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ABSTRACT in [3] for encoding noisy static signals. As shown in [3],

We develop algorithms for sequential signal encoding from in the static signal case for control inputs that are I1D pro-
sensor measurements, and for signal estimation via fusiorC€SSes, there exists an optimal power level in terms of min-
of channel-corrupted versions of these encodings. For sig-imizing the signal estimate MSE from the encodings. Also,
nals described by state space models, we present optimizePON availability of a feedback chan_nel from the host tq the
sequential binary-valued encodings constructed via threshol8NS0rs, a feedback-based control input can be exploited to
controlled scalar quantization of a running Kalman filter achieve the minimum possible MSE via these systems. In
signal estimate from the sensor measurements. We also delhis paper we consider control inputs that are combinations
velop methods for robust fusion from observations of these Of & random signal and a term due to feedback from the

encodings corrupted by binary symmetric channels. host. We present a framework for optimizing the control
input and for fusing the channel-corrupted versions of the

encodings into a signal estimate at the host.
The outline of the paper is as follows. In Sec. 2 we

In this paper we focus on signal estimation from binary- present the system model of interest. In Sec. 3 we state the

valued sequential encodings constructed from noisy mea_performance metrics based on which the encoders'ar?d. fu-
sion rules are constructed. In Sec. 4 we focus on optimizing

surements, where the encodings are observed through bi h der desi In Sec. 5 fusi hod
nary symmetric channels (BSC). Problems of this type arise € éncoder design. In Sec. 5 we Propose fusion methods
based on the channel-corrupted encodings. In Sec. 6 we

in various distributed sensor networks, whereby each sen- t a simulati le whereby the inf tionb
sor must communicate its noisy signal measurements to gresentasimuiation example whereby the information bear-

host with minimal delay. Inherent limitations in the avail- Ing signal is a first-order autoregressive process. Finally,

able bandwidth the sensor apparatus and the modulation cir®ome concluding remarks are included in Sec. 7.
cuitry often dictate communication via a finite set of signal

1. INTRODUCTION

levels. Hence there is a need for methods for encoding the 2. SYSTEM MODEL
sensor measurements into a digital stream prior to commu- . ]
nication over the channel with minimal delay. The model for the signal observations, as well as the channel

We focus on the case that each sensor observes a nois{'odel and the proposed encoding and fusion methods are
version of a signal described by a state-space model andhown in Fig. 1. We consider ahsensor setting, whereby
produces a sequence of binary-valued encodings. The sethenth observation at thith sensor is given by
qugntial enc0(_jers we construct operate ona running si.gn_al si[n] = Aln] + vi[n], (1)
estimate obtained at the sensor via a Kalman Filter; this is
consistent with [1], where it is shown that there is no loss Where thev,[n]'s are independent zero-mean IID Gaussian
of optimality in (batch-mode) encoding, if an encoder oper- random processes (GRPs) each with variareand A[n]
ates on the MMSE estimate from the data. In addition, it is denotes the information-bearing signal satisfying
con3|s.tent_ with the stat.|c signal case analys!s for seqpentlal Aln] = qTx[n] (2a)
encoding in [2], according to which, sequential encoding of
an efficient running signal estimate from the measurementswhereq is a known) x 1 vector, and the vector process
followed by a properly designed fusion rule asymptotically T
achieves the encoder-free MSE performance. n=[a[n ap-1] ... ep-M+1] ] (2b)

The encoding is obtained by adding a properly designedis a state space vector that satisfies the following dynamics
control input to the running sensor signal estimate followed
by scalar quantization. Such encodings were considered x[n] = Gx[n — 1] + hu[n], (20)



and where thél/ x M matrix G and theM x 1 vectorh Encoder 4 A
are known, and:[n] is a zero-mean IID GRP with variance

1l
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o2. We assume that the eigenvaluestofire less than 1 in ‘ l 1
. . . . 2 2 [ R B ' .
magnItUde yleldlngnlLH;O UA [’I’L] = UA < 00. : Winl vﬂn] Broaticast %SJ g(riclly(_ﬁausal
The encoding at th&h sensor consists of adding a con- Py i o
trol input to a sensor estimate of[n] (formed from the b

available measurements #&h sensor) followed by scalar ) ] ) )
quantization. The encoder is depicted as part of the Sys_Flg. 1. Encoding via threshold-controlled scalar quantiza-
tem in Fig. 1 whered, [n|n] is the lth sensor estimate of tion of a running signal estimate, and signal estimation via
Aln] from all s;[k] for k < n, w;[n] denotes théth sensor channel-corrupted versions of these encodings.

control input, andy; [»] is a binary-valued encodinge.,

yi[n] = sgn(A;[n|n] + w[n)). @)  whereB(A[nl;x) = Eap [B(A[n],x)], with B(A[n];x)
. _ denoting the Cra@r-Rao bound for unbiased estimates of
The encodings of théh sensor are communicated to the 41, from the vector of observations [4], and where the
ability P, so that the encodings received by the host satisfy 19 assess the quality of the encoding and fusion strategy,

