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ABSTRACT

We develop algorithms for sequential signal encoding from
sensor measurements, and for signal estimation via fusion
of channel-corrupted versions of these encodings. For sig-
nals described by state space models, we present optimized
sequential binary-valued encodings constructed via threshold-
controlled scalar quantization of a running Kalman filter
signal estimate from the sensor measurements. We also de-
velop methods for robust fusion from observations of these
encodings corrupted by binary symmetric channels.

1. INTRODUCTION

In this paper we focus on signal estimation from binary-
valued sequential encodings constructed from noisy mea-
surements, where the encodings are observed through bi-
nary symmetric channels (BSC). Problems of this type arise
in various distributed sensor networks, whereby each sen-
sor must communicate its noisy signal measurements to a
host with minimal delay. Inherent limitations in the avail-
able bandwidth the sensor apparatus and the modulation cir-
cuitry often dictate communication via a finite set of signal
levels. Hence there is a need for methods for encoding the
sensor measurements into a digital stream prior to commu-
nication over the channel with minimal delay.

We focus on the case that each sensor observes a noisy
version of a signal described by a state-space model and
produces a sequence of binary-valued encodings. The se-
quential encoders we construct operate on a running signal
estimate obtained at the sensor via a Kalman Filter; this is
consistent with [1], where it is shown that there is no loss
of optimality in (batch-mode) encoding, if an encoder oper-
ates on the MMSE estimate from the data. In addition, it is
consistent with the static signal case analysis for sequential
encoding in [2], according to which, sequential encoding of
an efficient running signal estimate from the measurements
followed by a properly designed fusion rule asymptotically
achieves the encoder-free MSE performance.

The encoding is obtained by adding a properly designed
control input to the running sensor signal estimate followed
by scalar quantization. Such encodings were considered

in [3] for encoding noisy static signals. As shown in [3],
in the static signal case for control inputs that are IID pro-
cesses, there exists an optimal power level in terms of min-
imizing the signal estimate MSE from the encodings. Also,
upon availability of a feedback channel from the host to the
sensors, a feedback-based control input can be exploited to
achieve the minimum possible MSE via these systems. In
this paper we consider control inputs that are combinations
of a random signal and a term due to feedback from the
host. We present a framework for optimizing the control
input and for fusing the channel-corrupted versions of the
encodings into a signal estimate at the host.

The outline of the paper is as follows. In Sec. 2 we
present the system model of interest. In Sec. 3 we state the
performance metrics based on which the encoders and fu-
sion rules are constructed. In Sec. 4 we focus on optimizing
the encoder design. In Sec. 5 we propose fusion methods
based on the channel-corrupted encodings. In Sec. 6 we
present a simulation example whereby the information bear-
ing signal is a first-order autoregressive process. Finally,
some concluding remarks are included in Sec. 7.

2. SYSTEM MODEL

The model for the signal observations, as well as the channel
model and the proposed encoding and fusion methods are
shown in Fig. 1. We consider anL sensor setting, whereby
thenth observation at thelth sensor is given by

sl[n] = A[n] + vl[n], (1)

where thevl[n]’s are independent zero-mean IID Gaussian
random processes (GRPs) each with varianceσ2

v , andA[n]
denotes the information-bearing signal satisfying

A[n] = qT x[n] (2a)

whereq is a knownM × 1 vector, and the vector process

x[n] =
[

x[n] x[n− 1] . . . x[n−M + 1]
]T

(2b)

is a state space vector that satisfies the following dynamics

x[n] = Gx[n− 1] + hu[n], (2c)



and where theM × M matrix G and theM × 1 vectorh
are known, andu[n] is a zero-mean IID GRP with variance
σ2

u. We assume that the eigenvalues ofG are less than 1 in
magnitude yieldinglim

n→∞
σ2

A[n] = σ2
A < ∞.

The encoding at thelth sensor consists of adding a con-
trol input to a sensor estimate ofA[n] (formed from the
available measurements atlth sensor) followed by scalar
quantization. The encoder is depicted as part of the sys-
tem in Fig. 1 whereÂl[n|n] is the lth sensor estimate of
A[n] from all sl[k] for k ≤ n, wl[n] denotes thelth sensor
control input, andyl[n] is a binary-valued encoding,i.e.,

yl[n] = sgn(Âl[n|n] + wl[n]). (3)

The encodings of thelth sensor are communicated to the
host over a binary symmetric channel (BSC) with error prob-
ability Pe, so that the encodings received by the host satisfy

zl[n] =
{

yl[n], with probability 1− Pe

−yl[n], with probability Pe
. (4)

We assume that there is a broadcast channel so that the host
can relay back to each sensor a control sequencewhost[n]
obtained from all past received encodings; specifically, we
assume thatwl[n] in (3) is given by

wl[n] = wfb
l [n] + wrn

l [n] , (5)

where thewrn
l [n]’s are independent zero-mean IID GRPs

with power levelσ2
w, and

wfb
l [n] = whost[n] + σfbr̃l[n], (6)

and where thẽrl[n]’s are independent zero-mean unit-variance
IID GRPs and represent the feedback channel distortion.

