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ABSTRACT

In this paper, a general filter design norm is proposed with the in-
tent of producing a unified design algorithm for all types of filters—
FIR, IIR and 2-D FIR with complex specifications. The Cheby-
shev, least squares, and constrained least squares problems become
special cases because this norm uses a convex combination of the
2-norm and the Chebyshev norm. The primary benefit of this new
problem formulation is that a single efficient multiple exchange al-
gorithm (similar to Remez) has been developed to cover all the dif-
ferent filter types for magnitude and phase approximation. In the
new algorithm, a small subproblem is formed at each step and is
solved with an iterative reweighted least squares technique which
can handle the design of complex filters easily. Finally, the norm
definition allows easy trade-offs between the relative importance
of error energy and worst-case error.

1. INTRODUCTION

Filters with minimal Chebyshev error are often needed in commu-
nication and DSP applications. However, these filters tend to be
vulnerable to out-of-band white noise because their stopband er-
ror is relatively high. Adams [1] discussed the issue thoroughly
and suggested that the best filter should be designed by combin-
ing the minimax and least squares criteria as a balance between
the two types of error. However, the combination problem was
not solved directly; instead, a related problem, constrained least
squares [1, 2], was used to do this combined optimization. Both the
constrained problem and the Chebyshev problem still have chal-
lenging design questions, especially for complex filters, IIR filters,
and multi-D filters.

Even though a constrained least-squares problem can be used
to design filters with both small RMS error and maximal error, we
must know the filter characteristicsa priori to set up the constraint.
On the other hand, this paper proposes a direct design procedure to
optimize a combined2-norm and Chebyshev norm. The combina-
tion turns out to be a norm that has some properties similar to the
Chebyshev norm and some like the2-norm. The combined norm
forms a strictly convex unit ball which implies the uniqueness of
the optimal solution without the Haar condition.

To solve the design problem, this research develops a multiple
frequency exchange algorithm that is a generalization of the Re-
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mez algorithm [3]. The algorithm is similar to [4] for the complex
Chebyshev problem where iterative reweighted least squares was
used to solve the subproblem formed in each multiple exchange
iteration. The new algorithm can handle the case of complex filter
design and also IIR filter design. The fact that the new algorithm
solves the design problem using a Remez-like procedure helps
make the new algorithm as efficient as existing algorithms based
on constrained least-squares. This algorithm is efficient enough to
design 2-D filters with400 free coefficients. For larger filters, the
algorithm is limited by the procedure to solve the reweighted least
squares subproblems because they require a very large amount of
memory and computation on the order ofO(N2).

This paper will formulate the new error norm problem, and
provide a general algorithm that directly optimizes this norm and
that works for FIR, IIR and 2-D FIR filters.

2. PROBLEM STATEMENT

The design problem requires a finite number of filter coefficients:
the feedforward coefficients,b[n], n = 0, 1, · · · , N and the feed-
back coefficients,a[m], m = 0, 1, · · · , M . Note that filters are
FIR whenM = 0 and IIR, otherwise. In the causal IIR case, we
can seta[0] = 1 to get an unique filter.

In this paper, filters are designed to approximate an ideal fre-
quency response,I(ω), with an actual filter whose frequency re-
sponse is

H(ω) =
B(ω)

A(ω)

whereX(ω) =
∑

k x[k]e−jωk is the discrete-time Fourier trans-
form (DTFT) ofx[n].

The approximation is carried out by minimizing the norm of
the weighted error,E(ω) = W (ω) (I(ω)−H(ω)). To achieve
the design goal, this paper proposes a new norm, called thecom-
bined norm,that is a convex combination of the Chebyshev norm
and the2-norm with a weighting parameter(0 ≤ α ≤ 1):

‖E‖2
α = α‖E‖2

∞ + (1− α)‖E‖2
2 (1)

where the Chebyshev norm is computed by

‖E‖∞ = max
ω

|E(ω)|

and the2-norm is computed by

‖E‖2 =

√∫
ω
|E(ω)|2dω∫

ω
dω

.



