

A WAVELET-TREE IMAGE CODING SYSTEM WITH
EFFICIENT MEMORY UTILIZATION

Y. Andreopoulos1,2, P. Schelkens1, N. D. Zervas2, T. Stouraitis2, C. E. Goutis2, J. Cornelis1

1 Vrije Universiteit Brussel/IMEC - Dept. ETRO

Pleinlaan 2 - B-1050 Brussel - Belgium
{yandreop,pschelke,jpcornel}@etro.vub.ac.be

2 University of Patras - Dept. ECE
VLSI Design Laboratory - Rio 26500 - Greece

{zervas,thanos,goutis}@ee.upatras.gr

ABSTRACT
This paper describes an efficient implementation of an image
coding system based on the independent wavelet-tree coding
concept. The system consists of a transform and a (de)coding
engine that operate in a pipelined fashion. The main focus of
this paper will be on the encoding part since, due to the system
architecture, the decoder has identical memory utilization.
Experimental results prove that the proposed system achieves
comparable coding performance to the state-of-the-art, while it
localizes the memory accesses to small memory modules and
uses minimal computational resources.

1 INTRODUCTION
In recent years, wavelet-based compression techniques have
matured into versatile tools for the compression and handling
of the multimedia content of information. The inclusion of
wavelet transforms into the new multimedia standards for
video and image coding, namely MPEG-4 [2] and JPEG 2000
[4], has led to exponentially-increased interest about coding
techniques for the wavelet-transform coefficients. The wavelet-
based coding techniques adopted by the two standards are the
inter-subband, wavelet-tree coding of wavelet coefficients [12]
and the intra-subband, wavelet-block coding [14]. In this paper,
the main focus will be on the wavelet-tree coding approach,
which exploits the parent-children dependencies inherent in the
dyadic tree organization of a wavelet transform (Figure 1).
Various authors, for example [8] [11] [16], propose efficient
implementations to coding the parent-children tree (PCT)
relations with Embedded Zerotree Wavelet coding (EZW) [10]
and its successor, the Set Partitioning In Hierarchical Trees
algorithm (SPIHT) [7].

In this paper, we focus on the implementation aspects of the
design of an entire image coding system based on the SPIHT
coding. The development of our system is twofold; first an
efficient wavelet-transform engine is implemented and then,
for the coding engine of the proposed compression system, a
new compression method is presented, which is coupled with
the wavelet-coefficient production, so as to minimize the
overall latency. The produced bit-stream can be transmitted to
the decoder after the completion of the processing of all the
PCTs (burst mode) or the transmission of the compressed data
of each tree can occur during the compression of the next PCT
(band bursty). Depending on the chosen mode of operation,
different memory needs occur for the compression and
decompression engines. It must be noted however that the
memory needs for the coding and decoding system are
perfectly equivalent, both for the transform and for the
(de)coding engine. In addition, the memory accesses for the
two systems follow approximately the same schedule.

Figure 1 ─ Dyadic-tree decomposition in 2 levels with an
example of a wavelet tree. The definitions from [7] are
shown.

Summarized, this paper presents the following novelties:
• For the transform engine, based on the theoretical

concepts of [5] and [6], an implementation is proposed,
which, apart from presenting for the first time actual
results with respect to memory size and accesses, gives an
illuminating description of the initialization patterns so
that the transform engine can independently produce each
PCT with a near optimum utilization of the memory and
computational resources.

• A pipelined functionality between transform and coding is
proposed, both for the encoding and the decoding, with
the use of a novel compression scheme that is based on
the SPIHT coding.

