
schemes (see e.g. [1, 3]). Channel information may be obtained@nténnaover one symbol interval can be written as

at the transmitter via several_means. In time-divi§ion duplexing rg(t) = [XT (t—7) - 7 (t—71) ] hy+ ng(t(1)
(TDD), the uplink and downlink channels are reciprocal so the

transmitter can estimate the channel using pilot and/or data sym- th def [ thq hfq ] ., and

bols transmitted by the receiver. In frequency-division duplexing o odes

(FDD), a feedback channel may be used to relay channel informa- h;, = [ higg -+ higp ] .

tion estimated by the receiver back to the transmitter. In [1] we
derive an optimal wideband multi-antenna signaling scheme that
minimizes the bit-error rateBER) given either channedtate in-
formation (CSI) or channetatistics.

The results in [1] are extended in this paper for high through-
put systems. An orthogonal decomposition of the genksahth
wideband space-time channel is derived assuriifigansmit and
Q@-receive antennas. This decomposition serves as a framework N-1
for efficiently managing the degrees of freedom in the space-time wp(t) =+/pb Z splilw(t —i/B), 0<t<T , (2

=0

The channel coefficierit; 4, corresponds to thieth path between
thegq-th receive ang-th transmit antenna. The additive noise vec-
tor ny(¢) is assumed to be zero mean circularly symmetric com-
plex Gaussian wittE[n o (t)n} ()] = o”5(t — t'). We assume for
a single transmitted bit streabnthat thep-th antenna waveform

z,(t) has the following form:

channel to optimize any combination BfE' R and throughput cri-

teria. We study the trade-off betweéh®' R and throughput by ) ) ) .

deriving a power allocation scheme that minimizesBR for a wherew(t) is the (unit-energy) chip waveform of duratiops3, »

fixed throughput assuming BPSK modulation in each sub-channel. iS the transmit power, anf = T'B. Heres,[1],1 = 0,1,---, N—

In addition, a strategy for choosing the instantaneous throughput 1 'epresents the signature sequence corresponding tetthan-

to maximize the average throughput is proposed. tenna. Since,(¢) is bandlimited toB, it suffices to assume that
The rest of the paper is organized as follows. The space-time 7 = fll/Bf di € {0,1,---,N —1}. We sample(t) in (1) atthe

channel model and orthogonal decomposition are given in Sections € 5

2 and 3, respectively. Signaling and receiver designs that trade def .

throughput forB E R are outlined in Section 4 and 5, respectively. rg = [rq(0),rg(1/B), -, rg((N = 1)/B)]"
Superscripf’, H, andx indicate matrix transpose, matrix con- def 0 ... N 177

jugate transpose, and complex conjugation, respectidely.de- °r . R I

notes theN x N identity matrix. The symbok denotes Kro- s ¥ [s1 ---sp] . 3)

necker product and v is formed by stacking the columns of
P ca) y g Now, defineA 4, € CV*¥ as the time-shift matrix corresponding

This research is supported in part by NSF Grant No. ECS-9979448.  to the path delayl;. We assume the delay is cyclic, so that,




is circulant. The circulant assumption is reasonablelforg N,

and is exact if a cyclic prefix is transmitted. Furthermore, define

def

A= [Ay - Ag ] € CVNE s = vee(S) € CVF, and
def

H, = [hi, ---hr,] € C7*L suchthath, = vec(H,). Then,
from (1) — (2) and applying the identity ve& XB) = (BT
A)ved X) [2] twice, we have

rg =/pbA (I, @S)hg+mn,=/pbHss+n,,
whereH, = A (Hj ® In) andn, ~ Ne [0,0°1x].

4)

3. SPACE-TIME CHANNEL DECOMPOSITION

The overall MIMO space-time channel may be representétl &’

[ 1l HE ]T e CVXN¥P  The number of available
dimensions for transmissio¥ 4», is the rank of#{. Assuming
that the channel coefficien{$:;., } are not perfectly correlated,
Naim = N x min(P, @) w.p.1. Our goal is to design transceivers
that access alN 4i,», dimensions. This can be accomplished when
a singular value decomposition (SVD) Hfis available analogous
to [3]. However, as in [3], there is no closed-form expression for
the overall. In this paper, instead of using an SVD fif, we
present a closed-form SVD f@¢, and show that via appropriate
system designs, alV 4, dimensions can be accessed. The proof
is given in [4].

Theorem 1 Define

Cn déf 1 [1 6—]27‘rn/N 6—]27‘r(N—1)n/N ]T c CN
v N
d 1 S, huge 2T/ N )
gng = Vi : ec?. (5
L h —j2mnd; /[N
Zl:l lqpe
Then, H, € CV*¥F admits the following SVD:
N-1
Hy = Z anchnvgq , (6)
n=0
def def 8n,
On,q = ||gn,q|| ’ Vn,g = ||gnZ|| ®cCn (7)

O
Notice that thep-th element ofg,,,, is the complex conjugate of
the frequency response of the channel betweegtheeceive and
p-th transmit antenna at frequenén.