In this paper, the2-norm is normalized in order to have com-
parable weighting with the Chebyshev norm. The weight func-
tion, W (ω), which can be different for the2-norm and Chebyshev
norm, permits design flexibility for some special filters such as
bandpass filters having a Chebyshev passband and a least-squares
stopband. Note that the combined norm is formed as a convex
combination of the squares of the two norms—the purpose of this
is to have an error gradient that is linear.

3. COMBINED NORM

The combined norm introduced in this paper allows simultaneous
control of both the maximal error and the RMS error. Depending
on the choice ofα, the combined norm minimization can exhibit
properties similar to either the Chebyshev or least-squares solu-
tions. A useful property for FIR filter design is that minimizing
the combined norm is guaranteed to give an unique solution even
without the Haar condition.

It is not difficult to show that the combined norm satisfies‖x+
y‖α ≤ ‖x‖α + ‖y‖α. Along with other easy to prove properties,
the convexity property implies that the combined norm is actually
a norm. Therefore, when the ideal function is bounded, we can
claim that the optimal solution exists and is bounded.

Forα < 1, the norm becomes a strictly convex norm meaning
that if x 6= y, ‖x‖α = ‖y‖α = 1, and0 < t < 1 then‖tx + (1−
t)y‖α < 1. The strict convexity property implies that the optimal
solution is unique. Forα = 1, the problem becomes a Chebyshev
problem, in which case uniqueness holds due to the Haar condition
for the complex exponential kernel (in the FIR case).

3.1. Nature of the Optimal Solution

Similar to the Chebyshev solution, the optimal solution of the com-
bined norm problem has many extremal points where the error
reaches its maximum and is equal to the Chebyshev error. How-
ever, the number of extremal points need not be greater than the
number of design parameter as happens in the Chebyshev prob-
lem. This behavior of the optimal solution is essential to the de-
velopment of the new design algorithm.

3.2. Equivalence of Combined Norm Minimization and Con-
strained Least Squares

The combined norm minimization and constrained least squares
(CLS) are equivalent, even though the two optimization problems
are formed differently. To show equivalence, let the filterHn be
the optimal solution for the combined norm minimization. Since
Hn has the smallest combined norm,‖En‖2

α = α‖En‖2
∞ + (1−

α)‖En‖2
2 is minimized. Denote the Chebyshev error with‖En‖∞ =

εn, then the error‖En‖2
α − αε2n = (1 − α)‖En‖2

2 is minimized
over all functions that have maximal errorεn. Now consider solv-
ing the CLS problem

min ‖E‖2 s.t.|E| ≤ εn.

The solution,Hc, will have the smallest error‖Ec‖2. Using the
uniqueness of the combined norm solution, we conclude that the
solutions for the two optimizations are the same.

Note that other minimum norm problems such as

min {γ‖E‖∞ + (1− γ)‖E‖2} ,
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Figure 1: Block diagram for the new design algorithm.

are also equivalent to the combined norm problem. The proof
is very similar to the one given above. The different formula-
tions give considerable flexibility when selecting a design method
matched to an application. The combined norm minimization tends
to be more practical than CLS, because the problem does not re-
quire anya priori knowledge of the filter to set the constraint.

4. ALGORITHM

Chebyshev optimization can be done with a weighted least-squares
algorithm such as Lawson’s [5] iterative reweighted least squares
(IRLS). Likewise, the combined norm problem can be solved by
a similar reweighted least-squares iteration. However, the least-
squares norm involves an integral that must be discretized in a nu-
merical algorithm. If the entire domain is discretized intoP points,
the result is a matrix that isP × L whereL is the number of filter
coefficients. UsuallyP is chosen to be greater than10L, so the
least-squares algorithm is very inefficient for largeL. In order to
have an efficient algorithm, we need to keep the matrix small and
nearly square, so we will emulate the Remez algorithm which it-
eratively solves for the error on its extremal set. This approach to
updating the weight on the small extremal set was first proposed
in [4].

The block diagram for the new algorithm is shown in Fig. 1.
It is similar to the Remez exchange, where there is an outer loop
with an exchange procedure that finds the extremal subset and an
inner loop with an IRLS procedure that computes the optimal filter
coefficients on the restricted subset of extremal frequencies.