] { i) with probability 1 — P we employ the ratio of the host estimate MSE to the MSE
z[n] = ’ e

“y[n], with probability P, (4)  ofan efficient estimate afl[n] givens”, i.e,,

We assume that there is a broadcast channel so that the host Ly g {(A[i] _ A[W]ﬂ
can relay back to each sensor a control sequengg [n] L(n) = n it . s (8)
obtained from all past received encodings; specifically, we LNt E {(A[i] — Alili)) }

assume thai; [n] in (3) is given by

(5) whereA[i|i] denotes the estimate obtained by optimal com-
bining of the individual sensor estimatdg[i|i] (given by

where thew;"[n]'s are independent zero-mean IID GRPs Afili] = Zle A,[ili]/L in this case).

with power levels2 , and

wiln] = wi*[n] + wi*n],

wP[n] = whose[n] + o], (6) 4. ENCODING STRATEGY

and where the;[n]'s are independent zero-mean unit-varianc@s spown in Fig. 1 the encoder at tih sensor consists
IID GRPs and represent the feedback channel distortion. ¢ adding a control input to thih sensor estimatd, [n|n]
Throughout the paper we ustn|m] to denote the host iy to scalar quantization. Our objective in this section is

estimate ofA[n] from 2™, i.e., from all BSC corrupted en- {5 select the rule for the sensor estimathin|n] and the

codings collected up to time:, andA;[n|m] to denote the ot control inputues: [12], as well as the power levet, so
Ith sensor estimate of[n] from s}, i.e,, from allith sensor 55 tg minimize the average information loss.

observations collected up to time. The overall objective

is to design the sensor encoders and the host fusion rule s
as obtain an accurate estimateAjf] from the corrupted
digital encodings;[n]. Specifically, this amounts to select-  Consistent with [1, 2], we consider encoding at ttiesen-
ing rules for A;[n[n] and whest[n] as well as the random  sor the MMSE estimate oi[n] givens!. This estimate can

control input power leveb?, at each sensor, and the host be obtained via a Kalman filter, given by the following set
fusion rule A[n|n] so as to minimize the MSE in the host of equations [5]

91.1. Sensor Estimator

estimate.
%1 [n] = G%[n—1]4+T[n](s;[n] —q"G%;[n—1]) (9a)
~ ~ —1
3. PERFORMANCE METRICS Ti[n] :Zl[n|n—1]q(qTIP’l[n|n—1]q+crf, ) (9b)
In designing the sensor encoders we employ as our figure Byn|n] = (I =Ty[nlq") By[njn—1] (9c)

of merit the average information loss in estimating A[n] via
z™ (all received encodings up to time instead ofs™ (all
sensor observations collected up to time n) 2],

EAnlim) = 5,

P [n|n—1] = GP;[n—1|n—1)GT + o2hh?, (9d)

initialized with %;[—1] = 0 andP;[—1| — 1] = 21, where
PP, [n|k] denotes the covariance matrix®fin|k] and where
we have used the shorthand notatifn] 2z [n|n] for

@)



convenience. Th&h sensor estimate and its MSE are given
by A;[n|n] = qT%[n|n]q, andé?[n|n] = qTP[n|n]q, re-

5. SIGNAL ESTIMATION

spectively. At steady state, the sensor estimate becomes [5]VWe consider a two-stage algorithm for fusing the received

Ay[n|n] = A[n] 4 6sendi[n], whereé;[n] is a zero-mean
unit-variance GRP anélsens= lim,, .« 6;[n|n].

4.2. Control Input Selection

We next selectuy,osi[n] ando? so as to minimize the av-

encodings given by the nonlinear set of measurement equa-
tions (3)—(4). First, fusion is applied in space by obtain-
ing the MAP estimate ofA[n] based on thd. x 1 mea-
surement vectog[n|—consisting of all received encodings
at timen, i.e, z[n] for 1 < I < L-and given the prior
Aln] ~ N(0,0%). The resulting MAP estimatéy;sp[n]

erage information loss by exploiting the static-case analysissequence can be viewed as an alternative single measure-

in [2]. Given that the encoding information loss is mini-

ment equation. Finally, the signal estimate is obtained via

mized if the binary quantizer threshold equals exactly the an extended Kalman Filter (EKF) given the state-space sig-

information-bearing signal [3], we wish to selegf,ost[n]
(constructed via" ') so as to makel[n] + whest as close

nal model and the MAP-based measurement equation.
The advantages of performing spatial fusion prior to an

to zero-the quantizer threshold in (3)-as possible. Conse£KF implementation are readily evident when one consid-

quently, the encoding information loss is optimized via
Whost [] = —A[n|n — 1],

i.e, the negated one-step predictor 4fn] given all past

received encodings”~!. Rewriting (2) as
Aln] = a"Gx[n — 1] + q" huln], (10)

reveals that the signal[n] at timen can be viewed as a
sum of a termy” Gx[n — 1] that can be predicted based on
s~ ! (and thusz" '), and a termg” hu[n] which is inde-

ers a direct EKF implementation from (3)—(4); in that case
the EKF degenerates, as implementation of the EKF equa-
tions requires a linearization of (3), which involves the deriva-
tive of thesgn(-) function. We first develop the MAP esti-
mator and consequently construct the host EKF.