Throughout the paper we usěA[n|m] to denote the host
estimate ofA[n] from zm, i.e., from all BSC corrupted en-
codings collected up to timem, andÂl[n|m] to denote the
lth sensor estimate ofA[n] from sm

l , i.e., from all lth sensor
observations collected up to timem. The overall objective
is to design the sensor encoders and the host fusion rule so
as obtain an accurate estimate ofA[n] from the corrupted
digital encodingszl[n]. Specifically, this amounts to select-
ing rules forÂl[n|n] and whost[n] as well as the random
control input power levelσ2

w at each sensor, and the host
fusion ruleǍ[n|n] so as to minimize the MSE in the host
estimate.

3. PERFORMANCE METRICS

In designing the sensor encoders we employ as our figure
of merit the average information loss in estimating A[n] via
zn (all received encodings up to timen) instead ofsn (all
sensor observations collected up to time n) [2],i.e.,

L̄(A[n]; n) , B̄(A[n], zn)
B̄(A[n], sn)

, (7)
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Fig. 1. Encoding via threshold-controlled scalar quantiza-
tion of a running signal estimate, and signal estimation via
channel-corrupted versions of these encodings.

whereB̄(A[n];x) = EA[n] [B(A[n],x)], with B(A[n];x)
denoting the Craḿer-Rao bound for unbiased estimates of
A[n] from the vector of observationsx [4], and where the
expectation is with respect to the prior ofA[n].

To assess the quality of the encoding and fusion strategy,
we employ the ratio of the host estimate MSE to the MSE
of an efficient estimate ofA[n] givensn, i.e.,

L(n) =
1
n

∑n
i=1 E

[
(A[i]− Ǎ[i|i])2

]

1
n

∑n
i=1 E

[
(A[i]− Â[i|i])2

] , (8)

whereÂ[i|i] denotes the estimate obtained by optimal com-
bining of the individual sensor estimateŝAl[i|i] (given by
Â[i|i] =

∑L
l=1 Âl[i|i]/L in this case).

4. ENCODING STRATEGY

As shown in Fig. 1 the encoder at thelth sensor consists
of adding a control input to thelth sensor estimatêAl[n|n]
prior to scalar quantization. Our objective in this section is
to select the rule for the sensor estimatorÂl[n|n] and the
host control inputwhost[n], as well as the power levelσ2

w so
as to minimize the average information loss.

4.1. Sensor Estimator

Consistent with [1, 2], we consider encoding at thelth sen-
sor the MMSE estimate ofA[n] givensn

l . This estimate can
be obtained via a Kalman filter, given by the following set
of equations [5]

x̂l[n] = Gx̂l[n−1]+Γl[n](sl[n]−qTGx̂l[n−1]) (9a)

Γl[n] = Σ̂l[n|n−1]q
(
qT P̂l[n|n−1]q + σ2

vI
)−1

(9b)

P̂l[n|n] =
(
I − Γl[n]qT

)
P̂l[n|n−1] (9c)

P̂l[n|n−1]= GP̂l[n−1|n−1]GT + σ2
uhhT , (9d)

initialized with x̂l[−1] = 0 andP̂l[−1| − 1] = σ2
uI, where

P̂l[n|k] denotes the covariance matrix ofx̂l[n|k] and where

we have used the shorthand notationx̂l[n]
4
= x̂l[n|n] for



convenience. Thelth sensor estimate and its MSE are given
by Âl[n|n] = qT x̂l[n|n]q, andσ̂2

l [n|n] = qT P̂l[n|n]q, re-
spectively. At steady state, the sensor estimate becomes [5],
Âl[n|n] = A[n] + σ̂sens̃el[n], whereẽl[n] is a zero-mean
unit-variance GRP and̂σsens= limn→∞ σ̂l[n|n].