In order to guarantee convergence, the exchange rule for the
extremal set must force the maximal error on the extremal set to be
increasing at every step. The exchange procedure can be as simple
as finding the set of local error maxima (as in [3, 4]). However, the
convergence rate depends directly on the number of elements in the
extremal set. Therefore, additional exchange rules (not discussed
here) can be added to the procedure to accelerate the algorithm.

The more difficult procedure is to compute the filter coeffi-
cients. This is done by using the IRLS algorithm, because IRLS



is not only efficient for a small grid set, but is also robust to the
removal of any points that do not belong to the extremal set. The
procedure for this subproblem starts by using the property that the
Chebyshev problem is equivalent to a weighted least squares prob-
lem which further implies

min ‖E‖2
α,Ωp

= min α‖E‖2
∞,Ωp

+ (1− α)‖E‖2
2

= min α‖E‖2
V,Ωp

+ (1− α)‖E‖2
2

(2)

where‖E‖2
V,Ωp

=
∑

ω∈Ωp

|V 2(ω)E2(ω)|, Ωp is the extremal set

andV is the optimal weight. The optimal weight is computed by

V (k+1) =

√√√√√ V (k)2E(k)∑
Ωp

V (k)2E(k)

as for the Chebyshev problem.
The IRLS problem (2) is a weighted least squares problem that

can be solved quite easily by solving for a zero of the gradient with
respect to the design parameter. However, the term‖E‖2 is still
a norm on the continuous domain, so it must be solved on a fine
grid. This eventually makes the algorithm inefficient. However,
the term‖E‖2 can be minimized efficiently by using the following
variation. Consider

‖E‖2
2 = ‖W (I −H)‖2

2

= ‖y −Xh‖2

= hHXHXh− 2<{yHXh}+ yHy

= hHAh− 2<{bHh}+ c

(3)

whereX is a matrix containing kernel values,y is a vector of the
weighted ideal response, andh is a vector of the filter coefficients.
SinceA,b, c are fixed throughout the design, we can precompute
their values, and the computation will be significantly reduced.

For FIR filter design, the system matrixA for the gradient
equation is a Toeplitz matrix, so it can be solved efficiently by
using the Levinson recursion. For IIR filter design, the algorithm
has to be modified further as described in the next subsection.

4.1. IIR Filter Design

To use the new algorithm for IIR design, there are two approaches:
find a local optimum by finding a solution with zero gradient, or
find a suboptimal solution by linearizing the problem. Due to
the limited space here, the details of the zero gradient approach
will be omitted. Although the linearization method yields a de-
sign that is suboptimal, the solution has nearly the same error
while the algorithm complexity is much less. The linearization
is done by treating the problemmin ‖W (I − B

A
)‖2 as a linear

problemmin ‖ W
|A| (IA−B)‖2 where|A| is fixed [7], so all of the

weighted least squares subproblems can be solved as linear prob-
lems. However, the linearized IIR problem no longer possesses a
gradient system matrix that is Toeplitz. Therefore, to make the al-
gorithm efficient, the feedforward and feedback coefficients need
to be computed separately. The feedforward coefficients are com-
puted using Levinson’s recursion, while the feedback coefficients
are computed by using a generic numerical method such as the QR
decomposition.
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Figure 2: Different error norms obtained when minimizing the
combined norm, as a function ofα. (a) Chebyshev norm (solid
line), least-squares norm (dashed line), and the combined norm
(dotted line) versusα. (b) The trade-off between the Chebyshev
norm and least-squares norm.

4.2. Computation

The algorithms for both FIR and IIR design usually require less
than ten exchange iterations, where each exchange iteration re-
quires only a few tens of IRLS iterations. The IRLS subproblem
may be solved efficiently by the Levinson recursion,O(N2) for
computing the feedforward coefficient plus an additionalO(M3),
for solving the feedback coefficient. Since the algorithm is an
O(N2) operator (assumingN � M ), it will also be efficient for
designing medium sized 2-D filters with this new combined norm
definition.

5. EXAMPLES

This section shows some filters designed by the new algorithm for
the case where the ideal specifications are: lowpass filter with a
cutoff frequency at0.4 (normalized frequency), a transition band-
width of 0.1, a ratio of passband error to stopband error equal to
10, and a group delay of 13 samples.

