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ABSTRACT

Rényi entropy has been proposed as one of the methods
for measuring signal information content and complexity
on the time-frequency plane by several authors [1, 2]. It
provides a quantitative measure for the uncertainty of the
signal. All of the previous work concerning Rényi entropy
in the time-frequency plane has focused on determining the
number of signal components in a given deterministic sig-
nal. In this paper, we are going to discuss the behaviour of
Rényi entropy when the signal is random, more specifically
white complex Gaussian noise. We are going to present
the bounds on the expected value of Rényi entropy and
discuss ways to minimize the uncertainty by deriving con-
ditions on the time-frequency kernel. The performance of
minimum entropy kernels in determining the number of sig-
nal elements will be demonstrated. Finally, some possible
applications of Rényi entropy for signal detection will be
discussed.

1. INTRODUCTION

The main tool in measuring the information content or the
uncertainty of a given probability distribution is the en-
tropy function. Williams et al. have extended measures of
information from probability theory to the time-frequency
plane by treating the time-frequency distributions (TFDs)
as density functions and have introduced Rényi entropy as
an appropriate information measure [1]. The basic signal
component with the lowest entropy in the time-frequency
plane is known to be the gabor logon, Gaussian enveloped
complex exponential signal. Rényi entropy has been shown
to be an effective indicator of the number of basic signal
components, gabor logons, in a given signal. The properties
of Rényi entropy have been discussed in detail by Flandrin
et al. and its application to component counting have been
illustrated [2, 3]. Apart from quantifying the complexity
of the signal, the entropy function also provides a way of
evaluating the performance of different kernels. Previously,
iterative methods for designing optimal kernels based on
Rényi entropy have been considered for deterministic sig-
nals [4].

All of the previous work described above has been con-
centrated on analyzing the complexity of deterministic sig-
nals. In this paper, we focus on Rényi entropy for TFD of
random signals. In many real life applications, signals are
corrupted by noise. Therefore, it’s important to quantify
the behaviour of the entropy for noise. First, we review the

basic definition of Rényi entropy for TFDs. Then in Section
3, we consider Rényi entropy for random signals and derive
the bounds on the expected value of third order Rényi en-
tropy for white Gaussian noise. These bounds give us an
idea about how to assess randomness of a given signal and
provide a means of detecting signals in noise. The depen-
dence of the entropy on the kernel function is illustrated and
some possible ways of designing kernels to minimize the un-
certainty of the time-frequency distribution are proposed.
The application of minimum entropy kernels for separating
gabor logons is illustrated and compared with other TFDs
in Section 4. Also applications of Rényi entropy for signal
detection are discussed using the derived bounds. Finally,
the possible extensions of the results presented in this paper
are discussed in the conclusions.

2. RENYI ENTROPY FOR TIME-FREQUENCY
DISTRIBUTIONS

The uncertainty of signals are studied indirectly through
their time-frequency distributions, which represent the en-
ergy distribution of a signal as a function of both time and
frequency. A time-frequency distribution, C(t, f) from Co-
hen’s class can be expressed as ' [5]:
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where the function ¢(6, 7) is the kernel function and s is the
signal. The kernel completely determines the properties of
its corresponding TFD. Some of the most desired properties
of TFDs are the energy preservation and the marginals.
They are given as follows and are satisfied when ¢(6,0) =

¢(0,7) =1 Vr,6.
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The formulas given above evoke an analogy between a
TFD and the probability density function (pdf) of a two-
dimensional random variable. In order to have the TFD
behave like a pdf, one needs to normalize it properly. For
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this reason, in this paper before applying any entropy mea-

sure on the time-frequency plane we first normalize it, i.e.
i o®f) - Anoth in diff

Crormatized(t, f) = TTownas: nother main difference

between TFDs and probability density functions is the non-
positivity. Most Cohen’s class TFDs are nonpositive and
therefore cannot be interpreted strictly as densities of signal
energy. Therefore, one should be careful while interpreting
the results.

The well-known Shannon entropy for TFDs can be writ-
ten as:

- / / O(t, flogsC(t, fldtdf  (3)

Since the TFDs are nonpositive in some regions, this defi-
nition will not give finite entropy results. For this reason,
Rényi entropy has been introduced as a more appropriate
way of measuring time-frequency uncertainty. The ath or-
der Rényi entropy is defined as:

ialogz//Ca(t,f)dtdf (4)

One can easily see that the Shannon entropy is recovered
as the limit of R, as @ — 1. As the passage from Shannon
to Rényi entropy involves only the relaxation of the mean
value property of entropy from an arithmetic to an expo-
nential mean, R, behaves much like H [6]. In particular,
these functionals can be interpreted as inverse measures of
concentration. In this paper, all of the analysis is done
for third order Rényi entropy since it has been proved that
a = 3 is the smallest integer value to yield a well-defined,
useful information measure, i.e. [ [C*(¢, f)dtdf > 0 and

the entropy is not equal to zero 2 [2].