4.2. Control Input Selection

We next selectwhost[n] andσ2
w so as to minimize the av-

erage information loss by exploiting the static-case analysis
in [2]. Given that the encoding information loss is mini-
mized if the binary quantizer threshold equals exactly the
information-bearing signal [3], we wish to selectwhost[n]
(constructed viazn−1) so as to makeA[n] + whost as close
to zero–the quantizer threshold in (3)–as possible. Conse-
quently, the encoding information loss is optimized via

whost[n] = −Ǎ[n|n− 1] ,

i.e., the negated one-step predictor ofA[n] given all past
received encodingszn−1. Rewriting (2) as

A[n] = qT Gx[n− 1] + qT hu[n], (10)

reveals that the signalA[n] at timen can be viewed as a
sum of a termqT Gx[n− 1] that can be predicted based on
sn−1
l (and thuszn−1), and a termqT hu[n] which is inde-

pendent of all past measurements (and thus received encod-
ings). Consequently, assuming sufficiently largeL, so that

E
[
(Â[n|n]− Ǎ[n|n− 1])2

]
� σ́2

u , (11)

with σ́2
u = σ2

uq
T hhT q, whost[n] can effectively cancel

out the “predictable” termqT Gx[n − 1], but not the term
qT hu[n] which is independent of all past encodings.

The average information loss (7) can often be further re-
duced by employing (in addition to feedback) random con-
trol inputswrn

l [n] with properly selected power levelsσ2
w.

In particular, the average information loss (7) for a given
signal termqT hu[n] with powerσ́2

u, a given aggregate noise
powerσ̂2

enc = σ̂2
sens +σ2

fb, a givenPe level for the BSC, and
a given random control power levelσ2

w satisfies

L̄(σ́u, σα, Pe, σv) ≈
πσ2

α

2σ2
v


 1√

1− σ́2
u

σ2
α

+
4Pe(1− Pe)

(1− 2Pe)2
√

1− 2σ́2
u

σ2
α


 .(12)

whereσα =
√

σ2
w + σ̂2

enc. The value ofσα that minimizes
the average information loss is given by

σopt
α =

{
1.1395σ́u , Pe = 0 or 1

(1.1395)
√

2σ́u , otherwise
. (13a)

yielding the optimal random control power levelσopt
w as

σopt
w =

{ √
(σopt

α )2 − (σ̂enc)2 , σopt
α > σ́u

0 , σopt
α < σ́u

. (13b)

5. SIGNAL ESTIMATION

We consider a two-stage algorithm for fusing the received
encodings given by the nonlinear set of measurement equa-
tions (3)–(4). First, fusion is applied in space by obtain-
ing the MAP estimate ofA[n] based on theL × 1 mea-
surement vectorz[n]–consisting of all received encodings
at time n, i.e., zl[n] for 1 ≤ l ≤ L–and given the prior
A[n] ∼ N (0, σ2

A). The resulting MAP estimatêAMAP[n]
sequence can be viewed as an alternative single measure-
ment equation. Finally, the signal estimate is obtained via
an extended Kalman Filter (EKF) given the state-space sig-
nal model and the MAP-based measurement equation.

The advantages of performing spatial fusion prior to an
EKF implementation are readily evident when one consid-
ers a direct EKF implementation from (3)–(4); in that case
the EKF degenerates, as implementation of the EKF equa-
tions requires a linearization of (3), which involves the deriva-
tive of thesgn(·) function. We first develop the MAP esti-
mator and consequently construct the host EKF.

5.1. MAP Estimator

The MAP estimate of thenth sample ofA[n] from observa-
tion of theL× 1 vectorz[n] can be obtained via the follow-
ing EM algorithm [6] [2]

Â
(k+1)
EM [n]=

Â
(k)
EM[n] + σα[K1−LQ(z(k)[n])]e−(z(k)[n])2/2

√
2πLQ(z(k)[n])[1−Q(z(k)[n])]

1 + σ2
α

Lσ́2
u

, (14)

wherez(k)[n] = A
(k)
EM[n]/σα, Q(x) = (1/2π)

∫∞
x

e
−x2

2 dx
andK1 denotes the number of elements in the vectorz[n]
that are equal to 1. The MAP estimate is then given by
ÂMAP[n] = limk→∞ Â

(k)
EM[n].