Considerimplementing the maximum likelihood (ML) or max-
imum ratio combining (MRC) receiver for the Hit We may de-

compose the MRC receiver into two stages: matched filtering with
the channel coefficients and combining across all received anten-

nas ¢ < S°9 | Hi'r,), followed by matched filtering with the

signature code. Substitute forr, to obtain

Q Q
P=pb (Z%fﬂq) s+ Hying
gq=1

g=1

®)

Now apply Theorem 1 and the identitX: @ X2) (Y1 ® Y2) =
X:1Y; ® X2Y, to get

Q N-—1
SHIH, = ) Ta@enel €PN (9)
g=1 n=0

Q
def Z H PxP
F" = gnngn,q S C X

g=1

(10

whereT',, is the overall spatial matrix at frequenéfn. Since
the rank ofI’;,, in (10) is min(P, @), it is clear from (9) that
& HEM, is of rank Nuim = N x min(P, Q) w.p.1. It is

easy to verify that theéV 4., eigenvectors oEle Hy M, are

W=D N+n)

Xcn ,
1e{1,2,--

wl=DN+n) evi[[n]

ned{0,1,---,N—-1} |
-,min(P, @)} (11)

where

The corresponding eigenvalues arg _1yn4nt1 = Ai [[n] >
0. TheseN 4 eigenmodes represent all the availadnthogonal
space-time sub-channelsfor any MRC based receiver.

Notice that to compute all the eigenvectors in (11), the most
costly operation is finding the eigenvectorséfdifferent P x P
matrices. This is much less complex than computing the singular
modes of theV @ x N P matrix  sinceN is large andP is small
in practice.

4. SINGLE-USERWITH MINIMUM BER

Maximum (selection) diversity gain is obtained by transmitting
only via the most dominant sub-channel [1]. In this case,

S =

(12)
A [Tn] . (13)

w R Cx,
evi [T'7] ,

w = n=arg max

n=0,---,N—1

Notice that onlyone dimension is used in any one symbol dura-
tion to achieve minimumBER. This signaling scheme can be
implemented as shown in Figure 1(a) with= r.

For receiver design, we assume BPSK modulatiop {+1}).
To simplify receiver complexity, we exploit Theorem 1 as follows.
It is easy to show using the identityX; ® X2) (Y1 ® Y2) =
X,Y: ® X,Y. and the orthogonality ofc,,} ' that

Hy(w® cx) = (g7,W) ¢ (14)
Hence, the test statisti¢ can be written as:
Q Q
Z=(weoen)" Y Hirg=Y (wgs,)chr,. (15)
gq=1 g=1

This can be implemented as shown in Figure 1(b) wits .

5. HIGH THROUGHPUT SINGLE-USER SYSTEMS

We assume a fixed modulation scheme, so the system throughputis

determined by the number of streams transmitted simultaneously.
The throughput is bounded BY 4. To transmitlM data streams
via the channel, we choose a transmitted signal of the form

M
Z V/Pm bm s ) (16)
m=1

where{s("™} are chosen to be a subset of the eigenvectors of
le ”HqH”Hq givenin (11). At the receiver, different streams can



be separated due to the orthogonality{sf™ }. The transmitter

and receiver for this maximum throughput scheme may be imple-
mented as shown in Figure 1 (a) and (b), respectively, for each data
stream withn andw chosen accordingly. Without loss of general-

ity, we assume that®> = 1. Hence,p,, is the transmit power for
the m-th stream normalized by the noise variaace

wHgn1

: :
o=
Wgno
(a) Transmitter (b) Receiver

Fig. 1. Single-user minimum B E R system for BPSK.

Throughput is maximized by using all the N 4, dimensions
for datatransmission. However, this comesat theexpenseof BER

sincethe avail able power hasto be distributed between NN 4;,,, streams.

Instead of maximizing throughput, one may trade throughput for
lower B E'R by choosing to transmit with M < N gin,. Since CSI
is available at the transmitter, the sub-channel gains {v ., } 2™
can be determined. Without loss of generality, assumethat

VL2 22 VM 2 YM4A1 2 2 VN, > 0. (17)
Clearly, the most power efficient way to achieve a throughput of
M istousethe M sub-channelswith the highest gains. We define
the effective BE R of an M -stream system asfollows:

(M) def 1

BERL}) =

Z BER (pmAm) - (18)

m=1

where p,» v, isthereceived SNR corresponding to the m-th stream
and BER (pm~7m) isthe BER. The effective BER reflects the
average system performance across M sub-channels. Thetransmit

power alocated for al streams {p,,}_, satisfies the constraint

Ele pm = pror. TO achieve throughput of M, we require
pm > O0form € {1,---, M} since p» = 0O indicates that no
transmission occurs on sub-channel m. We assume BPSK modu-
lation, S0 thet BER(pmvm) = Q (v26mm ), where Q(z) =

5.1. Fixed Throughput Criterion

For a given throughput of A, we choose {p m}le to minimize

BER™ ff with respect to {pm} _,;- Although minimizing the
effective BFE R ensures the best total performance over al sub-
channels, it may result in some sub-channelswith extremely low
received SN R pmym. This may happen when the total transmit
power pror islow. To prevent this, aworst-case SNR constraints
is employed. Thus, we pose the following optimization problem:

arg min ZQ( 2pm'ym) (219

Pl PM

T S

M
st. Z Pm = PTOT , (20

pm7mzcm7 m:17"'7M (21)
The constant ¢ is chosen suchthat Q (+/2c.,) isthe worst-case
BER for sub-channel m.

