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ABSTRACT

An orthogonal decomposition of a general wideband space-time
multipath channel is derived assuming antenna arrays at both the
transmitter and receiver. This decomposition provides a frame-
work for efficiently managing the available space-time channel di-
mensions using channel state information at the transmitter and re-
ceiver. Signaling and receiver designs for high throughput applica-
tions are derived using this decomposition. For a fixed throughput
system, we investigate a power allocation scheme that minimizes
the effective bit-error rate. In addition, a strategy to maximize the
average throughput is discussed.

1. INTRODUCTION

Use of antenna arrays at both the base station and mobile is envi-
sioned in future wireless communication systems. Channel infor-
mation can be used at the transmitter to design efficient signaling
schemes (see e.g. [1, 3]). Channel information may be obtained
at the transmitter via several means. In time-division duplexing
(TDD), the uplink and downlink channels are reciprocal so the
transmitter can estimate the channel using pilot and/or data sym-
bols transmitted by the receiver. In frequency-division duplexing
(FDD), a feedback channel may be used to relay channel informa-
tion estimated by the receiver back to the transmitter. In [1] we
derive an optimal wideband multi-antenna signaling scheme that
minimizes the bit-error rate (BER) given either channelstate in-
formation (CSI) or channelstatistics.

The results in [1] are extended in this paper for high through-
put systems. An orthogonal decomposition of the generalL-path
wideband space-time channel is derived assumingP -transmit and
Q-receive antennas. This decomposition serves as a framework
for efficiently managing the degrees of freedom in the space-time
channel to optimize any combination ofBER and throughput cri-
teria. We study the trade-off betweenBER and throughput by
deriving a power allocation scheme that minimizes theBER for a
fixed throughput assuming BPSK modulation in each sub-channel.
In addition, a strategy for choosing the instantaneous throughput
to maximize the average throughput is proposed.

The rest of the paper is organized as follows. The space-time
channelmodel and orthogonal decomposition are given in Sections
2 and 3, respectively. Signaling and receiver designs that trade
throughput forBER are outlined in Section 4 and 5, respectively.

SuperscriptT ,H, and� indicate matrix transpose, matrix con-
jugate transpose, and complex conjugation, respectively.IN de-
notes theN � N identity matrix. The symbol
 denotes Kro-
necker product and vec(A) is formed by stacking the columns of
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matrix A into a vector [2]. Thei-th largest eigenvalue and the
corresponding eigenvector of matrixA is denoted by� i [A] and
evi [A], respectively. We assume that perfect estimates of CSI are
available at the transmitter and receiver. We also assume that the
maximum transit time across the array is assumed small compared
to the inverse bandwidth of the signal.

2. GENERAL SINGLE-USER MULTI-ANTENNA
FRAMEWORK

Consider a system withP transmit andQ receive antennas. We
assume that each component of the transmitted signalx(t) =

[ x1(t) ; x2(t) ; � � � ; xP (t) ]T has durationT and bandwidthB,
which propagates over anL-pathP -input,Q-output fading chan-
nel with delaysf�1; � � � ; �Lg. We consider a typical wideband
multipath channel where�l � T for all l. Hence, intersymbol in-
terference is negligible and the baseband signal at theq-th receive
antenna over one symbol interval can be written as

rq(t) =
�
x
T (t� �1) � � � xT (t� �L)

�
hq + nq(t)(1)

h
T
q

def
=

�
hT1q � � � hTLq

�
; and

h
T
lq

def
=

�
hlq1 � � � hlqP

�
:

The channel coefficienth lqp corresponds to thel-th path between
theq-th receive andp-th transmit antenna. The additive noise vec-
tor nq(t) is assumed to be zero mean circularly symmetric com-
plex Gaussian withE[nq(t)n

�
q(t

0)] = �2�(t� t0). We assume for
a single transmitted bit streamb that thep-th antenna waveform
xp(t) has the following form:

xp(t) =
p
� b

N�1X
i=0

sp[i]!(t� i=B) ; 0 � t < T ; (2)

where!(t) is the (unit-energy) chip waveform of duration1=B, �
is the transmit power, andN = TB. Heresp[i], i = 0; 1; � � � ;N�
1, represents the signature sequence corresponding to thep-th an-
tenna. Sincexp(t) is bandlimited toB, it suffices to assume that
�l = dl=B, dl 2 f0; 1; � � � ;N � 1g. We samplerq(t) in (1) at the
rate 1

