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ABSTRACT

Traditional subspace methods (SS) for blind channel identification
require accurate rank estimation with a computational complexity
of O(m3), where m is the data vector length. In this paper, we
introduce new adaptive subspace algorithms using ULV updating
and successive cancellation techniques. In addition to reduce the
computational complexity to O(m2), the new algorithms do not
need to estimate the subspace rank. Channel length can be over-
estimated during the subspace tracking and channel vector opti-
mization steps. It can then be recovered at the end by a successive
cancellation procedure. Simulation shows that the new algorithms
outperform the traditional SS methods in case the subspace rank is
difficult to estimate.

1. INTRODUCTION

Many digital communication channels suffer from the problem of
intersymbol interference (ISI) caused by multipath propagation.
Blind channel identification and equalization are effective for re-
ducing ISI and improving system throughput. Blind channel iden-
tification can also assist equalization. Among all blind methods
the subspace method (SS) [1] is well known for its good perfor-
mance. However, the batch algorithm [1] requires singular value
decomposition (SVD). It is inconvenient for adaptive implementa-
tion. Furthermore, it requires accurate channel length estimation
and/or accurate rank estimation of the correlation matrix, which
are not easy in an inherently noisy environment.

Many subspace tracking algorithms were developed to com-
pute the subspace adaptively with computational complexity around
O(m2), or O(md) where d is the dimension of the signal sub-
space, in each recursion [3], [5]. However, the total computation
of the blind channel identification is still O(m3) due to the second
step, i.e., using the estimated subspace vectors to optimize channel
estimation. The second step can not be recursively implemented
with reduced computations in an obvious manner.

In this paper we propose new adaptive algorithms for blind
channel identification using ULV updating and successive cancel-
lation techniques. We separate the channel length estimation and
subspace rank estimation into two estimation problems. Our new
approaches require no rank estimation. The channel length can
be over-estimated during subspace tracking and optimization. It
can then be recovered by a successive cancellation procedure. The
second optimization step can be recursively implemented as an-
other subspace tracking without rank estimation. Hence the total
computations of the adaptive algorithm is reduced to O(m2).

In Section 2, we introduce the communication system model
and the traditional subspace algorithm. In Section 3, we discuss
the ULV updating for subspace tracking without rank estimation
and derive a batch algorithm. Then an adaptive algorithm is given
in Section 4. This is followed by simulation results in Section 5
and a conclusion in Section 6.

2. SUBSPACE METHOD FOR BLIND CHANNEL
IDENTIFICATION

2.1. Problem Formulation

Consider a fractionally sampled communication system with frac-
tional ratio L

x(n) =

1X
k=�1

skh(n� kL) + v(n): (1)

Define xi(n) = x(nL + i), hi(n) = h(nL + i), and vi(n) =
v(nL + i). (1) has an equivalent single-input multiple-output
description as xi(n) =

P
1

k=�1
skhi(n � k) + vi(n), i =

0; � � � ; L � 1. Let x(n) = [ x0(n); � � � ; xL�1(n) ]
T where (�)T

denotes transpose, h(n) = [ h0(n); � � � ; hL�1(n) ]T , v(n) =
[ v0(n); � � � ; vL�1(n) ]

T . Then

x(n) =

1X
k=�1

skh(n� k) + v(n): (2)

If the channel is of order Lh, the system (2) can be represented in
the matrix form

X (n) = Hs(n) + V(n) (3)

where H is a NL� (N + Lh � 1) block Toeplitz matrix

H =

2
4 h(0) � � � h(Lh � 1)

. . .
. . .

h(0) � � � h(Lh � 1)

3
5 (4)

and X (n) = [ xT (n); � � � ;xT (n �N + 1) ]T , s(n) = [ sn; � � � ;
sn�N�Lh+2 ]

T , V(n) = [ vT (n); � � � ;vT (n�N + 1) ]T .
We assume throughout this paper that i) the input sequence sk

is stationary with zero mean and Efsks�l g = Æ(k�l), ii) the noise
v is stationary with zero mean and white with variance �2v , iii) s &
v are uncorrelated.



2.2. Subspace Method [1]

The subspace separation can be performed on the correlation ma-

trix Rx
4

= E[X (n)XH(n)], where E[�] denotes statistical expec-
tation, by the eigenvalue decomposition (EVD)

Rx =
�
Us Uo

� � �s 0

0 �o

��
UH

s

UH
o

�
(5)

where �s contains signal eigenvalues and is d� d, the vectors in
Uo are associated with the NL�d noise eigenvalues�o and span
the noise subspace. AssumeH is full column rank, the channel can
be uniquely determined up to a constant factor by Uo.

