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ABSTRACT

The existing derivations of fast RLS adaptive filters are dependent
on the shift structure in the input regression vectors. This structure
arises when a tapped-delay line (FIR) filter is used as a model-
ing filter. In this paper, we show, unlike what original derivations
may suggest, that fast fixed-order RLS adaptive algorithms are not
limited to FIR filter structures. We show that fast recursions in
both explicit and array forms exist for more general data struc-
tures, such as orthonormally-based models. One of the benefits of
working with an orthonormal basis is that fewer parameters can be
used to model long impulse responses.

1. INTRODUCTION

Fast RLS adaptive filtering algorithms represent an attrac-
tive way to compute the least squares solution of grow-
ing length data efficiently, in

�������
computations per sam-

ple, where
�

is the filter order. The low complexity that
is achieved by these algorithms is a direct consequence of
the shift structure that is characteristic of regression vec-
tors in FIR adaptive implementations. Recently, the authors
showed that the input data structure that arises from more
general networks, such as Laguerre filters, can be exploited
to derive fast order-recursive [1] and fixed-order filters [2, 3]
as well.

In this paper, we show that fast fixed-order RLS adap-
tive algorithms can also be derived for general orthonormal
bases (see e.g., [4, 5]) in both explicit and array forms.

2. THE EXTENDED FAST TRANSVERSAL FILTER

Given a column vector �	��
 C
�
���

and a data matrix ����

C � �
��������� , the exponentially-weighted least squares prob-
lem seeks the column vector ��
 C

�
that solves����� !#"	$&%('*),+.-/'1032�45)�2768)�9 '1032$;:=< $?>7@A$ 4CB�)�23D?E (1)
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The matrix F is a positive-definite regularization matrix,
and GIH �1J �LK J �.MN�OKQP*PRPSKUT � . The symbol V denotes
complex conjugate transposition. The individual entries of� � will be denoted by WSX ��Y��,Z , and the individual rows of the
matrix �[� will be denoted by W]\N^ Z . The RLS algorithm
computes the optimal solution of problem (1) recursively as
follows: 4 $_%N'a` 4 $ 67b $_%N'dc e :gf 6ih*B >7jk$_%N' 4 $ml (2)b $&%('n` "o-/'qp $Oj�r$_%N'qs :gf 6ih*B (3)s -/' :gf 6ih*B ` h�6t" -/' j $_%N' p $ j r$_%N' (4)p $_%N' ` " -/' p $ > b $&%(' s -o' :gf 6uhdB�b r$_%N' (5)

with �5Mv�wHyx and z{MN�tHyF . When the regression vec-
tors possess shift structure, it is well known that these recur-
sions can be replaced by more efficient ones. Now, consider
the generalized orthonormal network of Fig. 1 with transfer
function (the case of equal poles, which corresponds to a
Laguerre network, is treated in [2]):| :g} B `�~ -/'� ����� 4 ��� h >�� � � � 2h >�� � } -o'

� -/'�� ��� }
-/' >7� r�h >�� � } -o'k� � � � ��� h � (6)

with coefficients W]�.� Z .
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Fig. 1. Transversal orthonormal structure for adaptive filtering.

The input to the orthonormal network at time � is denoted
by � � � � . Using (6) we can relate two successive regression
vectors \v� and \N�
��� asj ~ %N'�� $ ` c j :gf 6ih �q� B jk$�l�`�c jk$&%('�j :gf �,� > hdB l��` �j ~ %('�� $_%N' � � (7)



where
�

is the (
��� T ) � (

��� T ) matrix (e.g., for
� H�� )

��� 	




�
� ��
� � � � �� ����� � ��
� � � �� M�� ������� � ������� ��
� � �� � � � � ����� � M�� � ����� � ����� � � 
� �� M�� � � � � ��� ��� �� � � � ��� � � �� M�� ��� � � �� ��� � �� �� ! � ! � ! � !  �" �"# $ ! � ! � !  �" �"# $ ! � !  �" �"# $ !  �"%�"# �

& '''''(
(8)

where we defined ) ^+*H-, T/.�0 1 ^ 0 2 . Note that the regression
vectors are not shifted versions of each other. Still, we shall
show that fast RLS algorithms are possible.

