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ABSTRACT mez algorithm [3]. The algorithm is similar to [4] for the complex
Chebyshev problem where iterative reweighted least squares was
used to solve the subproblem formed in each multiple exchange
. e iteration. The new algorithm can handle the case of complex filter
FIR, IIR and 2-D FIR with complex specifications. The Cheby- design and also IIR filter design. The fact that the new algorithm
shev,_ least squares, and c_onstramed least squares pm'?'e”_‘s becorQSIves the design problem using a Remez-like procedure helps
;pecnal cazei b%c'?ubse thh's norm u_?ﬁs a _conveﬁ con;pln?t%qn of thi ake the new algorithm as efficient as existing algorithms based
-norm and the -NEbyshev norm. The primary bene itofthis new ., constrained least-squares. This algorithm is efficient enough to
pro_blem fc_)rn_1ulat|on is that a single efficient multiple exchange a!- design 2-D filters witht00 free coefficients. For larger filters, the
gorithm (similar to Remez) has been developed to cover allthe dif- 5 ithm is limited by the procedure to solve the reweighted least

ferent Iflltelrrt]ypes for nlwlagnkl)tudiland.pr]lase aé)proxmﬁtlon. In fjh? squares subproblems because they require a very large amount of
new algorithm, a small subproblem is formed at each step an 'Smemory and computation on the order@¢N?).

solvehd V\gfh ;n |tdera_t|ve r;ewelghltedfl_ﬁast squg:llresFFecnnl?#e which This paper will formulate the new error norm problem, and

ga? _?n e” e eS|gnto (;:omfpf) et))( L ers 6315' y. | 'tna Y, the Porm provide a general algorithm that directly optimizes this norm and
efinition allows easy trade-offs between the relative importance v works for FIR, IR and 2-D FIR filters.

of error energy and worst-case error.

In this paper, a general filter design norm is proposed with the in-
tent of producing a unified design algorithm for all types of filters—

1. INTRODUCTION 2. PROBLEM STATEMENT

. . - . The design problem requires a finite number of filter coefficients:
Filters with minimal Chebyshev error are often needed in commu- o ¢ o 4¢0nvard coefficientd[n],n = 0,1, --- , N and the feed-
nication and DSP applications. However, these filters tend to be . coefficientsafm],m = 0,1,---, M. Note that filters are
vulnerable to out-of-band white noise because their stopband erE1R whenM
ror is relatively high. Adams [1] discussed the issue thoroughly can set
and suggested that the best filter should be designed by combin-
ing the minimax and least squares criteria as a balance betwee
the two types of error. However, the combination problem was
not solved directly; instead, a related problem, constrained least B(w)

squares [1, 2], was used to do this combined optimization. Both the H(w) = T

constrained problem and the Chebyshev problem still have chal- (@)

lenging design questions, especially for complex filters, IIR filters, whereX (w) = 3=, z[k]e ’“* is the discrete-time Fourier trans-
and multi-D filters. form (DTFT) of z[n].

Even though a constrained least-squares problem can be used The approximation is carried out by minimizing the norm of
to design filters with both small RMS error and maximal error, we the weighted errorF(w) = W(w) (I(w) — H(w)). To achieve
must know the filter characteristiagpriori to set up the constraint.  the design goal, this paper proposes a new norm, calledaime
On the other hand, this paper proposes a direct design procedure tbined normthat is a convex combination of the Chebyshev norm
optimize a combine@-norm and Chebyshev norm. The combina- and the2-norm with a weighting parametéd < o < 1):
tion turns out to be a norm that has some properties similar to the

= 0 and IIR, otherwise. In the causal IIR case, we
[0] = 1 to get an unique filter.

In this paper, filters are designed to approximate an ideal fre-
rzquency responsd,(w), with an actual filter whose frequency re-
sponse is

Chebyshev norm and some like theorm. The combined norm |E|% = ol |2 + (1 - a)|| B3 1)
forms a strictly convex unit ball which implies the uniqueness of )
the optimal solution without the Haar condition. where the Chebyshev norm is computed by

To solve the design problem, this research develops a multiple

frequency exchange algorithm that is a generalization of the Re- [Ellee = max |E(w)|
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In this paper, th&-norm is normalized in order to have com- nitidize 9© VO
parable weighting with the Chebyshev norm. The weight func- P
tion, W (w), which can be different for the-norm and Chebyshev
norm, permits design flexibility for some special filters such as
bandpass filters having a Chebyshev passband and a least-squares
stopband. Note that the combined norm is formed as a convex
combination of the squares of the two norms—the purpose of this

is to have an error gradient that is linear.
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3. COMBINED NORM

The combined norm introduced in this paper allows simultaneous Exchangeﬂg) VO
control of both the maximal error and the RMS error. Depending
on the choice ofy, the combined norm minimization can exhibit
properties similar to either the Chebyshev or least-squares solu-
tions. A useful property for FIR filter design is that minimizing
the combined norm is guaranteed to give an unique solution even

. Multiple exchange iteration

without the Haar condition. Solution
Itis not difficult to show that the combined norm satisfijest . _ ) . .
Ylle < lz]la + ||ly|la. Along with other easy to prove properties, Figure 1: Block diagram for the new design algorithm.

the convexity property implies that the combined norm is actually
a norm. Therefore, when the ideal function is bounded, we can
claim that the optimal solution exists and is bounded.