Define theLLh�1 channel vector h
4

= [ hH(0); � � � ; hH(Lh�
1) ]H where (�)H stands for conjugate transpose. Let Uo = [ u0;
� � � ;uNL�d�1 ] where the ith column vector ui can be written as
ui = [ uHi (0); � � � ;uHi (N � 1) ]H with ui(j) being an L � 1
vector. We further define an LLh � (Lh +N � 1) matrix

Ui
4
=

2
4 ui(0) � � � ui(N � 1)

. . .
. . .

ui(0) � � � ui(N � 1)

3
5 : (6)

Then the channel can be estimated by minimizing

J(h) = h
H

 
NL�d�1X

i=0

UiU
H
i

!
h
4

= h
H
Qh s:t: khk = 1

(7)
Hence the estimate of h is the singular vector corresponding to the
minimum singular value of the LLh dimensional matrix Q.

If Lh is an over-estimated channel length, then the LLh di-
mensional vector h becomes h = [hH(0); � � � ;hH(Lr�1);0T ]H

where Lr is the actual channel length. The channel estimation is
then inconsistent [2] and will include a random polynomial factor
of order Lh � Lr + 1

ĥ =

2
666664

h(0)
...

. . .
h(Lr � 1) h(0)

. . .
...

h(Lr � 1)

3
777775
2
4 r(0)

...
r(Lh � Lr)

3
5 :

(8)

3. BLIND CHANNEL IDENTIFICATION WITHOUT
RANK ESTIMATION

Both the SVD based and the subspace tracking based [3] methods
for subspace separation require accurate rank estimation. Blind
channel identification is thus performed by estimating and apply-
ing the entire subspace at the same time.

On the contrary, our basic idea is trying to calculate a time-
varying subspace vector recursively by ULV updating. In each
recursion, only one noise subspace vector is estimated. A series
of such vectors will jointly span the entire noise subspace. Since
only one vector is estimated, no rank estimation is needed. Fur-
thermore, the channel length can be over estimated at the begin-
ning.

3.1. ULV updating

The ULV decomposition [4]-[5] estimates the entire signal sub-
space and noise subspace, hence requires accurate rank estimation.
However, we can modify the ULV updating to overcome this re-
quirement by estimating only one noise subspace vector at a time.

At iteration n, define An
4

= [ X (1); � � � ;X (n) ]H . Assume
the ULV decomposition is

An = Un

�
Bn 0

bn bn

��
VH

n

vHn

�
(9)

where Bn is an (NL � 1)� (NL � 1) matrix, bn is an (NL �
1) � 1 vector, bn is a scalar, VH

n is (NL � 1) � NL and vHn is
1 � NL.

�
Vn vn

�
is orthonormal, and vn lies in the noise

subspace with bn sufficiently small or 0. Note that we do not need
to separate Vn into signal and noise subspaces explicitly, which is
different from the traditional ULV decomposition.

At iteration n+1, our goal is to get the same ULV decomposi-
tion as (9) for the row appended matrix An+1 = [ �AH

n ; X (n+
1) ]H where � 2 [0 1] is the forgetting factor. By a series of
Givens rotations we can zero out the new appended row. Deleting
this all zero row, we have

An+1 = ~Un

�
~Bn 0
~bn ~bn

�
~VH
n : (10)

Although (10) is in lower triangular form, ~bn is not necessarily
small enough to be a noise component. In order to restore the
correct form, we first calculate a reliable condition estimator (c.f.,
[4]) pn such that

k

�
~Bn 0
~bn ~bn

�
pnk � �min(n) (11)

where �min(n) is the smallest singular value or noise power of

the matrix

�
~Bn 0
~bn ~bn

�
. Applying NL� 1 left Givens rotations

to pn, we have W1npn = [ 0; � � � ; 0; 1 ]T = eNL where W1n

is NL � NL and orthonormal. Applying W1n and some other
proper Givens rotations to (10), we get

An+1
~VnW

H
1n = Un+1

�
Bn+1 0

bn+1 bn+1

�
(12)

where bn+1 is small as a noise component. This is because from
(11) and (12) we get jbn+1j = kAn+1

~VnW
H
1neNLk � �min(n).

