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ABSTRACT

Traditional subspace methods (SS) for blind channel identification
require accurate rank estimation with a computational complexity
of O(m?), where m is the data vector length. In this paper, we
introduce new adaptive subspace algorithms using ULV updating
and successive cancellation techniques. In addition to reduce the
computational complexity to O(m?), the new algorithms do not
need to estimate the subspace rank. Channel length can be over-
estimated during the subspace tracking and channel vector opti-
mization steps. It can then be recovered at the end by a successive
cancellation procedure. Simulation shows that the new algorithms
outperform the traditional SS methods in case the subspace rank is
difficult to estimate.

1. INTRODUCTION

Many digital communication channels suffer from the problem of
intersymbol interference (1SI) caused by multipath propagation.
Blind channel identification and equalization are effective for re-
ducing ISl and improving system throughput. Blind channel iden-
tification can also assist equalization. Among al blind methods
the subspace method (SS) [1] is well known for its good perfor-
mance. However, the batch algorithm [1] requires singular value
decomposition (SVD). It isinconvenient for adaptive implementa-
tion. Furthermore, it requires accurate channel length estimation
and/or accurate rank estimation of the correlation matrix, which
are not easy in an inherently noisy environment.

Many subspace tracking algorithms were developed to com-
pute the subspace adaptively with computational complexity around
O(m?), or O(md) where d is the dimension of the signal sub-
space, in each recursion [3], [5]. However, the total computation
of the blind channel identification is till O(m?) dueto the second
step, i.e., using the estimated subspace vectors to optimize channel
estimation. The second step can not be recursively implemented
with reduced computations in an obvious manner.

In this paper we propose new adaptive algorithms for blind
channel identification using ULV updating and successive cancel-
lation techniques. We separate the channel length estimation and
subspace rank estimation into two estimation problems. Our new
approaches require no rank estimation. The channel length can
be over-estimated during subspace tracking and optimization. It
can then be recovered by a successive cancellation procedure. The
second optimization step can be recursively implemented as an-
other subspace tracking without rank estimation. Hence the total
computations of the adaptive agorithm is reduced to O(m?).
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In Section 2, we introduce the communication system model
and the traditional subspace algorithm. In Section 3, we discuss
the ULV updating for subspace tracking without rank estimation
and derive a batch algorithm. Then an adaptive algorithm is given
in Section 4. Thisis followed by smulation results in Section 5
and aconclusion in Section 6.

2. SUBSPACE METHOD FOR BLIND CHANNEL
IDENTIFICATION

2.1. Problem Formulation

Consider afractionally sampled communication system with frac-
tional ratio L

(oo}

z(n) = Z skh(n — kL) + v(n). @

k=—o0

Define z;(n) = z(nL + i), hi(n) = h(nL + i), and v;(n) =
v(nL + i). (1) has an equivalent single-input multiple-output
description as zi(n) = ».,- _ sihi(n — k) +vi(n), i =
0,---,L —1. Letx(n) = [zo(n),---,xr-1(n) |* where ()T

denotes transpose, h(n) = [ ho(n), -, hr—1(n) ]7, v(n) =
[vo(n), -+, vL-1(n)]". Then
x(n) = Z sgh(n — k) + v(n). @)
k=—o00

If the channel is of order Ly, the system (2) can be represented in
the matrix form

X(n) = Hs(n) + V(n) 3
where H isaNL x (N + Lj, — 1) block Toeplitz matrix
h(0) -+ h(L,-1)
H= 4
h(0) -+ h(Lp —1)

and X(n) = [x"(n), -, x"(n— N +1) |7, 8(n) = [ 50, -,
snon-ryt2 1T V() = [vI(n), - v (n = N+1)]".

We assume throughout this paper that i) the input sequence sy,
isstationary with zero mean and E{sys; } = §(k—1), i) thenoise
v is stationary with zero mean and white with variance o2, iii) s &
v are uncorrelated.



2.2. Subspace Method [1]

The subspace separation can be performed on the correlation ma-
trix R, 2 E[X(n)X* (n)], where E[] denotes statistical expec-
tation, by the eigenvalue decomposition (EVD)

H
wto w3 2][H]

where 3, contains signal eigenvalues and isd x d, the vectorsin
U, are associated with the N L — d noise eigenvalues 33, and span
the noise subspace. Assume # isfull column rank, the channel can
be uniquely determined up to a constant factor by Us,.