Fora < 1, the norm becomes a strictly convex norm meaning
thatifz # vy, ||zl = ||y|l« =1, and0 < ¢ < 1 then|jtz + (1 —
t)ylla < 1. The strict convexity property implies that the optimal

are also equivalent to the combined norm problem. The proof
is very similar to the one given above. The different formula-

solution is unique. For — 1, the problem becomes a Chebyshev tions give considerable flexibility when selecting a design method

problem, in which case uniqueness holds due to the Haar Conditionmatched to an application. The combined norm minimization tends
for the cé)mplex exponential kernel (in the FIR case) to be more practical than CLS, because the problem does not re-

quire anya priori knowledge of the filter to set the constraint.

3.1. Nature of the Optimal Solution 4 ALGORITHM

Similar to the Chebyshev solution, the optimal solution of the com-

bined norm problem has many extremal points where the error Chebyshev optimization can be done with a weighted least-squares
reaches its maximum and is equal to the Chebyshev error. How-algorithm such as Lawson’s [5] iterative reweighted least squares
ever, the number of extremal points need not be greater than the(IRLS). Likewise, the combined norm problem can be solved by
number of design parameter as happens in the Chebyshev proba similar reweighted least-squares iteration. However, the least-
lem. This behavior of the optimal solution is essential to the de- squares norm involves an integral that must be discretized in a nu-
velopment of the new design algorithm. merical algorithm. If the entire domain is discretized ifoints,

the result is a matrix that iB x L whereL is the number of filter
coefficients. UsuallyP is chosen to be greater thafAL, so the
least-squares algorithm is very inefficient for lage In order to
have an efficient algorithm, we need to keep the matrix small and

The combined norm minimization and constrained least squaresn€arly square, so we will emulate the Remez algorithm which it-
(CLS) are equivalent, even though the two optimization problems eratively solves for the error on its extremal set. This approach to

3.2. Equivalence of Combined Norm Minimization and Con-
strained Least Squares

are formed differently. To show equivalence, let the filiér be updating the weight on the small extremal set was first proposed
the optimal solution for the combined norm minimization. Since in [4]- . o o
H,, has the smallest combined norfii, |2 = o E.|/% + (1 — _ The_block diagram for the new algorithm is sh_own in Fig. 1.
@)||Ex |3 is minimized. Denote the Chebyshev error with,, || .. = It.|s similar to the Remez exchange, where there is an outer loop
€n, then the errof| B, ||2 — ae? = (1 — )||E,|3 is minimized ywth an exchange procedure that finds the extremal sub_set a_nd an
over all functions that have maximal errqr. Now consider solv-  inner loop with an IRLS procedure that computes the optimal filter
ing the CLS problem coefficients on the restricted subset of extremal frequencies.
In order to guarantee convergence, the exchange rule for the
min || B2 St|E| < en. extremal set must force the maximal error on the extremal set to be

increasing at every step. The exchange procedure can be as simple
The solution,H., will have the smallest errdfE.||2. Using the as finding the set of local error maxima (as in [3, 4]). However, the
unigueness of the combined norm solution, we conclude that theconvergence rate depends directly on the number of elements in the
solutions for the two optimizations are the same. extremal set. Therefore, additional exchange rules (not discussed
Note that other minimum norm problems such as here) can be added to the procedure to accelerate the algorithm.
The more difficult procedure is to compute the filter coeffi-
min {v||E||s + (1 = )| Ell2}, cients. This is done by using the IRLS algorithm, because IRLS
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is not only efficient for a small grid set, but is also robust to the

removal of any points that do not belong to the extremal set. The
procedure for this subproblem starts by using the property that the
Chebyshev problem is equivalent to a weighted least squares prob-¢__
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where||E[[Y o, = > [V*(w)E*(w)|, Q, is the extremal set
wey Figure 2: Different error norms obtained when minimizing the

andV is the optimal weight. The optimal weightis computed by o mpined norm, as a function of. (a) Chebyshev norm (solid
line), least-squares norm (dashed line), and the combined norm

yE+D _ V (k)2 F(k) (dotted line) versus. (b) The trade-off between the Chebyshev
- S V(&2 B(k) norm and least-squares norm.
QP

as for the Chebyshev problem.
The IRLS problem (2) is a weighted least squares problem that4.2. Computation
can be solved quite easily by solving for a zero of the gradient with
respect to the design parameter. However, the tefih, is still
a norm on the continuous domain, so it must be solved on a fine
grid. This eventually makes the algorithm inefficient. However.
the term|| E||» can be minimized efficiently by using the following
variation. Consider

The algorithms for both FIR and IIR design usually require less
than ten exchange iterations, where each exchange iteration re-
quires only a few tens of IRLS iterations. The IRLS subproblem
' may be solved efficiently by the Levinson recursiah,N?) for
computing the feedforward coefficient plus an additiopah/?®),
for solving the feedback coefficient. Since the algorithm is an
IE|2 = [W(I — H)|2 O(N?) operator (assumingy >> M), it will also be efficient for
designing medium sized 2-D filters with this new combined norm
= |y — Xh|? definition.