B
:

rq
def
= [rq(0); rq(1=B); � � � ; rq((N � 1)=B)]T ;

sp
def
= [sp[0]; sp[1]; � � � ; sp[N � 1]]T ;

S
def
= [ s1 � � � sP ] : (3)

Now, define�dl 2 C
N�N as the time-shift matrix corresponding

to the path delaydl. We assume the delay is cyclic, so that�dl



is circulant. The circulant assumption is reasonable ford l � N ,
and is exact if a cyclic prefix is transmitted. Furthermore, define

�
def
= [�d1 � � � �dL ] 2 C

N�NL , s = vec(S) 2 C
NP , and

Hq
def
= [h1q � � �hLq] 2 C

P�L such thathq = vec(Hq). Then,
from (1) – (2) and applying the identity vec(AXB) = (BT 

A)vec(X) [2] twice, we have

rq =
p
� b� (IL 
 S)hq + nq =

p
� b Hqs+ nq ; (4)

whereHq =�
�
HT
q 
 IN

�
andnq � NC

�
0; �2IN

�
.

3. SPACE-TIME CHANNEL DECOMPOSITION

The overall MIMO space-time channelmay be representedasH def
=�

HT
1 � � � HT

Q

�T 2 C
NQ�NP . The number of available

dimensions for transmissionNdim is the rank ofH. Assuming
that the channel coefficientsfh lqpg are not perfectly correlated,
Ndim = N �min(P;Q) w.p.1. Our goal is to design transceivers
that access allNdim dimensions. This can be accomplished when
a singular value decomposition (SVD) ofH is available analogous
to [3]. However, as in [3], there is no closed-form expression for
the overallH. In this paper, instead of using an SVD forH, we
present a closed-form SVD forHq and show that via appropriate
system designs, allNdim dimensions can be accessed. The proof
is given in [4].

Theorem 1 Define

cn
def
=

1p
N

�
1 e�j2�n=N � � � e�j2�(N�1)n=N �T 2 C

N

gn;q
def
=

1p
N

2
64
PL

l=1
hlq1e

�j2�ndl=N

...PL

l=1 hlqP e
�j2�ndl=N

3
75
�

2 C
P : (5)

Then,Hq 2 C
N�NP admits the following SVD:

Hq =

N�1X
n=0

�n;qcnv
H
n;q ; (6)

�n;q
def
= kgn;qk ; vn;q

def
=

gn;q

kgn;qk 
 cn (7)

2

Notice that thep-th element ofgn;q is the complex conjugate of
the frequency responseof the channel between theq-th receive and
p-th transmit antenna at frequency2�N n.

Consider implementing the maximum likelihood (ML) or max-
imum ratio combining (MRC) receiver for the bitb. We may de-
compose the MRC receiver into two stages: matched filtering with
the channel coefficients and combining across all received anten-

nas (~r
def
=
PQ

q=1
HH
q rq), followed by matched filtering with the

signature codes. Substitute forrq to obtain

~r =
p
� b

 
QX
q=1

HH
q Hq

!
s+

QX
q=1

HH
q nq (8)

Now apply Theorem 1 and the identity(X1 
X2) (Y1 
Y2) =
X1Y1 
X2Y2 to get

QX
q=1

HH
q Hq =

N�1X
n=0

�n 
 cncHn 2 C
PN�PN (9)

�n
def
=

QX
q=1

gn;qg
H
n;q 2 C

P�P (10)

where�n is the overall spatial matrix at frequency2�
N
n. Since

the rank of�n in (10) is min(P;Q), it is clear from (9) thatPQ

q=1HH
q Hq is of rankNdim = N � min(P;Q) w.p.1. It is

easy to verify that theNdim eigenvectors of
PQ

q=1
HH
q Hq are

w
((i�1)N+n) 
 cn ; n 2 f0; 1; � � � ;N � 1g ;

i 2 f1; 2; � � � ;min(P;Q)g (11)

where w
((i�1)N+n) = evi [�n] :

The corresponding eigenvalues are
 (i�1)N+n+1 = �i [�n] >
0. TheseNdim eigenmodes represent all the availableorthogonal
space-time sub-channels for any MRC based receiver.

Notice that to compute all the eigenvectors in (11), the most
costly operation is finding the eigenvectors ofN differentP � P
matrices. This is much less complex than computing the singular
modes of theNQ�NP matrixH sinceN is large andP is small
in practice.