Figure 2 shows how the three norms (Chebyshev, Least-squares
and combined norm) depend on the parameterα for one case: an
FIR filter of order20. As expected, the Chebyshev norm decreases
asα increases, while the least-squares norm increases. Figure 2
also shows the trade-off between the Chebyshev norm and the 2-
norm versusα. This behavior is identical to the plot for the con-
strained least squares method [1, 2]. The combined-norm problem
seems to be biased toward the Chebyshev norm, so a value ofα
between0.2 and0.4 is the best compromise for designing a filter
with both small RMS error and maximal error. For the same filter
specification, an IIR design is shown in Fig. 3. The filter has16
zeros and4 poles and was designed by the linearization approach
with α = 0.5. The IIR filter has a maximal error that is about14
dB less than the order-20 FIR filter.

To compare the algorithm performance to some well-known
methods, Table 1 summarizes the characteristics of several differ-
ent filter designs. First, the least squares filter (i.e.,α = 0) has the
lowest computation requirement. The Chebyshev filter (α = 1)
requires more computation because it contains the IRLS iteration.
The computational requirement for the combined norm (α = 0.5)
is more than the Chebyshev problem because of the additional 2-
norm computation during the IRLS iteration. Using the linearized
IIR method, the IIR filter requires about the same amount of com-
putation as the FIR filter, but the IIR filter has a much better fre-



−1 −0.5 0 0.5 1

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

−1 −0.5 0 0.5 1

−10

0

10

P
ha

se
/ π

−1 −0.5 0 0.5 1
0

0.02

0.04

Frequency

E
rr

or

Figure 3: Frequency response of an IIR filter.
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Filter #Mflops max. error RMS error
N = 51, M = 0, α = 0 3.20 0.0926 0.0139
N = 51, M = 0, α = 1 33.8 0.0380 0.0257
N = 51, M = 0, α = 0.5 56.0 0.0389 0.0234
N = 47, M = 4, α = 0.5 109 0.0070 0.0047
N = 43, M = 8, α = 0.5
suboptimal solution 178 0.0020 0.0014
N = 43, M = 8, α = 0.5
local optimal solution 645 0.0020 0.0014
linear-phase cremez [6] 3.46 0.0386 0.0259
nonlinear-phase cremez [6] 741 0.0383 0.0262
Lang’s peak constrained [2] 11.9 0.0389 0.0234

Table 1: Comparison of filter designed. The filters are designed
to be bandpass filter order 51 with stopband in[0, 0.3] ∪ [0.7, 1]
and passband[0.35, 0.65] with group delay of30 samples. The
weighting is equal for both stopbands and the passband. The filters
were designed with different numbers of zeros,N , and different
numbers of poles,M , and norm weighting parameters,α

quency response. For the locally optimal IIR solution, the compu-
tation is about three times greater than the linearized method but
the norms are nearly identical—the optimized combined norm is
slightly smaller (1.6819× 10−3 versus1.6821× 10−3). In addi-
tion, the frequency response of the solutions obtained by the new
algorithm are equivalent to, or better than the those obtained by
the other available algorithms for the FIR case [2, 6]. For the pro-
posed algorithm, the computational requirements are sometimes
greater because the new algorithm always deals with the complex
case which inherently requires four times as much computation as
an algorithm that is restricted to the real case.

The last part of this section shows the design for a 2-D band-
pass filter when the passband is an annulus bounded by rings of
radii 0.35 and0.65 (in normalized frequency), the inner stopband
is a circle with radius0.2, and the outer stopband is a ring of radius
greater than0.8. Figure 4 shows the frequency response and error
of a 19 × 19 2-D FIR filter. The design needsO(1010) flops due
to the large number of parameters being optimized.

6. CONCLUSIONS

A new filter design method was formulated based on the simul-
taneous minimization of a combined norm that is the weighted
sum of the 2-norm and the Chebyshev norm. The combined norm
problem is a norm, and it is also generalizes the Chebyshev prob-
lem, the least squares problem, and the peak constrained least
squares problem, so it possess desirable properties for many ap-
plications. The new problem is solved by a multiple frequency ex-
change with subproblems solved by the iterative reweighted least
squares method. The new algorithm is directly applicable to the
design of complex filters, IIR filters, and 2-D filters. The amount
of computation for the algorithm isO(N2) which is efficient for
the design of high-order filters.
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