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ABSTRACT

The existing derivations of fast RLS adaptive filters are dependent
on the shift structure in the input regression vectors. This structure
arises when a tapped-delay line (FIR) filter is used as a model-
ing filter. In this paper, we show, unlike what original derivations
may suggest, that fast fixed-order RLS adaptive algorithms are not
limited to FIR filter structures. We show that fast recursions in
both explicit and array forms exist for more general data struc-
tures, such as orthonormally-based models. One of the benefits of
working with an orthonormal basis is that fewer parameters can be
used to model long impulse responses.

1. INTRODUCTION

Fast RLS adaptive filtering algorithms represent an attrac-
tive way to compute the least squares solution of grow-
ing length data efficiently, in O(M) computations per sam-
ple, where M is the filter order. The low complexity that
is achieved by these algorithms is a direct consequence of
the shift structure that is characteristic of regression vec-
tors in FIR adaptive implementations. Recently, the authors
showed that the input data structure that arises from more
general networks, such as Laguerre filters, can be exploited
to derive fast order-recursive [1] and fixed-order filters [2, 3]
as well.

In this paper, we show that fast fixed-order RLS adap-
tive algorithms can also be derived for general orthonormal
bases (see e.g., [4, 5]) in both explicit and array forms.

2. THE EXTENDED FAST TRANSVERSAL FILTER

Givena columnvectoryy € CN*! and a data matrix Hy €
CINFUXM the exponentially-weighted least squares prob-
lem seeks the column vector w € CM that solves

min WY wl + Wy - BErvw)l?] . @)
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The matrix II is a positive-definite regularization matrix,
and W = (AN @ AN=1 @ --- @ 1). The symbol x denotes
complex conjugate transposition. The individual entries of
y~ Will be denoted by {d(7) }, and the individual rows of the
matrix Hy will be denoted by {u;}. The RLS algorithm
computes the optimal solution of problem (1) recursively as
follows:

w1 = wWN +gn+1[d(N +1) —untiwn] (2)
gn+1 = A Pnungy(N +1) 3)
fy*l(N +1) = 1+ A71UN+1PNUFV+1 4
Pvii = A 'Pv—gnt1y {(N+Dgnpa ()

with w_; = 0 and P_; = II. When the regression vec-
tors possess shift structure, it is well known that these recur-
sions can be replaced by more efficient ones. Now, consider
the generalized orthonormal network of Fig. 1 with transfer
function (the case of equal poles, which corresponds to a
Laguerre network is treated in [2])'
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Fig. 1. Transversal orthonormal structure for adaptive filtering.

The input to the orthonormal network at time N is denoted
by s(NN). Using (6) we can relate two successive regression
vectors u and un 41 as

umt+i,n = [uw(N+1,0) un]=[unt1 u(N,M —1)]®

= UmM41,nv+19, Q)



where & isthe (M + 1) x (M + 1) matrix (e.g., for M = 5)
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where we defined b; £ 4/1 — |a;|?. Note that the regression
vectors are not shifted versions of each other. Still, we shall
show that fast RLS algorithms are possible.

2.1. Forward Estimation Problem

Consider the input data matrix H s, » and define the coeffi-
cient matrix (note that we are now indicating explicitly the
column dimension of Hy, since we will be dealing with
order-recursive relations):

Puly = (VI + Hay W Hu,n).
Now suppose that one more column is appended to Has, n
from the left, i.e.,
Hypi,n = [ zoNn Hwm,n ] 9)
and let

PI\;I:E}-I,N = ()\N+1H1\_/11+1 + Hy 1, nWrnHma,n)

where IT,/, | = (u @ TI;/). Then it is easy to verify that

Pyyin =

0 0 1 1 fu
[ 0 Punw ] T am [ —wly n ] [ b ]
(10)
where wfw,N is the solution to the least-squares problem

min [ I 2w 12 + (W (o — Harwwly) 7]

War

whose minimum cost we denote by §{J(N). It holds that

¢ (N) = pANHL 4 ¢f (N). Now, the following equations
constitute the update of the quantities of this problem:

wL,N = wﬁl,N—l + kN fur (N) (11)
_ 0 o (N) 1
haesin = [ kv ] AC{;(/IN—l) [ _wL,N—l ] (12
Chr(N) = Mf (N — 1) + o (N) far (N) (13)
f _
ot 11 (V) = yar () 2 — 1) (14)

¢l (V)

where kas,n 2 gm.NYy; () is the normalized gain vector,
apm(N) and far(N) are the a priori and a posteriori for-

ward prediction errors, related via fas (N) = apr (N)ym(N).

Note that no information on the data structure is needed in
order to derive these equations (see [1]).