2 THE WAVELET TRANSFORM ENGINE
The implementation presented in this section is based on a
parametrical architecture that is capable of independent PCT
production with reduced memory and the near minimum
number of external (off-chip) accesses [6]. A block-based
image traversal is used, originally proposed in [5]. It must be
noted that the block-based traversal is not the only traversal
algorithm capable of producing independently compressible
transform components, such as PCTs. In [5], the authors also
present other different traversal algorithms, such as the
Recursive Pyramid Algorithm (RPA) [15] that are also known
to produce the transform coefficients in a band-bursty manner.
In addition, in the block-based coding of JPEG-2000 [3], the
authors present a line-based implementation that is capable of
coupling the encoder and decoder with delay-line memory
components that operate in FIFO manner. In Figure 2 we show
graphically the comparisons between the different traversal
schedules with respect to memory size and accesses. The
numeric values that correspond to Figure 2 can be verified by
the theoretical calculations presented in [9]. It can be easily
observed that the block-based traversal algorithm that is

2a
1
1d

2
1 d 3

1d

1
2 d
3
2 d (i,j)O

(i,j)L+

(i,j)D

(i,j)

2
2d

proposed in [5] achieves good results in terms of memory and
especially off-chip memory accesses.

RPA

RC

RR

BB

Memory Size

m

em
or

y
ac

ce
ss

es
OffOff--chipchip

W*H

W*H
+ TM

2*W*H

2*W*H
for each level

4*W*H
for each level

RR

RC
with line buffering

RPA

BB

Memory Size

m

em
or

y
ac

ce
ss

es

OnOn--chipchip

line 2K-1 lines
2K-1 lines

for each level

2K-1 lines
for each level

& OM

4*W*H
for each level

RC
without line buffering

RC
without line buffering

Figure 2 ─ Indicative graph of off-chip and on-chip
memory behavior and requirements for the classical row-
column approach (RC) with and without line-buffering, the
row-row approach (RR) used in JPEG2000, the recursive
pyramid algorithm of Vishwanath (RPA) and the local or
block-based implementation (BB). The additional notations
used, are explained in Section 2.1. The amount of accesses
was obtained assuming a two-level memory hierarchy
(registers, on-chip cache, main off-chip memory). The
figures were obtained for a lifting scheme implementation,
assuming an in-place organization of the wavelet
coefficients [13], which explains the increased off-chip
memory needs for the BB approach (WH factor), where W
and H denote respectively the image width and height.

The wavelet-transform implementation that is presented in this
section is parametrical to the number of decomposition levels
(N) as well as the maximum filter length (2K+1), with the only
restriction being the assumption of a symmetrical dependence
from the image samples, similar to the 9/7 and 5/3 filter pairs
used in JPEG 2000 [4]. For every input image, after the
completion of the transform, identical results to the classical
row-column approach (RC) are produced.

2.1 Description of the Modes of Operation.
The transform production can be divided in three stages. The
first stage is the Initialization Mode, which deals with
initialization phenomena inherent in the mirroring techniques
used for the dyadic-tree decomposition. The second and most
dominant stage is the Normal Mode, where a regular flow of
22N samples produces 22N wavelet coefficients and, at each
iteration, the transform engine outputs one PCT. The third

stage is the Finalization Mode, where, by using the residual
blocks of input samples, the remaining PCTs are produced.

In the Initialization Mode, the input image is read in sequential
non-overlapping blocks of samples in the row direction. An
example of the scanning pattern is depicted in Figure 3 for the
5/3 filter pair (K=2) for three decomposition levels (N=3).

For all the Modes of operation, each block is temporarily
stored in a memory component called the Inter-Pass Memory
(IPM). A pair of low and high-pass filters is applied to the
samples contained in the IPM, following the classical row-
column fashion. The actual filtering takes place by copying the
image samples in FIFO manner from the IPM to the filtering
unit, which is called the Filtering FIFO (FF), to emphasize the
inbuilt functionality. For every new pair of input samples, a
pair of low and high-frequency coefficients is produced and
stored in-place. In this way, the wavelet-coefficient production
proceeds as much as possible for each level. Of course, in order
to ensure that the produced results are identical to the row-
column implementation of the wavelet transform, during the
Initialization Mode, mirroring of the signal edges takes place
inside the FF.

To Finalization
Mode

1 3 7 15 23

Tree
Production

Tree
Production

NORMAL
MODE

Tree
Production

NORMAL
MODE

Tree
Production

To Finalization
Mode

1

3

7

15

23

INITIALIZATION
MODE

OM_cols

O
M

_r
ow

s

Figure 3 ─ An example of the proposed initialization
pattern.