For sufficiently largeL, ÂMAP[n] achieves the associ-
ated average encoding information loss. Specifically,
ÂMAP[n] becomes asymptotically (inL) Gaussian with mean
A[n] and varianceσ2

v̂z
[n] = B(A[n]; z[n])/L, i.e.,

ÂMAP[n] = A[n] + v̂z[n], (15)

where v̂z[n] is zero-mean GRP with varianceσ2
v̂z

[n] that
depends onA[n]. As shown in [2], however, when the en-
coder is operating at the optimal aggregate noise levelσopt

α ,
B(A[n]; z[n]) is effectively constant as a function ofA[n]
over a wide range ofA[n] values. Consequently,σ2

v̂z
[n] the

variance of the MAP estimate at timen, is well approxi-
mated asσ2

v̂z
[n] ≈ σ2

v̂z
= L̄(σ́u, σopt

α , Pe, σv) σ2
v/L .

5.2. Host Kalman Filter

By viewing (15) as a single measurement equation we can
obtain a host signal estimate via an EKF; it is given by the
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Fig. 2. MSE loss in estimating the AR(1) process (17)
where

√
1− ρ2 = 0.2, σA = 1 andPe = 0.

same equations (9) witĥxl[n|n], P̂l[n|n], Γl[n], sl[n] and
σ2

v , replaced by̌x[n|n], P̌[n|n], R[n], ÂMAP[n] andσ2
v̂z

[n],
respectively. We can also represent the host Kalman filter
estimateǍ[n|n] obtained fromzn as follows

Ǎ[n|n] = A[n] + σ̌hst̃γ[n] (16)

where γ̃[n] is a zero mean unit variance GRP andσ̌2
hst is

the asymptotic average MSE of estimatingǍ[n|n] which is
given byσ̌2

hst = limn→∞ qT P̌[n|n]q.

6. SIMULATION AND RESULTS

As an illustration, we next present Monte-Carlo simulations
for sequential encoding and estimation of a first order au-
toregressive (AR) process,

A[n] = ρA[n− 1] + σA

√
1− ρ2ũ[n], (17)

whereũ[n] is a zero-mean unit-variance IID GRP, and where
|ρ| < 1. In particular, we consider a network ofL = 103

sensors, whereby the signal and sensor noise power levels
areσA = 1 andσv = 0.1, respectively, and the power level
of feedback channel distortion isσfb = 0.01.

Fig. 2 depicts the MSE loss (8) of the encoding and fu-
sion algorithms we developed as a function of the power of
the random control inputs. As the figure reveals, there is an
optimal power level in terms of minimizing the MSE loss
which is very accurately predicted by (13).

Fig. 3 depicts the MSE loss (8) as a function ofρ, for
various BSCPe levels. For any givenPe andρ, the random
control power level is selected according to (13b). As the
figure reveals, for any givenPe, the MSE loss is minimized
for ρ = 1; in this static case limit,́σu = 0, soσopt

w = 0, and
hence the optimized control input strategy reduces to pure
feedback control. At the other extreme (ρ = 0), we have
the maximum MSE loss as feedback-based control does not
provide any encoding benefits and the optimized control at
each sensor consists of a purely random control input.
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7. CONCLUSION

We propose methods for sequential binary-valued encoding
of noisy sensor measurements and fusion from channel cor-
rupted versions of these encodings. The encodings we con-
sidered consist of adding to running MMSE signal estimate
at each sensor a properly designed control input followed by
scalar quantization. We showed how to optimize the sensor
control inputs and the associated fusion rule so as to mini-
mize the host estimate MSE. In particular, we presented an
efficient fusion method, whereby the received encodings are
first fused spatially to produce a single equivalent measure-
ment sequence based on which an extended Kalman filter is
constructed.

8. REFERENCES

[1] J. K. Wolf and J. Ziv, “Transmission of noisy informa-
tion to a noisy receiver with minimum distortion,”IEEE
Trans. Inform. Theory, vol. 16, pp. 406–411, July 1970.

[2] H. C. Papadopoulos,Efficient Digital Encoding and Es-
timation of Noisy Signals, Ph.D. thesis, Massachusetts
Institute of Technology, May 1998.

[3] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppen-
heim, “Sequential signal encoding from noisy mea-
surements using quantizers with dynamic bias control,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, Mar. 2001.

[4] H. L. Van Trees,Detection, Estimation and Modulation
Theory, Part I., John Wiley and Sons, New York, NY,
1968.

[5] B. D. O. Anderson and J. B. Moore,Optimal Filtering,
Prentice-Hall, 1979.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete data via theEM algo-
rithm,” Ann. Roy. Statist. Soc., vol. 39, pp. 1–38, Dec.
1977.