4. SINGLE-USER WITH MINIMUM BER

Maximum (selection) diversity gain is obtained by transmitting
only via the most dominant sub-channel [1]. In this case,

s = w
 cn ; (12)

w = ev1 [�n] ; n = arg max
n=0;��� ;N�1

�1 [�n] : (13)

Notice that onlyone dimension is used in any one symbol dura-
tion to achieve minimumBER. This signaling scheme can be
implemented as shown in Figure 1(a) withn = n.

For receiver design, we assumeBPSK modulation (b 2 f�1g).
To simplify receiver complexity, we exploit Theorem 1 as follows.
It is easy to show using the identity(X1 
X2) (Y1 
Y2) =
X1Y1 
X2Y2 and the orthogonality offcngN�1n=0 that

Hq (w
 cn) =
�
g
H
n;qw

�
cn (14)

Hence, the test statisticZ can be written as:

Z = (w
 cn)H
QX
q=1

HH
q rq =

QX
q=1

�
w
H
gn;q

�
c
H
n rq : (15)

This can be implemented as shown in Figure 1(b) withn = n.

5. HIGH THROUGHPUT SINGLE-USER SYSTEMS

We assumea fixed modulation scheme, so the system throughput is
determined by the number of streams transmitted simultaneously.
The throughput is bounded byN dim. To transmitM data streams
via the channel, we choose a transmitted signal of the form

MX
m=1

p
�m bm s

(m) ; (16)

wherefs(m)g are chosen to be a subset of the eigenvectors ofPQ

q=1HH
q Hq given in (11). At the receiver, different streams can



be separated due to the orthogonality offs (m)g. The transmitter
and receiver for this maximum throughput scheme may be imple-
mented as shown in Figure 1 (a) and (b), respectively, for each data
stream withn andw chosen accordingly. Without loss of general-
ity, we assume that�2 = 1. Hence,�m is the transmit power for
them-th stream normalized by the noise variance� 2.
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Fig. 1. Single-user minimum BER system for BPSK.

Throughput is maximized by using all the Ndim dimensions
for data transmission. However, this comes at the expense of BER
since the available power has to be distributed betweenN dim streams.
Instead of maximizing throughput, one may trade throughput for
lower BER by choosing to transmit with M < Ndim. Since CSI
is available at the transmitter, the sub-channel gains f
mgNdimm=1
can be determined. Without loss of generality, assume that


1 � 
2 � � � � � 
M � 
M+1 � � � � � 
Ndim > 0 : (17)

Clearly, the most power efficient way to achieve a throughput of
M is to use the M sub-channels with the highest gains. We define
the effective BER of an M -stream system as follows:

BER
(M)
eff

def
=

1

M

MX
m=1

BER (�m
m) : (18)

where �m
m is the received SNR corresponding to them-th stream
and BER (�m
m) is the BER. The effective BER reflects the
average system performance acrossM sub-channels. The transmit
power allocated for all streams f�mgMm=1 satisfies the constraintPM

m=1 �m = �TOT . To achieve throughput of M , we require
�m > 0 for m 2 f1; � � � ;Mg since �m = 0 indicates that no
transmission occurs on sub-channel m. We assume BPSK modu-
lation, so that BER(�m
m) = Q

�p
2�m
m

�
, where Q(x)

def
=

1p
2�

R1
x

e�u
2=2du.

5.1. Fixed Throughput Criterion

For a given throughput of M , we choose f�mgMm=1 to minimize

BER
(M)
eff with respect to f�mgMm=1. Although minimizing the

effective BER ensures the best total performance over all sub-
channels, it may result in some sub-channels with extremely low
received SNR �m
m. This may happen when the total transmit
power �TOT is low. To prevent this, a worst-case SNR constraints
is employed. Thus, we pose the following optimization problem:

f�mgMm=1 = arg min
�1;���;�M

MX
m=1

Q
�p

2�m
m

�
(19)

s.t.
MX
m=1

�m = �TOT ; (20)

�m
m � cm ; m = 1; � � � ;M (21)

The constant cm is chosen such that Q �p2cm
�

is the worst-case
BER for sub-channelm.