R.(C) =

3. ANALYSIS OF RENYI ENTROPY FOR TFD
OF WHITE NOISE

3.1. Bounds on Rényi Entropy

Rényi entropy for TFDs in discrete-time domain is defined
as:

1 kK X C(n, k) o
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where n and k are variables for discrete-time and discrete-
frequency respectively, and « is the order of Rényi entropy.

In this section, bounds on the expected value of Rényi
entropy for time-frequency distribution of white complex
Gaussian noise will be derived. The bounds will be derived
for general TFDs with arbitrary size and the order for Rényi
entropy will be fixed as three.

It is known that the TFD of white noise should ap-
proach to a constant surface in the mean value, since the
spectrum for white noise is flat. This is the most uncer-
tain TFD that can be achieved, therefore Rényi entropy for
this uniform distribution provides the upper bound on the

2 Although there are some pathological signals for which this
is not true, for the purposes of this paper this inequality is always
true.

expected value of Rényi entropy. The third order Rényi en-
tropy for a uniformly distributed two dimensional random
vector is given as follows:

2N 2K
Rs(puniform) = logzzz 2N +1)3 2K+1)
n=0 k=0
= log2(2N +1)(2K + 1) (6)

where puniform is the uniform pdf, 2NV +1 is the number of
time points and 2K + 1 is the number of frequency points.
Therefore,

E[Rs(0)] < log2(2N +1)(2K + 1) (7)

for all C(t, f). To derive the lower bound for the expected
value, we have to make use of Jensen’s inequality [7].

Theorem 3.1 (Jensen’s Inequality) If g(.) is a concave
function, then E[g(X)] < g(E[X]), where equality occurs if
and only if g is a strictly concave function.

Since the logarithm is a concave function, we can exchange
the order of the expectation operator and the logarithm
function to obtain the following inequality.
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To compute the first part of this expression, we need to eval-
uate E[C®(n, k)] for white noise. This computation requires
the sixth order joint moment for white, complex Gaussian
process. For this computation, the well known moment
generating theorem is used [8].

Theorem 3.2 The joint moment for N random variables
is given by:
6N
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where ®(w1,ws,...,wn) is the joint characteristic function.

Using the moment theorem, the sixth order joint mo-

ment for Gaussian random variables is given as:

E[X1 X2 X3X4X5X6] = K12K34 K56 + K12 K35 K46 + K12 K36 K45
+Ki13K24Ks56 + K13 Kas Ko + K13 K26 Kas
+K14K23Ks56 + K14 K26 K35 + K14 K25 K36
+Ki15K23K46 + K15 K24 K36 + K15 K26 K34
+K16K25 K34 + K16 K24 K35 + K16 K23 K45 (10)

where Kj;; is the covariance between the ¢ and jth random

variables. Since the noise is assumed to be white, com-
plex Gaussian, the only nonzero correlations are the ones

32 Z __py and Zk Zk  unless otherwise spec-
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between the real and the complex components of the noise.
Substituting this expression inside >~ > F

Yo 2o ElC3(n, k)] =
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where o is the variance of the noise, (2N+1) is the number of
time points, (2K+1) is the number of frequency points and
¥ (n,7) is the time-frequency kernel in the time-lag domain.

The second part of equatlon 8 depends on computing
the expected value for logz[Y >, C(n,k)]. This expres-

sion can be simplified by noticing that Zn > Cln,k) =
(2m)(2K+1) Y |z(n)|?. Since z(n) is white Gaussian noise
with zero mean and variance o, after proper normalization
it is seen that |z(n)|? can be written as a x? random

variable with 2N+1 degrees of freedom. The logarithmic x>
is a known random variable with tabulated expected values
[7]. After this evaluation equation 8 can be rewritten as
follows:

E[R3(C(n,k))] >
(2K +1)2(27)2(2N + 1)2
32 ZT_ on 1 ¥ (7, 7)2 + (2m)2(2N 4+ 1)2 42
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As it can be seen, this equation is independent of the vari-
ance of the noise. This is an expected result since Rényi en-
tropy is invariant under the scaling of the amplitude. The
entropy depends on the time-frequency kernel used and the
dimensions of the distribution. It is also seen that Wigner
distribution will give the smallest entropy among the well-
known time-frequency distributions since the entropy is in-
versely proportional to the sum of the square of the kernel.