3
=h" X" Xh - 2R{y"Xh} + y"y ®)

=h"Ah - 2R{b"h} + ¢ 5. EXAMPLES

This section shows some filters designed by the new algorithm for
the case where the ideal specifications are: lowpass filter with a
cutoff frequency a0.4 (normalized frequency), a transition band-
width of 0.1, a ratio of passband error to stopband error equal to
10, and a group delay of 13 samples.

Figure 2 shows how the three norms (Chebyshev, Least-squares
and combined norm) depend on the paramatésr one case: an
FIR filter of order20. As expected, the Chebyshev norm decreases
asc increases, while the least-squares norm increases. Figure 2
also shows the trade-off between the Chebyshev norm and the 2-
4.1. lIR Filter Design norm versusy. This behavior is identical to the plot for the con-

] ) strained least squares method [1, 2]. The combined-norm problem

To use the new algorithm for IIR design, there are two approaches:geems to be biased toward the Chebyshev norm, so a value of
find a local optimum by finding a solution with zero gradient, or  petweern.2 and0.4 is the best compromise for designing a filter
find a suboptimal solution by linearizing the problem. Due to jith hoth small RMS error and maximal error. For the same filter
the limited space here, the details of the zero gradient approachspecification, an IIR design is shown in Fig. 3. The filter has
will be omitted. Although the linearization method yields a de- zeros andt poles and was designed by the linearization approach
sign that is suboptimal, the solution has nearly the same erroryith o, — 0.5. The IIR filter has a maximal error that is abdut
while the algorithm complexity is much less. The linearization g |ess than the order-20 FIR filter.
is done by treating the problemin |[W (I — £)]|> as a linear To compare the algorithm performance to some well-known
problemmin || f; (1A — B)||> where|A| is fixed [7], so all of the  methods, Table 1 summarizes the characteristics of several differ-
weighted least squares subproblems can be solved as linear probent filter designs. First, the least squares filter (ae= 0) has the
lems. However, the linearized IIR problem no longer possesses alowest computation requirement. The Chebyshev filter= 1)
gradient system matrix that is Toeplitz. Therefore, to make the al- requires more computation because it contains the IRLS iteration.
gorithm efficient, the feedforward and feedback coefficients need The computational requirement for the combined nosm=0.5)
to be computed separately. The feedforward coefficients are com-is more than the Chebyshev problem because of the additional 2-
puted using Levinson’s recursion, while the feedback coefficients norm computation during the IRLS iteration. Using the linearized
are computed by using a generic numerical method such as the QRIR method, the IIR filter requires about the same amount of com-
decomposition. putation as the FIR filter, but the IIR filter has a much better fre-

whereX is a matrix containing kernel valueg,is a vector of the
weighted ideal response, ahds a vector of the filter coefficients.
SinceA, b, ¢ are fixed throughout the design, we can precompute
their values, and the computation will be significantly reduced.
For FIR filter design, the system matriX for the gradient
equation is a Toeplitz matrix, so it can be solved efficiently by
using the Levinson recursion. For IIR filter design, the algorithm
has to be modified further as described in the next subsection.
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Figure 3: Frequency response of an IIR filter.
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quency response. For the locally optimal IIR solution, the compu-
tation is about three times greater than the linearized method but
the norms are nearly identical—the optimized combined norm is
slightly smaller (.6819 x 1072 versusl.6821 x 10~2). In addi-

tion, the frequency response of the solutions obtained by the new
algorithm are equivalent to, or better than the those obtained by
the other available algorithms for the FIR case [2, 6]. For the pro-
posed algorithm, the computational requirements are sometimes
greater because the new algorithm always deals with the complex
case which inherently requires four times as much computation as
an algorithm that is restricted to the real case.

The last part of this section shows the design for a 2-D band-
pass filter when the passband is an annulus bounded by rings of
radii 0.35 and0.65 (in normalized frequency), the inner stopband
is a circle with radiu$).2, and the outer stopband is a ring of radius
greater thar®.8. Figure 4 shows the frequency response and error
of a19 x 19 2-D FIR filter. The design need3(10'°) flops due
to the large number of parameters being optimized.

6. CONCLUSIONS

A new filter design method was formulated based on the simul-
taneous minimization of a combined norm that is the weighted
sum of the 2-norm and the Chebyshev norm. The combined norm
problem is a norm, and it is also generalizes the Chebyshev prob-
lem, the least squares problem, and the peak constrained least
squares problem, so it possess desirable properties for many ap-
plications. The new problem is solved by a multiple frequency ex-
change with subproblems solved by the iterative reweighted least
squares method. The new algorithm is directly applicable to the
design of complex filters, IIR filters, and 2-D filters. The amount
of computation for the algorithm i©(N?) which is efficient for

the design of high-order filters.
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