Therefore the ULV decomposition at iteration n+ 1 is

An+1 = Un+1

�
Bn+1 0

bn+1 bn+1

��
VH

n+1

vHn+1

�
(13)

To summarize, the total computation of the above ULV updat-
ing algorithm is O((NL)2). No rank estimation is required. The
detailed procedures are similar to [4]-[5].

In order to examine the relation of vn and Uo, we assume the
channel is either time invariant or slowly time-variant.

Proposition 1: Suppose (11) holds with an exact equality. Then
under mild conditions spanfvHn ; n = 0; 1; � � �g = spanfUog
with probability one.



Proof: First, from (11)-(13), vn 2 Uo for all n. Then, since�
~Bn 0
~bn ~bn

�
has rank d, it has at least NL�d entries with small

random values on its diagonal due to noise. Thus pn contains
correspondingly NL � d random entries. From (12) and (13) we
can easily obtain vn+1 = ~Vnpn. Since ~Vn is orthonormal, its
columns are independent (orthonormal) and span the entire NL
dimensional vector space. The NL� d random entries in pn then
form random linear combinations of the columns of ~Vn by the
product vn+1 = ~Vnpn. Since for each n there are NL � d

linearly independent vectors involved, their linear combination at
each n will result in a random vector in the NL � d dimensional
subspace. Hence the rank of [ v1; � � � ;vn; � � � ] is no less than
NL�d, which is the rank ofUo, with probability one. For details
of the proof, see [6]. 2

3.2. Successive Cancellation for Channel Estimation

Because of Proposition 1, we can use the recursively updated noise
subspace vectors vn to optimize channel estimation according to
(7). We may not need all the vn vectors. Instead, a small subset
may be enough because we only require that the matrixQ in (7) is
rank-one deficient so that the channel estimation is unique.

If the channel length Lh is over-estimated in the ULV updat-
ing and the optimization step (7), we need to recover the correct
channel h and length Lr from (8). In this case, the Q in (7) is
rank Lh � Lr + 1 deficient. Let its null space be an LLh �
(Lh � Lr + 1) matrix Q0 = [ q0; � � � ;qLh�Lr ]. The vector
qi = [ qHi (0); � � � ;qHi (Lh � 1) ]H has the same form as (8).
From (8) we find that the last L entries of qi, i.e., qi(Lh � 1), are
just h(Lr � 1) with a multiplicative factor ri(Lh � Lr). For all
the vectors qi we can nullify their last L entries by minimizing

[q0(Lh � 1) � � � qLh�Lr�1(Lh � 1)]� qLh�Lr (Lh � 1)fH




(14)

where fH is a 1 � (Lh � Lr) vector. The solution to (14) is

f
H
opt =

q
H

L
h
�Lr

(Lh�1)[q0(Lh�1);���;qLh�Lr�1
(Lh�1)]

q
H

L
h
�Lr

(Lh�1)qLh�Lr
(Lh�1)

(15)

Then the matrix

Q1 =
�
q0 � � � qLh�Lr�1

�
� qLh�Lr f

H
opt (16)

is similar in form as Q0 (omit the L all zero rows). The last L
entries in each column of Q1 are again proportional to h(Lr� 1).
Hence the procedure (15)-(16) can be applied recursively until we
get

QLh�Lr =

2
4 h(0)

...
h(Lr � 1)

3
5 ~r0 (17)

where ~r0 is an unknown scalar. At this step both the channel h
and its length Lr is obtained from (17). If Q0 contains more than
Lh � Lr + 1 columns, then the signal subspace vector in Q is
involved, whose last L elements are not proportional to h(Lr�1)
or the corresponding part ofQLh�Lr . The successive cancellation
will not result in zero or small enough value for (14). Therefore
the effective channel length Lr can be determined.

It is computationally more convenient to put the channel length
determination to the last stage. We can choose an over estimated

length for subspace tracking and optimization. Then by the suc-
cessive cancellation procedure channel estimations with all pro-
posed lengths can be obtained simultaneously without computa-
tional overhead. The most suitable one can be determined from
(14) or the SVD of Q, or by some other verifying methods. The
traditional SS algorithm [1], however, requires forming several dif-
ferent matrices and the corresponding SVD’s.