5.1. MAP Estimator

The MAP estimate of theth sample ofd[n] from observa-
tion of the L x 1 vectorz[n| can be obtained via the follow-

pendent of all past measurements (and thus received encodng EM algorithm [6] [2]

ings). Consequently, assuming sufficiently lafgeso that

E[(A[njn] — Alnjn — 1])2] <62, 1)

with 42 o2qThh”q, wyest[n] can effectively cancel
out the “predictable” terny” Gx[n — 1], but not the term
qThu[n] which is independent of all past encodings.

The average information loss (7) can often be further re-
duced by employing (in addition to feedback) random con-

trol inputsw™[n] with properly selected power levels,.

In particular, the average information loss (7) for a given
signal termq” hu[n] with powers2, a given aggregate noise
powergZ,. = 62, + o7, a givenP. level for the BSC, and

a given random control power levef, satisfies

L(U’U,UQ,PE,O'U) ~

2
oY, 1

4P,(1- P,
(1-2P.)2/1 - 2%

572 — .(12)
v 1— 07721
whereo, = /02, + 62, The value ofo,, that minimizes
the average information loss is given by
opt_ 1.13956, , P.=0orl
@« 7 (1.1395)v26, , otherwise

yielding the optimal random control power level’ as

o (13a)

A t ,
Pt _ (Cf?xpt)Q — (Cfenc)2 ) ng > Oy (13b)
w
0 , o < 6,

0alK1—LO(z™) [n])]e*(z(k) [n))2/2
V2rLO (=™ [n])[1— 0 (=™ [n])]

o8
1+ 12

~(k
AGn] +

AGT )= , (14)

wherez(M[n] = AL (1] /0n, Qx) = (1/27) [ e da
and K; denotes the number of elements in the veeto
that are equal to 1. The MAP estimate is then given by
AMAP [’I’L] = limk_,oo AI(E]?\/)I [’I’L]

For sufficiently largeL, AMAp[n] achieves the associ-
ated average encoding information loss. Specifically,
Awap|n] becomes asymptotically (i) Gaussian with mean
Aln] and variance?_[n] = B(A[n]; z[n])/L, i.e.,

Awmap [TL] = A[TL] + 0, [TL], (15)
where . [n] is zero-mean GRP with varianeg_[n] that
depends oM [n]. As shown in [2], however, when the en-
coder is operating at the optimal aggregate noise le&l,
B(A[n]; z[n]) is effectively constant as a function difn]
over a wide range ofl[n] values. Consequently; [n] the
variance of the MAP estimate at time is well approxi-
mated aw; [n] ~ 02 = L(6y,00", Pe,0,) 02 /L .

5.2. Host Kalman Filter

By viewing (15) as a single measurement equation we can
obtain a host signal estimate via an EKF; it is given by the
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Fig. 2 MSE loss in estimating the AR(1) process (17) Fig. 3. MSE loss in estimating the AR(1) process (17) as a

where /1 — p2=0.2,04, = 1andP, = 0.

same equations (9) witk[n|n], Pi[n|n], T[n], si[n] and
o7, replaced byk[n|n], P[n|n], R[n], Auap[n] anda?_[n],

respectively. We can also represent the host Kalman filter

estimated [n|n] obtained fromz™ as follows
Alnln] = A[n] + sty [n] (16)
wherey[n] is a zero mean unit variance GRP a#g, is

the asymptotic average MSE of estimatign|n] which is
given byszg, = lim,, .o, q” P[n|n]q.

6. SIMULATION AND RESULTS

As an illustration, we next present Monte-Carlo simulations
for sequential encoding and estimation of a first order au-

toregressive (AR) process,

Aln] = pAn — 1] + o4/ 1 — p2aln], a7

wheret[n] is a zero-mean unit-variance 11D GRP, and where

|p] < 1. In particular, we consider a network &f = 103

function of bandwidth, at various BSE, values.

7. CONCLUSION

We propose methods for sequential binary-valued encoding
of noisy sensor measurements and fusion from channel cor-
rupted versions of these encodings. The encodings we con-
sidered consist of adding to running MMSE signal estimate
at each sensor a properly designed control input followed by
scalar quantization. We showed how to optimize the sensor
control inputs and the associated fusion rule so as to mini-
mize the host estimate MSE. In particular, we presented an
efficient fusion method, whereby the received encodings are
first fused spatially to produce a single equivalent measure-
ment sequence based on which an extended Kalman filter is
constructed.
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