The intermediate results (low-frequency coefficients) that are
produced for the rows and columns of each block are stored in
memory components, called the Overlap Memory for rows
(OM_rows) and Overlap Memory for columns (OM_cols), that
are depicted in Figure 3. These results are used in the
processing of the neighboring blocks and the new intermediate
results from each block replace the previous ones that have
been used in the current iteration. The high-frequency outputs
that are produced during each iteration are pushed into FIFO
delay lines, called Tree Memory (TM). These delay lines
compensate for the skewing in the temporal PCT production
with the topological PCT representation, as shown in [5]. This
skewing can simply be explained by the fact that no PCTs can
be produced, until there exist enough low-frequency
coefficients at the highest decomposition level that allow the
execution of mirroring and filtering in both directions, rows

and columns, so as to produce the quadruplet of coefficients
shown in the highest decomposition level of Figure 1.
However, until that point, a significant amount of high-
frequency coefficients is produced as well and, in order for the
first PCT to contain the correct children for each parent, the
Tree Memory is utilized for each decomposition level.

2.2 Implementation Benefits.
In Figure 4, the entire architecture used for the transform
engine is depicted. It must be noted that for streaming
applications, I_Mem, which is the image memory, does not
correspond to the entire image but only to one block-scanning
line, thus its vertical size is restricted to 2N samples. In this
case, memory reduction by a factor of magnitude is achieved in
comparison to the classical row-column approach [6], where
the entire wavelet-coefficient matrix needs to be buffered.

From the described execution flow, it is clear that for the
processing of each block, the image memory (I_Mem) is read,
row-column filtering takes place using the depicted
architectural components and the outputs are flushed in the
Tree Memory. Thus, the accesses to large memory
components, such as I_Mem and TM, are restricted to the start
and completion of each block-processing iteration. As a result,
if the implementation platform provides enough design-
flexibility so that the OM, IPM and FF components are placed
internally, a near optimal minimization of the memory accesses
to external (off-chip) memory components is achieved. This
will have a very positive impact on the execution speed as well
as on the reduction of the system power-consumption [6].

IPM

I_Mem

FF

2D-DWT Chip

OM_rows

OM_cols

Address
Unit

TM

Figure 4 ─ The architecture used for the wavelet-transform
production.

3 THE CODING ENGINE
Each PCT that is produced by the transform engine is
independently coded by a low-complexity zero-tree algorithm
that exploits the parent-children dependencies similar to the
SPIHT variations presented in [11]. The main differences lay in
the fact that the proposed coding scheme can exploit the
pipelined PCT production-consumption and that competitive
coding results can be obtained by selecting the truncation
points for each PCT coding with a mathematical optimization
tool, the Lagrangian multiplier method.

The coding of each PCT occurs in sequential bit-plane passes
with a decreasing Quantization Step [7]. For each bit-plane,
three sequential sub-passes occur, following a breadth-first
traversal and beginning from the highest decomposition level.
The partitioning rules are identical to the ones used in the
SPIHT algorithm [7], but the linked list functionality is

avoided, since the scanning order is fixed. Apart from the
memory necessary to store each PCT, two buffers are used that
correspond to the status information for each coefficient:

• Buffer of Coefficient Significance (BCS). Holds
quaternary values that show if each corresponding coefficient
is significant or insignificant for the current Quantization Step.

• Buffer of Subtree Partitioning (BSP). Holds quaternary
values that show if the subtree that is rooted to each
corresponding coefficient is valid or not, and if true, if it should
follow the type A or type B partition rule [7].

Instead of updating the LIP, LIS and LSP lists of [7], the
appropriate bits in the BCS, BSP should be asserted. For each
PCT, the coding is terminated after the Quantization Step is
below a predetermined value.