The above optimization problem can be solved via the Kuhn-
Tucker conditions. Constraints (20) and (21) imply that a solution
existsif and only if

M
def c
PTOT > Peodd 5 Peodd = - (22)
Ym

m=1
where p.o,as denotes the cut-off transmit power for a throughput
of M. Hence, to maintain arelative throughput of M for differ-
ent channel redlizations, pror may need to be adjusted accord-
ingly. The exact solution of (19) is givenin [4] using an iterative
algorithm. An approximate solution can be obtained by replac-
ing the exact B E'R for each sub-channel in (19) with its Chernoff

bound. In this case, we minimize the upper bound BER (e%) <

= S eXp(—pmym) . Using Kuhn-Tucker conditions, weob-
tain the following closed-form solution for ps,, m = 1,---, M
assuming (22) holds:

~ m710 m T [t
i = D o 08 1 = 1) 23)

where i is chosen to satisfy the power constraint Ele pm =
pror. Weterm this solution the Chernoff-based power allocation.
Another simple sub-optimal power allocation schemethat sat-
isfies the constraints in (20) and (21) assuming (22) holds can be

obtained asfollows:
Cm

ﬁm=—+—><(pTOT—

" 7 Peo,M) - (24)

That is, after satisfying the minimum SNR constraint in each sub-
channel, the remaining power is distributed equally acrossall sub-
channels. We term this scheme uniform power allocation.

5.2. Maximum Throughput Criterion

In this section, we consider an adaptive throughput scheme where
the instantaneous throughput is maximized subject to constraints
(20) and (21). Let the set of "alowable’ throughput values be in
the set M. We assume0 € M to alow 'no-transmission’ when
the channel undergoesdeep fades such that the B E' R requirement
can not be achieved for a given pror. For each redization of
sub-channel gains {~ . }, we choosethe largest M such that

Peo,M < pTOT - (25)

Note that the maximum throughput criterion is not coupled to any
power alocation scheme, but only requires p,, > im. Thus,
one may use the minimum effective BE R or uniform alocation
scheme described aboveto choosethe p .

5.3. Examples

For all the examples, weassumea P = @@ = 2, L = 3 system
withd; € {0,1,2}, N = 16, and hence N 4;,» = 32. The channel
coefficients {h.4p } are lID and V¢ [0, 1/QL] (Rayleigh fading).



The system is required to achieve the worst-case BER of ¢ =
102 oneachsub-channel. Hence, ¢, = (Q7'(c))* /2 , m =
1,---, M ,where Q7'(x)istheinverseof Q(x).

P=Q=2, N=16, d‘ 0{0,1,2}

-30

5 10 15 2 25 30
Sub-channel

Fig. 2. A channel realization.

We compare the minimum exact and Chernoff-bounded effec-
tive B F'R to uniform power allocation for one channel realization.
Theresulting sub-channel SNR values are depicted in Figure 2. A
comparison to the effective B 'R obtained using Chernoff bound
and uniform power alocationsis shownin Figure 3. Observe that
theloss of performance dueto uniform power allocation compared
to the minimum effective B £'R solution is more pronounced as M
increases. Also, the Chernoff approximation introduces negligible
performance | oss.

€= 10"% M=8,16,24,32

10 T T T
= M=8 M=16 M=24 M=32
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Fig. 3. Comparing BER%) of different schemes.
To demonstrate the notion of adaptive throughput, we use the
Chernoff-bound power allocation scheme. Four different sets of
allowablerelative throughputs are used:

M = {0,2,8,32} (41evels)
M, ={0,2,4,8,16, 32} (6 levels)
Mz ={0,1,2,4,6,8,---,30,32} (18levels)
M, ={0,1,2,3,---,31,32} (33 levels) .

The averagerelative throughput and BE'R .. s aredepictedin Fig-
ure 4 (a)—(b). Observe that larger sets result in better average

throughput for any pror andthe resulting B ER are closer to the
worst-case requirement. With small sets excess power tendsto re-
duce the effective B E' R rather than increase the number of chan-
nels, while with the larger setsincreasesin pror tend to increase
the number of channels, rather than reduce average BER ;.

P=Q=2,L=3, N=16:£=0.01
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(a) Average throughput A

P=Q=2,L=3, N=16:£=0.01
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Fig. 4. Adaptive throughput scheme.
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