The above optimization problem can be solved via the Kuhn-
Tucker conditions. Constraints (20) and (21) imply that a solution
exists if and only if

�TOT � �co;M ; �co;M
def
=

MX
m=1

cm

m

: (22)

where �co;M denotes the cut-off transmit power for a throughput
of M . Hence, to maintain a relative throughput of M for differ-
ent channel realizations, �TOT may need to be adjusted accord-
ingly. The exact solution of (19) is given in [4] using an iterative
algorithm. An approximate solution can be obtained by replac-
ing the exact BER for each sub-channel in (19) with its Chernoff
bound. In this case, we minimize the upper bound BER (M)

eff �
1
2M

PM

m=1 exp (��m
m) :Using Kuhn-Tucker conditions, we ob-
tain the following closed-form solution for �m, m = 1; � � � ;M
assuming (22) holds:

~�m =
max (cm; log 
m � ~�)


m
(23)

where ~� is chosen to satisfy the power constraint
PM

m=1
~�m =

�TOT . We term this solution the Chernoff-based power allocation.
Another simple sub-optimal power allocation scheme that sat-

isfies the constraints in (20) and (21) assuming (22) holds can be
obtained as follows:

�̂m =
cm

m

+
1

M
� (�TOT � �co;M ) : (24)

That is, after satisfying the minimum SNR constraint in each sub-
channel, the remaining power is distributed equally across all sub-
channels. We term this scheme uniform power allocation.

5.2. Maximum Throughput Criterion

In this section, we consider an adaptive throughput scheme where
the instantaneous throughput is maximized subject to constraints
(20) and (21). Let the set of ’allowable’ throughput values be in
the set M. We assume 0 2 M to allow ’no-transmission’ when
the channel undergoes deep fades such that the BER requirement
can not be achieved for a given �TOT . For each realization of
sub-channel gains f
mg, we choose the largest M such that

�co;M � �TOT : (25)

Note that the maximum throughput criterion is not coupled to any
power allocation scheme, but only requires �m � cm


m
. Thus,

one may use the minimum effective BER or uniform allocation
scheme described above to choose the � m.

5.3. Examples

For all the examples, we assume a P = Q = 2, L = 3 system
with dl 2 f0; 1; 2g, N = 16, and henceNdim = 32. The channel
coefficients fhlqpg are IID and NC [0; 1=QL] (Rayleigh fading).



The system is required to achieve the worst-case BER of " =

10�2 on each sub-channel. Hence, cm =
�Q�1(")�2 =2 ; m =

1; � � � ;M ; where Q�1(x) is the inverse of Q(x).
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Fig. 2. A channel realization.

We compare the minimum exact and Chernoff-bounded effec-
tive BER to uniform power allocation for one channel realization.
The resulting sub-channel SNR values are depicted in Figure 2. A
comparison to the effective BER obtained using Chernoff bound
and uniform power allocations is shown in Figure 3. Observe that
the loss of performance due to uniform power allocation compared
to the minimum effective BER solution is more pronounced asM
increases. Also, the Chernoff approximation introduces negligible
performance loss.
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To demonstrate the notion of adaptive throughput, we use the
Chernoff-bound power allocation scheme. Four different sets of
allowable relative throughputs are used:

M1 = f0; 2; 8; 32g (4 levels)
M2 = f0; 2; 4; 8; 16; 32g (6 levels)
M3 = f0; 1; 2; 4; 6; 8; � � � ; 30; 32g (18 levels)
M4 = f0; 1; 2; 3; � � � ; 31; 32g (33 levels) :

The average relative throughput and BER eff are depicted in Fig-
ure 4 (a)–(b). Observe that larger sets result in better average

throughput for any �TOT and the resulting BER are closer to the
worst-case requirement. With small sets excess power tends to re-
duce the effective BER rather than increase the number of chan-
nels, while with the larger sets increases in �TOT tend to increase
the number of channels, rather than reduce average BER eff .

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

ρ
TOT

 (dB)

A
ve

ra
ge

 R
el

at
iv

e 
T

hr
ou

gh
pu

t

P=Q=2,L=3, N=16: ε = 0.01

4 levels 
6 levels 
18 levels
33 levels

(a) Average throughput M

0 5 10 15 20 25 30 35 40
10

−8

10
−6

10
−4

10
−2

10
0

ρ
TOT

 (dB)

A
ve

ra
ge

 B
E

R
ef

f

P=Q=2,L=3, N=16: ε = 0.01

4 levels 
6 levels 
18 levels
33 levels

(b) Average BEReff

Fig. 4. Adaptive throughput scheme.
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