2.1. Forward Estimation Problem

Consider the input data matrix ���43 � and define the coeffi-
cient matrix (note that we are now indicating explicitly the
column dimension of � � , since we will be dealing with
order-recursive relations):p5-/'

~ � $ ` : "	$_%N'�+.-/'~
6 @�r~ � $

9 $ @ ~ � $
B3E

Now suppose that one more column is appended to � �43 �
from the left, i.e.,@ ~ %('�� $u`6587 � � $ @ ~ � $:9 (9)

and letp -/'
~ %('�� $ ` : " $_%N' + -/'~ %('

6 @ r~ %('�� $
9 $ @ ~ %N'�� $

B
where F MN�� ��� H �<; K F MN�� � . Then it is easy to verify thatp
~ %N'�� $ `= � �� p

~ � $?> 6 h@BA~ :gf B
= h> 4 A~ � $ > ! h > 4 A r~ � $ D

(10)

where �DC�E3 � is the solution to the least-squares problem����� GFH !JI "	$_%N'*)3+ -o'10,2
~

4 A~ ) 2 6 ) 9 '1032$;: 7 � � $�> @ ~ � $ 4 A~ B�) 2 D
whose minimum cost we denote by KLC� � � � . It holds thatM C� � � � H ; J �O�_� � KNC� � � � . Now, the following equations
constitute the update of the quantities of this problem:4 A~ � $ ` 4 A~ � $m-/' 6PO ~ � $RQ ~ :gf B (11)O
~ %N'�� $u`

= �O
~ � $?> 6 S r~ :gf B" @BA~ :gf > h*B = h> 4 A~ � $m-/' > (12)@BA~ :gf B ` " @BA~ :gf > h*B�6 S r~ :gf B Q ~ :gf B (13)

s ~ %(' :gf
B ` s ~ :gf

B " @BA~ :gf > h*B@BA~ :gf B (14)

where T �E3 �U*HWV �E3 �YX MN�� � � � is the normalized gain vector,Z � � � � and [ � � � � are the a priori and a posteriori for-
ward prediction errors, related via [ � � � � H Z � � � � X � � � � .
Note that no information on the data structure is needed in
order to derive these equations (see [1]).

2.2. Backward Estimation Problem

Similarly to the forward estimation problem, assume that
one more column is appended to � �E3 � from the right, i.e.,�@ ~ %N'�� $ ` 5 @ ~ � $ 7 ~ � $:9

(15)

and define the corresponding coefficient matrix as�p5-o'~ %('�� $ ` : "	$_%N' �+.-/'~ %('
6 �@�r~ %N'�� $

9 $ �@ ~ %N'�� $
B

where �+ -o'~ %N' `
= + -/'~ \\ r ] > (16)

for some constant vector ^ and scalar _ to be specified. In-
verting both sides, we obtain:�p ~ %('�� $u`

= p ~ � $ �� � > 6 h@a`~ :gf B
= >cb $h > 5 >cb r$ h 9

(17)

This equation has two main differences with respect to the
definition of the variables �dC�43 � and

M C� � � � , for the for-
ward prediction problem. The vector e � is the sum of two
quantities, b $ ` 4 `~ � $ 6gf $ (18)

where
f $u` "	$&%('3p ~ � $ \ E (19)

The first term of (18) is the solution to the least-squares
problem:

����� "H ! "	$&%('*),+ -o'10,2
~

4 `~ ) 2�68)�9 '10,2$ : 7 ~ � $?>7@ ~ � $ 4 `~ B�)�2 D
where K �� � � � is the corresponding minimum cost. Substi-
tuting Eq. (5) into (19), we obtain a recursive relation forh � (which is analogous to the time-update for � ��43 � ), and
it further implies the following time-update for eS� :b $u`ib ${-o' 6kj ~ :gf B�O ~ � $
where l � � � � Hnm � � � � X � � � � , ando ~ :gf B `ip ~ :gf B >�j ~ � $ f ${-o' E
In addition, the quantity

M �� � � � is defined by@ `~ :gf B+q`ir `~ :gf B�6t" $&%(' : ] > \ r f $ > \ r 4 `~ � $ > 4 ` r~ � $ \ B�E
Although the update of these terms may look complicated,
using the time-update for � ��43 � and

h � , we obtain after
some manipulations@ `~ :gf B ` " @ `~ :gf > h*B�6 o r~ :gf B�j ~ :gf B�E (20)

Also, multiplying (17) from the right by s\ut� ���v3 �
��� , we ob-
tain, similar to the forward estimation problem,= O ~ � $� > ` �O ~ %N'�� $ >xw ~ :gf B = > 4 `~ � $m-/'h > (21)



where � � � � � HWm�� � � ����J M �� � � .�T � . The quantity � � � � �
is referred to as the rescue variable and can be directly ob-
tained as the last entry of sT � ���v3 � (to be computed further
ahead).

Proceeding similarly to the derivation of (14), we obtains ~ :gf
B `L�s ~ %N' :gf

B c h >t�s ~ %(' :gf
B o ~ :gf B w ~ :gf B l -/'{E

Note that the variables m	� � � � and l � � � � play roles
similar to the a priori and a posteriori backward prediction
problems. However, although all the quantities related to
the backward prediction problems satisfy identical recursive
equations, here they have different interpretations.