2.2. Backward Estimation Problem

Similarly to the forward estimation problem, assume that
one more column is appended to H s, x from the right, i.e.,

Huyin=[ Hun zun | (15)

and define the corresponding coefficient matrix as
p]&}i-l,N = (/\N+1ﬁ1;11+1 + HXJ+1,NWNHM+1,N)

where -1

— 1 C
Mg = [ CIXI 5 ] (16)
for some constant vector ¢ and scalar § to be specified. In-
verting both sides, we obtain:

Pyn O 1 —gn "
o oty | e 1]
an
This equation has two main differences with respect to the
definition of the variables w,  and ¢, (IV), for the for-
ward prediction problem. The vector qn is the sum of two
quantities,

Prsay = [

gy = Wy +tn (18)

where tn = APy ne. (19)

The first term of (18) is the solution to the least-squares
problem:

min [\ Pwbl” WY @y — Hyvwhs) ]
W
where ¢% (V) is the corresponding minimum cost. Substi-
tuting Eq. (5) into (19), we obtain a recursive relation for
tn (which is analogous to the time-update for w?\/l,N)’ and
it further implies the following time-update for g :

an = qn-1 +num(N)knm,n
where np (N) = ep(N)ym (N), and
em(N) = Bar(N) — unm,Ntn_1 -
In addition, the quantity ¢%, (V) is defined by
() 2 €4 (N) + AV (6 — et — c*whew — whine) -

Although the update of these terms may look complicated,
using the time-update for wﬂ’M’N and tn, we obtain after
some manipulations

Ce(N) = M (N — 1) + e (N)nm(N) . (20)

Also, multiplying (17) from the right by @3, ; 1, We 0b-
tain, similar to the forward estimation problem,

[ kﬂé’N ] =kmi1,v —vm(N) [ _w?vi’Nfl ] (21)



where vpr(N) = enr(N) /A8, (N—1). The quantity vas (V)
is referred to as the rescue variable and can be directly ob-
tained as the last entry of I_cM+1,N (to be computed further
ahead).

Proceeding similarly to the derivation of (14), we obtain

Y (N) = Faa41(N)[L = Fars1(N)eamr (N (N)] 7

Note that the variables €7(N) and na (N) play roles
similar to the a priori and a posteriori backward prediction
problems. However, although all the quantities related to
the backward prediction problems satisfy identical recursive
equations, here they have different interpretations.

2.3. Exploiting Data Structure

We still need to evaluate EM,N. For this purpose, we need to
identify the variable that is affected by the input data struc-
ture. Thus, consider any invertible matrix ® such as in (8).
From Eq. (7), it follows that

= 0 _
Hyya,n41 = [ Hisan :|<I> !

where Hpz41, 5 and I_{M-H,N-i-l are the corresponding aug-
mented input data matrices. We then get

Puiin+1 = ()\N+2ﬁ;11+1 +HKJ+1,N+1WN+1HM+1,N+1)_1
= WA + @ " Hiypp nWy Hua,n® )7

Note that if we could choose
Myt = A0 " 5,870 (22)

we obtain a simpler relation between { Pas11,n+1, Prrt1,v }:

‘ Pryii,N+1 = ®Prry1,n®* ‘ (23)

In order for this relation to hold, we need to show how
to choose I, ¢, and 4 in order to satisfy (22). Substituting
(16) into (22), we get

ERERaE:

-1
5 0 H;Tl‘]‘b . (29

Now, the matrix @ —* can be defined block-wise as

where
m=[0 0 0 0 1] and
T
7= [ ai1a2a3aabg —azagaaby —agasbo —asby | ]
by bg by by '

Initialization

w is a small positive number; II is the solution to (25);
c is given by (26).

(1) = p/X

CR,I(O) = )\_I[H_l]M_1,M_1 —c*Ile

wm,0 =Wy, 1 =0

qo = I lc

For N > 0, repeat:

u(N) = aou(N — 1) + /1 — |ao|?s(N)

am(N —1) =u(N) - “M,N—lw{v[,N—2
fu(N =1) = yu(N —Dam(N —1)
= 0 ES PTG 1

kvmyin-1= [ katn-1 ] + b, (v-2) —wly s
¢ (N = 1) = ACh (N = 2) + e (N — 1) far (N — 1)
Wy N_1= Wy n_ot+Ekun-1fu(N—1)
_ xef (v-2)

N) = N —1)2u®=2)
Ya+1(N) =y ( i vy
kvmii,n = Qkmy1,N-1
vm (N) = (last entry of kas+1,n)
km,N = kv, N +vm(N)gn-1
em(N) = X (N = 1)vis(N)

_ Am+1(N)
M(N) = T30 T e s Mo

nm(N) = ym(N)em(N)
Cu(N) = M3 (N = 1) + €3 (N)nu (N)
gn = gn-1 + km,nnm (N)

eM(N) =d(N) — umM,NwM,N—1
em(N) = ym(N)em(N)
wm,N = wm,N—1 + knm,nenm(N)

Table 1: The extended fast transversal filter for orthonor-
mal bases.