Definethe LLLy, x 1 channel vectorh 2 [h” (0), - -, h (L, —
1) ¥ where (-)# stands for conjugate transpose. Let U, = [ uo,
-+-,uNL—4—1 ] where the ith column vector u; can be written as
w; = [uf(0), -, uff (N = 1) |7 with u;(j) beingan L x 1
vector. We further definean LLy, x (Lp + N — 1) matrix

UI(O) ui(N—l)
= . (6)
ul(O) ui(N— 1)

Then the channel can be estimated by minimizing

NL—-d—1

J(h) =h" ( > muﬁ) h2hQh st b =1
- ™

Hence the estimate of h isthe singular vector corresponding to the
minimum singular value of the L L;, dimensional matrix Q.

If L, is an over-estimated channel length, then the LL,, di-
mensional vector h becomesh = [h¥” (0), - - -, h® (L,.—1),07 |¥
where L, isthe actua channel length. The channel estimation is
then inconsistent [2] and will include a random polynomial factor
oforder L, — L, +1

h(0)

®)

3. BLIND CHANNEL IDENTIFICATION WITHOUT
RANK ESTIMATION

Both the SVD based and the subspace tracking based [3] methods
for subspace separation require accurate rank estimation. Blind
channel identification is thus performed by estimating and apply-
ing the entire subspace at the same time.

On the contrary, our basic idea is trying to calculate a time-
varying subspace vector recursively by ULV updating. In each
recursion, only one noise subspace vector is estimated. A series
of such vectors will jointly span the entire noise subspace. Since
only one vector is estimated, no rank estimation is needed. Fur-
thermore, the channel length can be over estimated at the begin-
ning.

3.1. ULV updating

The ULV decomposition [4]-[5] estimates the entire signal sub-
space and noise subspace, hence requires accurate rank estimation.
However, we can modify the ULV updating to overcome this re-
quirement by estimating only one noise subspace vector at atime.

At iteration n, define A, 2 [ X(1),---, X (n) ]”. Assume
the ULV decomposition is

H

Vn

where B,, isan (NL — 1) x (NL — 1) matrix, b, isan (NL —
1) x 1 vector, b, isascaar, VZ is(NL — 1) x NLand v is
1x NL. [ V. v, ]isorthonormal, and v, liesin the noise
subspace with b,, sufficiently small or 0. Note that we do not need
to separate V,, into signal and noise subspaces explicitly, which is
different from the traditional ULV decomposition.

Atiteration n+ 1, our goal isto get the same ULV decomposi-
tion as (9) for the row appended matrix A, 1 = [ AT, X(n +
1) |" where 8 € [0 1] is the forgetting factor. By a series of
Givens rotations we can zero out the new appended row. Deleting
this all zero row, we have

o

Although (10) is in lower triangular form, b,, is not necessarily
small enough to be a noise component. In order to restore the
correct form, we first calculate a reliable condition estimator (c.f.,
[4]) p» such that

B, 0 o
I [ b, B, ]pnll X Tmin () (11)

where oin(n) is the smallest singular value or noise power of

[ B, o
thematrix | =" -
{ b, bn
to p,, we have Wy,,p, = [0,---,0, 1]7 = exz Where W1,
is NL x NL and orthonormal. Applying W1, and some other
proper Givens rotations to (10), we get

] . Applying NL — 1 left Givens rotations

B.y1 O

An ~n o = n
+1Va Wi Unt1 { boy1 bntr

] (12)

where by, 11 is small as a noise component. This is because from
(11) and (12) weget [bpt1| = |Ant1 Vo Wihenr| = omin(n).
Therefore the ULV decomposition at iterationn + 1 is

_ Bpii O Vi
Antt =Unt [ brt1  bnt1 j| { Vil (13

To summarize, the total computation of the above ULV updat-
ing agorithm is O((INL)?). No rank estimation is required. The
detailed procedures are similar to [4]-[5].

In order to examine the relation of v,, and U,, we assume the
channel is either timeinvariant or slowly time-variant.

Proposition 1: Suppose (11) holdswith an exact equality. Then
under mild conditions span{vi,n = 0,1,---} = span{U,}
with probability one.