2.3. Exploiting Data Structure

We still need to evaluate sT �43 � . For this purpose, we need to
identify the variable that is affected by the input data struc-
ture. Thus, consider any invertible matrix

�
such as in (8).

From Eq. (7), it follows that�@ ~ %('�� $&%('�`
= �@ ~ %N'�� $ > � -/'

where ��� ����3 � and s�[� ���v3 �
��� are the corresponding aug-
mented input data matrices. We then get�p ~ %N'�� $&%(' ` : "	$_%o2 �+.-/'~ %('

6 �@�r~ %('�� $&%('
9 $_%N' �@ ~ %('�� $&%('

B3-/'
` : "	$&%�2 �+.-/'~ %('

6 � - r @�r~ %N'�� $
9 ${@ ~ %N'�� $O�

-/'�B3-o'
Note that if we could choose�+ -o'~ %N' `

"o-o' � - r + -o'~ %N' �
-o'

(22)

we obtain a simpler relation between � �p ~ %('�� $&%(' �
p
~ %N'�� $�� :�p ~ %('�� $_%N'_`��

p
~ %('�� $C� r (23)

In order for this relation to hold, we need to show how
to choose FA� , ^ , and _ in order to satisfy (22). Substituting
(16) into (22), we get= + -o'~ \\ r ] > ` " -/' � - r = I �� + -o'

~ > � -/' E (24)

Now, the matrix
� M t can be defined block-wise as

� - rO` = �� ���	� >
where � ` 5 � � � � h 9

and

�� ` !�
 � 
 � 
 � 
  ` �`  -�
 � 
 � 
  ` �`  -

 � 
  ` �`  -�
  ` �`  h D�� E

������������������������� �I
is a small positive number;

+
is the solution to (25);

c is given by (26).@ A~ : > hdB ` I ! "@ `~ : � B ` " -/' c + -/' l ~ -o'�� ~ -o'�> \ r + \4
~ �
� ` 4 A~ ��-o' ` �b � ` + -/' \

For f#" � , repeat:j :gf B `i� � j :gf > h*B�6 � h >i� � � � 2�$ :gf BS ~ :gf > hdB `ij :gf B >�j ~ � $m-/' 4 A~ � $m-�2Q ~ :gf > h*B ` s ~ :gf > h*B S ~ :gf > h*BO
~ %N'�� ${-/'&`

= �O
~ � ${-/' > 6&% 
H(' ${-/'*)+-, FH ' ${-k2.) = h> 4 A~ � ${-k2 >@ A~ :gf > h*B ` " @ A~ :gf >�/ B�6 S r~ :gf > hdB Q ~ :gf > h*B4 A~ � ${-/' ` 4 A~ � ${-k2 6gO ~ � $m-/' Q ~ :gf > h*B�s ~ %N' :gf

B ` s ~ :gf >
hdB +0, FH ' $m-�2.), FH ' ${-o'*)�O ~ %N'�� $u`�� O ~ %('�� ${-o'w ~ :gf B ` (last entry of
�O ~ %('�� $ )O

~ � $ ` �
O '.1 ~ � $ 6 w ~ :gf B b $m-/'o ~ :gf B ` " @ `~ :gf > h*B w r~ :gf Bs ~ :gf

B ` 23 H54 � ' $6)'q- 23 H54 � ' $7)98 H ' $7);: H ' $7)j
~ :gf

B ` s ~ :gf
B o ~ :gf B@ `~ :gf B ` " @ `~ :gf > h*B�6 o r~ :gf B�j ~ :gf Bb $�` b ${-/' 6gO ~ � $ j ~ :gf B< ~ :gf

B `ue :gf B >�j ~ � $
4
~ � ${-o'= ~ :gf

B ` s ~ :gf
B < ~ :gf

B4
~ � $u`

4
~ � ${-o'

6gO
~ � $ = ~ :gf

B
Table 1: The extended fast transversal filter for orthonor-
mal bases.

Expanding (24), we find thatJ F MN�� . s> F MN�� s> t H ; s? s? tA@ (25)

Hence, if 0 1 � 0CBED J , this Lyapunov equation admits a
unique positive definite solution F � . This is because all the
eigenvalues of s> are either 1 t� or x , and the pair

�1J MN� � 2 s>GF s? �
is controllable. From (24), we then obtain

\ ` " -o' �� + -o'~ � r (26)] ` "o-o' � +.-/'~ � r{` "o-o' c + -/' l ~ -/'�� ~ -/'
E

From (23), we can now obtain similar relations between
� b ~ %('�� $ � �

b
~ %N'�� $&%(' � and � s ~ %(' :gf

B � �s ~ %N' :gf
6 h*B � , and it

is straightforward to show that�s ~ %(' :gf
6ihdB ` s ~ %N' :gf

B
and �O ~ %('�� $&%('�`�� O ~ %N'�� $ (27)