Expanding (24), we find that
NI, — T,/ T* = uov* . (25)

Hence, if |ax| < +/), this Lyapunov equation admits a
unique positive definite solution II ;. This is because all the
eigenvalues of T are either a, or 0, and the pair (\~*/2T, 7)
is controllable. From (24), we then obtain
c = M 'Thoy'm* (26)
= AN 'mIlym* = A0 Y aro,m—1
From (23), we can now obtain similar relations between

{gm+1,8, grr1,n41} and {yar41(N), m41(N + 1)}, and it
is straightforward to show that

m41(N +1) = ym41(N)

and

‘ EM+1,N+1 = ‘I>kM+1,N ‘ (27)




This relation shows that the time update of the gain vec-
tor ks, v, Which is necessary to update the optimal solution

WM, N+1 = WM,N + km,nt1em (N + 1)

can be efficiently performed in three main steps: (1) Or-
der update kym,n — km+i,n; (2) Time-update kar41,v —
EM+1,N+1; (3) Order downdate EM+1’N+1 — kM’N+1 [i.e,
Eq. (12), (27) and (21)]. Table 1 shows the resulting gener-
alized FTF algorithm.

Note that when a;, = 0, we have ® = I and therefore
1_9M+1,N+1 = kum+1,~v, In which case the recursions col-
lapse to the FTF algorithm [6]. Equation (27) is the only
recursion that uses the fact that the input data has structure.
For the orthonormal basis considered here, this multiplica-
tion is essentially a convolution, and can be performed with
O(M) operations. The cost of the usual FIR FTF algorithm
is known to be O(7M) operations [6]. The overall cost for
our extended filter is O(8 M) operations.

3. THE EXTENDED FAST ARRAY ALGORITHM

Using the expressions for { P15, Prv+1,n+1}) in (10)
and (17) (and ignoring the order index M), the FTF al-
gorithm can be further motivated in a different manner by
noticing that its recursions perform at each iteration the low
rank factorization Vyp, ¢} =
[ Py 0 ] 3 q)[ 0 0

0 0 0 Pn_1 ]cb =LInJLy (28

where J is an r x r signature matrix and

—1
Ly — [ —qn q,[ A ] ] P .
' T FYeromy
M

More generally, it can be shown (see, e.g. [7, 3]) that by
forcing the initial difference to have low rank, and a certain
inertia, we end up forcing all the successive differences to
have a similar property. This fact is the basis for the exis-
tence of a fast recursion that does not necessarily propagate
the difference V(p,, v s} explicitly. That is, we need to
find a matrix Py = II such that the difference V(1 ) has
low rank. Expanding this difference, we obtain

AT - THOT™
—uIIT*

—TTIv*
—vllv*

Vipy,2} = (29)

where [T);; = [T]m-1—j,m—1—i and v = 7. The matrix
II that results from solving (25), under the condition |ay| <
V/\, leads to a rank 2 difference with J = (1 ® —1).
Alternatively, we can find another II that leads to a rank
3 difference and requires instead the condition |v/Xay| <
1. Thus consider the matrix difference A=IT — TTIT* in
Eq. (29). We proceed to find a positive definite matrix IT

such that this difference has a rank 1 matrix factorization of
the form

AT — TOT* = hh* . (30)

Again, from the properties of Lyapunov equations, we know
that this equation admits a unique Hermitian solution, since
all the eigenvalues of T are equal to aj, or 0. Moreover,
since |v/Aax| < 1, any vector h such that the pair (\1/2T, h)
is controllable, will result in a positive-definite solution II.
Hence, we can choose a vector h (and consequently, IT)
such that the difference A~*II — TTIT* has rank one (and
inertia 1). It then follows that the rank of Vg, & in (29)
will be 3and J = (1@ —1 @ 1). For either choice of II, the
resulting fast array algorithm can be summarized as follows.

(Fast Array Algorithm) Consider input regression vectors
arising from the orthonormal structure of Figure 1. The
solution to the minimization problem (1) can be recursively
computed as follows. Start with w_; = 0, y~/2(0) = 1,
ko = 0, Ly and J from the factorization (28) at time 0, and
repeat for each N > 0,

7—1/20(N) ﬁ[uwﬂ u(N,M —1)]Ly o
N =
[ gny M2 (N) ] ke
q_l/z(N + 1) 0
—-1/2
[ [ gN 1Y é (N +1) ] Lny1 :|

where @ is a (1@ J)-unitary matrix that produces the zero
entries in the above post-array, and Ly is (M + 1) x r.
The product with the matrix & defined in Eq. (8) can be
implemented fast by convolution. Moreover,

wN41 = wWN + gn41[d(N + 1) — unyi1wn].
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