3.2, Minimum Entropy Kernels

The lower bound presented in the previous section suggests
a way of reducing the entropy of the TFD for white noise.
Since the entropy is inversely proportional to the sum of
the square of the kernel function in the time-lag domain,
in order to minimize the entropy we need to maximize the
energy of the kernel. This maximization problem can be
formulated with the constraint that the distribution satisfies
the frequency marginal and the time support properties.

mazximize E E

7T=—2Nn=—N n

(13)
This is very similar to the problem formulation that Hearon
and Amin present in their paper on minimum variance time-
frequency kernels [9]. For minimizing the variance of the
TFD for white noise, the energy of the kernel should be
minimized. The minimum variance kernel problem is ex-
actly the opposite of the problem we have presented above.
Therefore, the minimum variance kernel implies maximum
entropy for white Gaussian noise. The reason beyond this
inverse relationship between variance and entropy is that
minimum variance for the TFD of white noise suggests a

[C3(n, k)] gives:

(n,T) subject toZ\Il (n,7)=1|7| <2N

spectrum which is very close to the flat spectrum, and flat
spectrum corresponds to maximum entropy as discussed be-
fore.

Unlike the minimum variance problem, the minimum
entropy problem does not have a unique solution unless
some additional constraints are imposed. If the kernel’s el-
ements are constrained to be positive and symmetric, then
the unique solution is the Wigner distribution. This is an
expected result, since the Wigner distribution possesses the
highest resolution on the time-frequency plane when com-
pared to other TFDs.

In order to get different kernels with lower entropy we
can relax the condition that the elements of the kernel are
nonnegative. This gives a large class of kernels with nega-
tive values and the entropy can be made as small as desired
since there is no upper bound on the energy of the ker-
nel. To reduce the size of this class of kernels we suggest
a symmetric structure with time-support property and the
requirement that it is close to the Wigner distribution. This
requirement results in kernels of the type depicted in Figure
1, where N is an arbitrary positive integer which controls
the entropy of the distribution by increasing the energy of
the kernel. In the next section, we are going to consider
some implications of this type of kernels.
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Figure 1: Structure for a symmetric minimum entropy ker-
nel

4. RESULTS

In this section, we are going to show how the bounds de-
rived in the previous section are related to the actual re-
sults obtained through simulations. The relation will be
shown through simulations of white noise and computing
the average entropy of the TFD of these simulation results.
For a Born-Jordan kernel, the simulation averages and the
bounds are given for different sizes of the kernel in the fol-
lowing table.

Size of TFD Upper Bound | Lower Bound | Simulation
33 x 65 11.07 5.95 6.96
65 x 129 13.03 6.97 8.26
129 x 257 15.02 7.98 9.64

As it can be seen from the above table, the actual en-
tropy tends to lie closer to the lower bound. This suggests
the possible usage of the lower bound for detecting signals
in noise. The entropy for the TFD of signal plus noise is
always less than the entropy for the noise by itself. Using
this fact, a gabor logon with noise is generated at different
signal-to-noise ratios (SNR), and the lower bound for the
entropy of the noise is used as a threshold to detect whether
the logon is present or not. This simulation illustrates that
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Figure 2: Probability of detection versus SNR for a gabor
logon with different noise levels

Rényi entropy is a reliable measure for detecting signals in
noise even when the SNR is low. [Figure 2]

Apart from the direct usage of the bounds for detection
purposes, the formula derived for the lower bound brings
up interesting questions about minimizing entropy. The
minimum entropy kernel results presented in the previous
section suggest that the entropy can be made as small as
desired at the expense of introducing negative terms in the
kernel. The minimum entropy kernels have a high resolu-
tion in the time-frequency plane but they cause negative
sidelobes to occur due to the negative terms in the kernel.
The high resolution property of these kernels make them a
natural candidate for detecting the number of signal compo-
nents. For example, the well-known counting components
problem can be addressed with this new class of kernels.
The performance of different kernels for two gabor logons
at different time separations is presented in Figure 3. As
it can be seen from the figure, the minimum entropy ker-
nel reaches the 1 bit gain level, i.e. detects the second
component, before the other two distributions. It is su-
perior to Wigner distribution due to increased resolution.
The minimum entropy kernel produces more unstable be-
haviour compared to the other two distributions, especially
when the gabor logons are very close to each other, since
the distribution is more negative than the others. This is
a natural result, since we know that minimum entropy ker-
nels have high variance and thereby yield TFDs that are
not very stable.

5. CONCLUSIONS

In this paper, we have extended the previous work in using
Rényi entropy for measuring the complexity of deterministic
signals to measuring the uncertainty of random signals, or
more specifically white Gaussian noise. We have presented
a quantitative analysis for the expected value of Rényi en-
tropy for white noise and derived the bounds on this quan-
tity. These bounds show how random signals behave in gen-
eral and suggest an easy and direct way of detecting signals
in white noise. The proposed detection scheme is shown
to be effective at SNR values as low as -2 dB. Apart from
detecting signals in noise, the lower bound derived in this
paper is shown to be useful in interpreting and constructing
minimum entropy kernels. The class of minimum entropy
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kernels are shown to be more effective at separating gabor
logon components compared to the existing distributions.

The work presented in this paper can be extended to
different signal classes, and some preliminary results sug-
gest that Rényi entropy can be used as an effective measure
for separating between different classes of real-time signals.
Also, the class of minimum entropy kernels discussed here
can be expanded by modifying the constraints on the time-
frequency distribution.
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