This relation shows that the time update of the gain vec-
tor T �43 � , which is necessary to update the optimal solution4

~ � $&%('&`
4
~ � $

6kO
~ � $_%N' = ~ :gf

6�hdB
can be efficiently performed in three main steps: (1) Or-
der update

O
~ � $ � O

~ %('�� $ ; (2) Time-update
O
~ %('�� $ ��O ~ %N'�� $_%N' ; (3) Order downdate

�O ~ %N'�� $&%(' � O
~ � $&%(' [i.e,

Eq. (12), (27) and (21)]. Table 1 shows the resulting gener-
alized FTF algorithm.

Note that when 1 � H x , we have
� H �

and thereforesT � ���v3 �
��� H�T � ���v3 � , in which case the recursions col-
lapse to the FTF algorithm [6]. Equation (27) is the only
recursion that uses the fact that the input data has structure.
For the orthonormal basis considered here, this multiplica-
tion is essentially a convolution, and can be performed with���1���

operations. The cost of the usual FIR FTF algorithm
is known to be

�����S���
operations [6]. The overall cost for

our extended filter is
����� ���

operations.

3. THE EXTENDED FAST ARRAY ALGORITHM

Using the expressions for W�z{� ����3 � F sz�� ���v3 �O�_� Z ) in (10)
and (17) (and ignoring the order index

�
), the FTF al-

gorithm can be further motivated in a different manner by
noticing that its recursions perform at each iteration the low
rank factorization ���
	�� 3 ��
 H= p $ �� � > > � = � �� p $m-/' > � r `�� $�� � r$ (28)

where � is an � ��� signature matrix and

� � ��� M�� �� ��� �M�� FH�� � $ �����
	
� � "�! �H#" �%$ � F ! �H&" � $ � $

& '(
More generally, it can be shown (see, e.g. [7, 3]) that by
forcing the initial difference to have low rank, and a certain
inertia, we end up forcing all the successive differences to
have a similar property. This fact is the basis for the exis-
tence of a fast recursion that does not necessarily propagate
the difference �'�
	 H�� � 3 ��
 explicitly. That is, we need to
find a matrix z � H F such that the difference ���)( 3 �*
 has
low rank. Expanding this difference, we obtain

+-,/. � � 021 ` = " -/' + > � + � r > � + � r> � + � r > � + � r > (29)

where 3 >54 ^76 H&3 s>84 ��Mv� M96�3 ��MN� M/^ and ? H s?2: . The matrixF that results from solving (25), under the condition 0 1 � 0�BD J , leads to a rank ; difference with �?H � TOK�.�T � .
Alternatively, we can find another F that leads to a rank<

difference and requires instead the condition 0�D J 1 � 0�BT . Thus consider the matrix difference
J MN� F . > F > t in

Eq. (29). We proceed to find a positive definite matrix F

such that this difference has a rank 1 matrix factorization of
the form " -/' + > � + � r `�=2= r E (30)

Again, from the properties of Lyapunov equations, we know
that this equation admits a unique Hermitian solution, since
all the eigenvalues of

>
are equal to 1 t� or x . Moreover,

since 0 D J 1 � 0�BUT , any vector > such that the pair
��J � � 2 >�F > �

is controllable, will result in a positive-definite solution F .
Hence, we can choose a vector > (and consequently, F )

such that the difference
J MN� F . > F > t has rank one (and

inertia T ). It then follows that the rank of ���
	 � 3 �*
 in (29)
will be

<
and �tH � T_K .�T�K T � . For either choice of F , the

resulting fast array algorithm can be summarized as follows.

(Fast Array Algorithm) Consider input regression vectors
arising from the orthonormal structure of Figure 1. The
solution to the minimization problem (1) can be recursively
computed as follows. Start with � MN�[H x , X MN� � 2 � x � H T ,T � HQx , ? � and � from the factorization (28) at time x , and
repeat for each �A@ x ,	
� B $ � ! � � �
� �C D9E F � 4 � F � �/3 � M �3�HG � ���� �I � B $ � ! � � �O� � �C D � � & '(�J � �	� B $ � ! � � �7� �3� �� I � 4 � B $ � ! � � �7� ���� � � � 4 � &(
where K � is a

� TkK � � -unitary matrix that produces the zero
entries in the above post-array, and ?C� is

��� � T � �L� .
The product with the matrix

�
defined in Eq. (8) can be

implemented fast by convolution. Moreover,4 $&%('_` 4 $ 6 b $&%(' c e :gf 6ih*B >7j	$&%(' 4 $ml E
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