Proof: First, from (11)-(13), v,, € U, for al n. Then, since
B, 0
b, by

random values on its diagonal due to noise. Thus p, contains
correspondingly N'L — d random entries. From (12) and (13) we
can easily obtain v,+1 = V,p,. Since V,, is orthonormal, its
columns are independent (orthonormal) and span the entire N L
dimensional vector space. The N'L — d random entriesin p,, then
form random linear combinations of the columns of V,, by the
product v,+1 = V,pn. Since for each n there are NL — d
linearly independent vectors involved, their linear combination at
each n will result in arandom vector in the NL — d dimensional

hasrank d, it has at least N L — d entries with small

subspace. Hence the rank of [ vi,--+, vy, -+ ] is no less than
NL—d,whichistherank of U,, with probability one. For details
of the proof, see [6]. a

3.2. Successive Cancellation for Channel Estimation

Because of Proposition 1, we can use the recursively updated noise
subspace vectors v,, to optimize channel estimation according to
(7). We may not need al the v,, vectors. Instead, a small subset
may be enough because we only require that the matrix Q in (7) is
rank-one deficient so that the channel estimation is unique.

If the channel length L, is over-estimated in the ULV updat-
ing and the optimization step (7), we need to recover the correct
channel h and length L, from (8). In this case, the Q in (7) is
rank L, — L, + 1 deficient. Let its null space be an LL;, x
(Lp, — Ly + 1) matrix Qo = [ qo, --,9z,—L, |- The vector
a = [af(0),---,qf (Ln — 1) |7 has the same form as (8).
From (8) wefind that the last L entries of q;, i.e, q:(L, — 1), are
just h(L, — 1) with amultiplicative factor r; (L, — L.). For al
the vectors q; we can nullify their last L entries by minimizing

|[ao(Zn = 1) -+ @ry-r,—1(Ln = D] = ar, -z, (Ln — DE?||
(14)
where f¥ isal x (L, — L) vector. The solution to (14) is
f(f]I)t =

QE}L,LT‘(Lh_l)[‘IO(Lh_l)a"',QLh—Lr—l(Lh_l)]

(15

qfh_Lr (Lp—=1ar, —r,.(Lp—1)
Then the matrix

Q1=[q0

is similar in form as Qo (omit the L all zero rows). The last L
entriesin each column of Q; are again proportional to h(L, —1).
Hence the procedure (15)-(16) can be applied recursively until we
get

AL, L1 | —qr,-r.fope  (16)

h(0)

Qr,-L, = : Fo 17
h(L, — 1)

where 7 is an unknown scalar. At this step both the channel h
and itslength L, isobtained from (17). If Qo contains more than
L, — L, + 1 columns, then the signal subspace vector in Q is
involved, whose last L elements are not proportional to h(L, — 1)
or the corresponding part of Qz, —r.,.. The successive cancellation
will not result in zero or small enough value for (14). Therefore
the effective channel length L, can be determined.

It iscomputationally more convenient to put the channel length
determination to the last stage. We can choose an over estimated

length for subspace tracking and optimization. Then by the suc-
cessive cancellation procedure channel estimations with al pro-
posed lengths can be obtained simultaneously without computa-
tional overhead. The most suitable one can be determined from
(24) or the SVD of Q, or by some other verifying methods. The
traditional SSalgorithm [1], however, requiresforming several dif-
ferent matrices and the corresponding SVD's.

4. ADAPTIVE BLIND CHANNEL IDENTIFICATION

Themethod in Section 3 still requires SVD on Q. In order to avoid
SVD, wetry to optimize (7) without explicitly calculating the ma-
trix Q. (7) is equivalent to J(h) = E{||h”i,|*}. Instead of
performing optimization upon matrices, we transform the matrix
U, into avector by right multiplying a vector g,

where the g,, is randomly chosen to satisfy E{g,g’ } = I. Then
the problem becomes

min J(h) = E{||h"”y.|"} (19)

Proposition 2. E{||h"4,|*} = 0iff E{||h7y,||*} = 0.

Proof: Firgt, if E{||h”,|]*} = 0, then h"4, = 0 for
any n with probability 1. Then h"i,g,, = 0, hence h”y,, =
0, which leads to E{||hy,||*} = 0. On the other hand, if
E{||h"y,|*} = 0, we have

0 = BE{h g}
= E{tU"hh"U,g,g" ]}
= tr[B{U) hh" U, } E{g.g! }]
= E{|h" i)}

Hence the proposition is proved. a

From Proposition 2, the channel can be estimated from the
null space of {y», n=0,1,---}. Weapply the ULV updating of
Section 3.1 again to get a series of null space vectors v, (n) such
that ”[ yo, -, ¥n ]Hvy(n)” ~ 0and vy(n),n =0,1,--+ Span
the entire null space of {y } for dl n.