To increase the coding efficiency, the compressed bit stream is
not transmitted immediately; an intermediate buffer is used to
accumulate all outputted bits for all the PCTs. In addition, after
the completion of each step of the pseudocode of [7], one Rate-
Distortion (R-D) point is accumulated in memory. We used the
MSE as the Distortion metric. After the completion of the
coding, the optimal truncation point for each PCT was
identified using the well-known Lagrangian multiplier λ
method [1], in a similar way to the Post-Compression Rate-
Distortion Optimization of EBCOT [14]. Thus, given a target
bit-rate, compression to this rate is feasible by establishing a
monotonically decreasing set of R-D slope values [14] and
then, based on the λ value, selecting the compression rate for
each PCT. Since the proposed algorithm follows the
partitioning ideas of SPIHT but applies them directly in the
parent-children trees without any list functionality and uses a
post-compression optimization method, it is called Parent-
Children Tree Set Partitioning with Optimization (PCTSPO).

It must be noted that the examination of the PCT-coefficient
memory is passive, since only read operations are performed
without copying anything into lists. In addition, the proposed
algorithm can be modified to compress independently each
PCT. This is feasible if one arbitrary selects a value for the λ
parameter, thus viewing the Lagrangian multiplier as a quality
factor; higher values give better PSNR results and smaller
compression ratios. This makes the coding algorithm easily
parallelizable for a set of PCTs and reduces to a minimum the
memory requirements.

4 EXPERIMENTAL RESULTS
In this section, the proposed system is compared with respect
to memory utilization and coding efficiency with two state-of-
the-art image-compression algorithms, the binary-uncoded
SPIHT implementation from [7] and JPEG 2000 VM 6.0 [3].

Both the transform and the coding engine were developed in
standard ANSI-C without any platform-dependent
customizations. For the experimental setup, the 9/7 filter pair
of [4] was used in a 5-level decomposition. The test images
Lena, Goldhill and Bridge were used. All three are of size
512x512. For the SPIHT implementation, 4 decomposition
levels were used because a 4-level wavelet tree used in SPIHT
coding corresponds to the same number of subband coefficients
as a 5-level PCT [7]. The size of the code-blocks in JPEG 2000
VM 6.0 implementation was selected based on the same
criterion.

Table 1 ─ Memory sizes and profiling results for the three
modes of operation (100% of the transform execution). The
accesses to the FF do not include the filtering operations.

Memory Module Size (coefficients) # Accesses
(#/pixel)

OM_rows 217 268282 (1.02)
OM_cols 7161 256170 (0.98)

IPM 1024 1475085 (5.63)
TM 93744 262144 (1.00)
IM 16384 262144 (1.00)
FF 9 1171981 (4.47)

TOTAL: 118539 3695806 (14.10)

Figure 5 ─ Coding results for three standard test images.

Profiling results were obtained for the memory accesses to the
various components. All the memory modules are considered
to have bandwidth 1 coefficient/access. These results, along
with the transform-engine memory requirements, are shown in
Table 1. Even with the addition of the coding memory, the total
memory used for encoding corresponds roughly to 1.3x105
coefficients (for a maximum 2.0 bpp compression rate, using
the λ parameter as a quality factor), which is at least 5 times
less than the minimum memory needs of the SPIHT linked-list
implementation used in our experiments. In addition, if one
assumes 16-bit quantization for the wavelet coefficients, the
proposed system implementation is 100% more memory
efficient from line-based implementation of JPEG 2000 [3],
with respect to the numbers reported for the ‘-mem’ parameter
in the same experimental setup. To improve the memory
efficiency of the VM6.0 software, code-blocks with size 8x128
were used. This corresponds to a low-memory setting but
comes with a penalty of 0.3 dB degradation in PSNR [14].

The coding efficiency of the proposed scheme is illustrated in
Figure 5. For all cases, the proposed system has inferior coding
results to SPIHT, something that is in fact observed in all the
similar compression methods [11] [16]. The average reduction
in PSNR in comparison to the SPIHT is limited to 0.16 dB,
while our results surpass in most cases the EZW coder.

5 CONCLUSION
In this paper, an efficient implementation of a novel image
coding system has been proposed. Apart from the exploitation
of the pipelined functionality between the transform and the
coding system, the proposed approach combines also other

advantages such as reduced memory utilization and inherent
minimization of the external memory accesses without
significant reduction of the compression efficiency.

6 ACKNOWLEDGEMENTS
The authors would like to acknowledge Dr. G. Lafruit (IMEC)
for his technical comments during the implementation of the
transform engine. This research was funded by the Belgian
IWT (Project IWT-980302).