4. ADAPTIVE BLIND CHANNEL IDENTIFICATION

The method in Section 3 still requires SVD onQ. In order to avoid
SVD, we try to optimize (7) without explicitly calculating the ma-
trix Q. (7) is equivalent to J(h) = EfkhHUnk

2g. Instead of
performing optimization upon matrices, we transform the matrix
Un into a vector by right multiplying a vector gn

yn = Ungn; 8 n (18)

where the gn is randomly chosen to satisfy Efgng
H
n g = I. Then

the problem becomes

minJ(h) = EfkhHynk
2g (19)

Proposition 2: EfkhHUnk2g = 0 iff EfkhHynk2g = 0.
Proof: First, if EfkhHUnk2g = 0, then hHUn = 0 for

any n with probability 1. Then hHUngn = 0, hence hHyn =
0, which leads to EfkhHynk

2g = 0. On the other hand, if
EfkhHynk

2g = 0, we have

0 = EfkhHUngnk
2g

= Eftr[UH
n hh

HUngng
H
n ]g

= tr[EfUH
n hh

HUngEfgng
H
n g]

= EfkhHUnk
2g

Hence the proposition is proved. 2

From Proposition 2, the channel can be estimated from the
null space of fyn; n = 0; 1; � � �g. We apply the ULV updating of
Section 3.1 again to get a series of null space vectors vy(n) such
that k[ y0; � � � ;yn ]Hvy(n)k � 0 and vy(n); n = 0; 1; � � �, span
the entire null space of fyng for all n.

If the channel length is over estimated, vy(n) is in a form
similar to (8). Therefore the successive cancellation introduced in
Section 3.2 can be used for channel estimation and length recov-
ery. Because we have a series of null space vectors in this case, the
procedure is illustrated in Figure 1. First, as illustrated in Layer 0,

Layer 0:

Layer 1:

Layer L h - L r

Layer L h r +1

y (0) vy y vy vy vy(3) (5)(1) (2) (4)v
vy (0) vy

v
(1) vy (2) v (3)y vy (4)

h h h h h

0 0 0 0- L

Fig. 1. Successive cancellation for channel estimation.

we use the neighboring vector vy(n + 1) to cancel the last L en-
tries of vy(n), similar to (15)-(16). We get a series of new vectors



�vy(n) as listed in the Layer 1. Then we perform successive can-
cellation upon �vy(n). This recursive procedure is repeated until
we get a series of vectors that are estimates of true channel coeffi-
cients h = [hH(0); � � � ;hH(Lr � 1)]H up to some multiplicative
factors. Any further cancellations will completely cancel h and
will result in (theoretically) zero vectors. Hence the channel and
its length are recovered.

5. SIMULATIONS

In this section, we use simulations to study the performance of our
proposed subspace algorithms. We denote our batch algorithm in
Section 3 as SS-ULV, and the adaptive algorithm in Section 4 as
SS-ADAP. We compare our algorithms with the traditional SVD
based subspace algorithm [1], which is denoted as SS-SVD, and
with the subspace tracking algorithm PASTd in [3], which we de-
note as SS-PASTd.

First, we use the same channel as in [1]. L = 4, Lh = 5,
N = 3, and rank d = 7. Figure 2 compares the four algorithms as-
suming that the exact channel length and rank are known. SS-SVD
has the best performance whereas SS-ULV performs very closely.
SS-ADAP also has good performance. However, SS-PASTd fails.
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Fig. 2. Subspaces algorithms for Channel 1 [1]. 500 samples.
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In the second example, the channel impulse response is hc(t) =
e�2�(0:15)jc(t�0:25T; 0:11)W (t�0:25T )+ 0:8�e�2�(0:6)j c(t�
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Fig. 4. Subspace algorithms Channel 2. SNR=30dB.

T; 0:11)W (t � T ) where c(t; 0:11) is a raised cosine pulse with
the roll-off factor 0:11, and W (t) is a rectangular truncation win-
dow spanning [0; 3:99T ]. L = 4. Fig. 3 shows the channel and
Fig. 4 shows the performance of the subspace algorithms. For
SS-SVD, we assume that the true channel length Lh = 4 and the
rank are known. For SS-ULV and SS-ADAP, we choose Lh = 5.
We see that the SS-SVD can not identify this channel, even if the
channel length is known. However, our proposed algorithms still
have good performance.

6. CONCLUSION

The existing subspace algorithms for blind channel identification
require accurate rank estimation and O(m3) computations, where
m is the dimension of data vector. We proposed new algorithms
that do not require rank estimation, and channel length can be over
estimated in the beginning and recovered in the end. Our algo-
rithms are based on ULV updating and successive cancellation.
The computation is greatly reduced, to O(m2) for the adaptive
algorithm.
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