If the channel length is over estimated, v, (n) is in a form
similar to (8). Therefore the successive cancellation introduced in
Section 3.2 can be used for channel estimation and length recov-
ery. Because we have a series of null space vectorsin this case, the
procedure isillustrated in Figure 1. First, asillustrated in Layer O,

Layer 0: V. (0) 2&(1&}(2)&)9(3)\ /\&(4)\ )&(5)\
: YV v@., vw@

Layer 1 0)\ )&(l)\ )&(2)\\7 \ /V/ \

Layer Ly-L, h h h h

Layer La-Lr+1 \o/ \o/ \0/ \0/\

Fig. 1. Successive cancellation for channel estimation.

we use the neighboring vector v, (n + 1) to cancel the last L en-
triesof v, (n), similar to (15)-(16). We get a series of new vectors




vy(n) aslisted in the Layer 1. Then we perform successive can-
cellation upon v, (n). This recursive procedure is repeated until
we get a series of vectors that are estimates of true channel coeffi-
cientsh = [h(0), -, h" (L, — 1)]” up to some multiplicative
factors. Any further cancellations will completely cancel h and
will result in (theoretically) zero vectors. Hence the channel and
its length are recovered.

5. SIMULATIONS

In this section, we use simulations to study the performance of our
proposed subspace algorithms. We denote our batch algorithm in
Section 3 as SS-ULV, and the adaptive algorithm in Section 4 as
SS-ADAP. We compare our algorithms with the traditional SVD
based subspace agorithm [1], which is denoted as SS-SVD, and
with the subspace tracking algorithm PASTd in [3], which we de-
note as SS-PASTd.

First, we use the same channel asin[1]. L = 4, L, = 5,
N = 3,andrank d = 7. Figure 2 comparesthefour algorithms as-
suming that the exact channel length and rank are known. SS-SVD
has the best performance whereas SS-ULV performs very closely.
SS-ADAP aso has good performance. However, SS-PASTd fails.

Comparison of Subspace Algorithms

10° . " .
b S LT |
10"
w
0
s
107
10° ‘ - ‘
0 10 20 30

SNR (dB)

Fig. 2. Subspaces agorithms for Channel 1 [1]. 500 samples.
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Inthe second example, the channel impulseresponseishc(t) =
e~ 2™ (01903 (4 -0.25T, 0.11) W (£—0.25T )+ 0.8 2" (-0 ¢ (¢t —

Performance of Subspace Algorithms

10°
R SR SEFEREE R
SS=SVD
w B \
n R J
210
SS=ADAP
5S-ULV
107

0 500 1000 1500 2000
Number of Samples

Fig. 4. Subspace agorithms Channel 2. SNR=30dB.

T,0.11)W (¢t — T') where ¢(¢,0.11) is araised cosine pulse with
the roll-off factor 0.11, and W (¢) is arectangular truncation win-
dow spanning [0, 3.997"]. L = 4. Fig. 3 shows the channel and
Fig. 4 shows the performance of the subspace algorithms. For
SS-SVD, we assume that the true channel length L, = 4 and the
rank are known. For SS-ULV and SS-ADAP, we choose L;, = 5.
We see that the SS-SVD can not identify this channel, even if the
channel length is known. However, our proposed algorithms still
have good performance.

6. CONCLUSION

The existing subspace algorithms for blind channel identification
require accurate rank estimation and O(m®) computations, where
m is the dimension of data vector. We proposed new algorithms
that do not require rank estimation, and channel length can be over
estimated in the beginning and recovered in the end. Our algo-
rithms are based on ULV updating and successive cancellation.
The computation is greatly reduced, to O(m?) for the adaptive
algorithm.

7. REFERENCES

[1] E. Moulines, P. Duhamel, J. Cardoso, and S. Mayrargue,
“Subspace methods for the blind identification of multichan-
nel FIR filters” IEEE Trans. on Sgnal Processing, vol. 43,
no. 2, 516-525, Feb. 1995.

[2] K.Abed-Meraim, P. Loubaton and E. Moulines, “A subspace
algorithm for certain blind identification problems” IEEE
Trans. on Information Theory, vol. 43, no. 2, 499-511, Feb.
1997.

[3] B. Yang, “Projection approximation subspace tracking,”
IEEE Trans. on Sgnal Processing, vol. 43, no. 1, 95-107,
January 1995.

[4] G. Golub and C. Loan, Matrix Computations. Third Edition,
The Johns Hopkins Univ. Press, Baltimore, MD, 1996.

[5] G.W. Stewart, “Updating a rank-revealing ULV decomposi-
tion,” SAM J. Matrix Anal. Appl., vol. 14, 494-499, 1993.

[6] X. Li and H. Fan, “Blind channel identification: subspace
tracking method without rank estimation,” submitted to |EEE
Trans. on Sgnal Processing.