REFERENCES
[1] H. Everett, "Generalized Lagrange Multiplier Method for

Solving Problems of Optimum Allocation of Resources,"
Operations Research, vol. 11, pp. 399-417, 1963.

[2] ISO/IEC JTC1/SC29/WG11, FCD 14496-1, “Coding of
Moving Pictures and Audio,” May 1998.

[3] ISO/IEC JTC1/SC29/WG1, WG1N1575, “JPEG 2000
Verification Model 6.0,” January 2000.

[4] ISO/IEC SC29/WG1, FCD 15444-1, “JPEG 2000 Image
Coding System,”, official release expected at March 2001.

[5] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels and I.
Bolsens, “Optimal Memory Organization for Scalable
Texture Codecs in MPEG-4,” IEEE Trans. CSVT, vol. 9,
No. 2, pp. 218-243, March 1999.

[6] G. Lafruit, L. Nachtergaele, B. Vanhoof, F. Catthoor,
“The Local Wavelet Transform: a memory-efficient, high-
speed architecture optimized to a Region-Oriented Zero-
Tree Coder,” Integrated Computer-Aided Engineering,
Vol. 7, No. 2, pp. 89-103, March 2000.

[7] A. Said, W. A. Pearlman, “A new fast and efficient image
codec based on set partitioning in hierarchical trees,”
IEEE Trans. CSVT, vol. 6, pp. 243-250, June 1996.

[8] P. Schelkens, F. Decroos, G. Lafruit, F. Catthoor, and J.
Cornelis, "Efficient Implementation of Embedded Zero-
Tree Wavelet Encoding," Proc. of IEEE ICECS, Paphos,
Cyprus, Vol. II, pp. 1155-1158, September 5-8, 1999.

[9] P. Schelkens, G. Lafruit, F. Decroos, J. Cornelis, and F.
Catthoor, "Power Exploration For Embedded Zero-Tree
Wavelet Encoding," Vrije Universiteit Brussel/IMEC,
Brussel, ETRO/IRIS Technical Report TR-0061, 1999.

[10] J. M. Shapiro, “Embedded image coding using zerotrees
of wavelet coefficients,” IEEE Trans. SP, vol. 41, pp.
3445-3462, Dec. 1993.

[11] R. Shively, E. Ammicht, P. Davis, “Generalizing SPIHT:
A Family of Efficient Image Compression Algorithms,”
Proc. IEEE ICASSP 2000, Istanbul, Turkey.

[12] I. Sodagar, H. J. Lee, P. Hatrack and Y. Q. Zhang,
“Scalable Wavelet Coding for Synthetic/Natural Hybrid
Images,” IEEE. Trans. CSVT, vol. 9, No. 2, pp. 244-254,
March 1999.

[13] W. Sweldens, "Lifting Scheme: A New Philosophy in
Biorthogonal Wavelet Constructions," Proc. SPIE, Vol.
2569, pp. 68-79, September 1995.

[14] D. Taubman, "High Performance Scalable Image
Compression with EBCOT," IEEE Trans. IP, vol. 9, no. 7,
pp. 1158-1170, 2000.

[15] M. Vishwanath, “The recursive pyramid algorithm for the
discrete wavelet transform,” IEEE Trans. SP., vol 42, pp.
673-676, Mar. 1994.

[16] F. Wheeler, W. A. Pearlman, “Low-Memory Packetized
SPIHT Image Compression,” Proc. of the 33st Asilomar
Conf. On Signals, Systems and Computers, Nov. 1999.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

25

30

35

40

45
Lena (top) G oldHill (m iddle) B ridge (bottom) s iz e:512x 512

P
S

N
R

 (d
B

)

B its P er P ix el

JP E G 2000 (arithm etic c oded)
S P IHT (binary unc oded)
P CTS P O (binary unc oded)
E ZW (arithm etic c oded)

	ABSTRACT
	INTRODUCTION
	THE WAVELET TRANSFORM ENGINE
	Description of the Modes of Operation.
	Implementation Benefits.

	THE CODING ENGINE
	EXPERIMENTAL RESULTS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

