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ABSTRACT 
This paper describes an efficient implementation of an image 
coding system based on the independent wavelet-tree coding 
concept. The system consists of a transform and a (de)coding 
engine that operate in a pipelined fashion.  The main focus of 
this paper will be on the encoding part since, due to the system 
architecture, the decoder has identical memory utilization. 
Experimental results prove that the proposed system achieves 
comparable coding performance to the state-of-the-art, while it 
localizes the memory accesses to small memory modules and 
uses minimal computational resources.  

1 INTRODUCTION 
In recent years, wavelet-based compression techniques have 
matured into versatile tools for the compression and handling 
of the multimedia content of information. The inclusion of 
wavelet transforms into the new multimedia standards for 
video and image coding, namely MPEG-4 [2] and JPEG 2000 
[4], has led to exponentially-increased interest about coding 
techniques for the wavelet-transform coefficients. The wavelet-
based coding techniques adopted by the two standards are the 
inter-subband, wavelet-tree coding of wavelet coefficients [12] 
and the intra-subband, wavelet-block coding [14]. In this paper, 
the main focus will be on the wavelet-tree coding approach, 
which exploits the parent-children dependencies inherent in the 
dyadic tree organization of a wavelet transform (Figure 1). 
Various authors, for example [8] [11] [16], propose efficient 
implementations to coding the parent-children tree (PCT) 
relations with Embedded Zerotree Wavelet coding (EZW) [10] 
and its successor, the Set Partitioning In Hierarchical Trees 
algorithm (SPIHT) [7].  

In this paper, we focus on the implementation aspects of the 
design of an entire image coding system based on the SPIHT 
coding. The development of our system is twofold; first an 
efficient wavelet-transform engine is implemented and then, 
for the coding engine of the proposed compression system, a 
new compression method is presented, which is coupled with 
the wavelet-coefficient production, so as to minimize the 
overall latency. The produced bit-stream can be transmitted to 
the decoder after the completion of the processing of all the 
PCTs (burst mode) or the transmission of the compressed data 
of each tree can occur during the compression of the next PCT 
(band bursty). Depending on the chosen mode of operation, 
different memory needs occur for the compression and 
decompression engines. It must be noted however that the 
memory needs for the coding and decoding system are 
perfectly equivalent, both for the transform and for the 
(de)coding engine. In addition, the memory accesses for the 
two systems follow approximately the same schedule. 

 
 

 

 

 

 

 

 

Figure 1 ─ Dyadic-tree decomposition in 2 levels with an 
example of a wavelet tree. The definitions from [7] are 
shown. 

Summarized, this paper presents the following novelties: 
•  For the transform engine, based on the theoretical 

concepts of [5] and [6], an implementation is proposed, 
which, apart from presenting for the first time actual 
results with respect to memory size and accesses, gives an 
illuminating description of the initialization patterns so 
that the transform engine can independently produce each 
PCT with a near optimum utilization of the memory and 
computational resources. 

•  A pipelined functionality between transform and coding is 
proposed, both for the encoding and the decoding, with 
the use of a novel compression scheme that is based on 
the SPIHT coding. 

2 THE WAVELET TRANSFORM ENGINE 
The implementation presented in this section is based on a 
parametrical architecture that is capable of independent PCT 
production with reduced memory and the near minimum 
number of external (off-chip) accesses [6]. A block-based 
image traversal is used, originally proposed in [5]. It must be 
noted that the block-based traversal is not the only traversal 
algorithm capable of producing independently compressible 
transform components, such as PCTs. In [5], the authors also 
present other different traversal algorithms, such as the 
Recursive Pyramid Algorithm (RPA) [15] that are also known 
to produce the transform coefficients in a band-bursty manner. 
In addition, in the block-based coding of JPEG-2000 [3], the 
authors present a line-based implementation that is capable of 
coupling the encoder and decoder with delay-line memory 
components that operate in FIFO manner. In Figure 2 we show 
graphically the comparisons between the different traversal 
schedules with respect to memory size and accesses. The 
numeric values that correspond to Figure 2 can be verified by 
the theoretical calculations presented in [9]. It can be easily 
observed that the block-based traversal algorithm that is 
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proposed in [5] achieves good results in terms of memory and 
especially off-chip memory accesses.  
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Figure 2 ─ Indicative graph of off-chip and on-chip 
memory behavior and requirements for the classical row-
column approach (RC) with and without line-buffering, the 
row-row approach (RR) used in JPEG2000, the recursive 
pyramid algorithm of Vishwanath (RPA) and the local or 
block-based implementation (BB). The additional notations 
used, are explained in Section 2.1. The amount of accesses 
was obtained assuming a two-level memory hierarchy 
(registers, on-chip cache, main off-chip memory).  The 
figures were obtained for a lifting scheme implementation, 
assuming an in-place organization of the wavelet 
coefficients [13], which explains the increased off-chip 
memory needs for the BB approach (WH factor), where W 
and H denote respectively the image width and height. 

The wavelet-transform implementation that is presented in this 
section is parametrical to the number of decomposition levels 
(N) as well as the maximum filter length (2K+1), with the only 
restriction being the assumption of a symmetrical dependence 
from the image samples, similar to the 9/7 and 5/3 filter pairs 
used in JPEG 2000 [4]. For every input image, after the 
completion of the transform, identical results to the classical 
row-column approach (RC) are produced.  

2.1 Description of the Modes of Operation. 
The transform production can be divided in three stages. The 
first stage is the Initialization Mode, which deals with 
initialization phenomena inherent in the mirroring techniques 
used for the dyadic-tree decomposition. The second and most 
dominant stage is the Normal Mode, where a regular flow of 
22N samples produces 22N wavelet coefficients and, at each 
iteration, the transform engine outputs one PCT. The third 

stage is the Finalization Mode, where, by using the residual 
blocks of input samples, the remaining PCTs are produced. 

In the Initialization Mode, the input image is read in sequential 
non-overlapping blocks of samples in the row direction. An 
example of the scanning pattern is depicted in Figure 3 for the 
5/3 filter pair (K=2) for three decomposition levels (N=3). 

For all the Modes of operation, each block is temporarily 
stored in a memory component called the Inter-Pass Memory 
(IPM). A pair of low and high-pass filters is applied to the 
samples contained in the IPM, following the classical row-
column fashion. The actual filtering takes place by copying the 
image samples in FIFO manner from the IPM to the filtering 
unit, which is called the Filtering FIFO (FF), to emphasize the 
inbuilt functionality. For every new pair of input samples, a 
pair of low and high-frequency coefficients is produced and 
stored in-place. In this way, the wavelet-coefficient production 
proceeds as much as possible for each level. Of course, in order 
to ensure that the produced results are identical to the row-
column implementation of the wavelet transform, during the 
Initialization Mode, mirroring of the signal edges takes place 
inside the FF.  
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Figure 3 ─ An example of the proposed initialization 
pattern.  

The intermediate results (low-frequency coefficients) that are 
produced for the rows and columns of each block are stored in 
memory components, called the Overlap Memory for rows 
(OM_rows) and Overlap Memory for columns (OM_cols), that 
are depicted in Figure 3. These results are used in the 
processing of the neighboring blocks and the new intermediate 
results from each block replace the previous ones that have 
been used in the current iteration. The high-frequency outputs 
that are produced during each iteration are pushed into FIFO 
delay lines, called Tree Memory (TM). These delay lines 
compensate for the skewing in the temporal PCT production 
with the topological PCT representation, as shown in [5]. This 
skewing can simply be explained by the fact that no PCTs can 
be produced, until there exist enough low-frequency 
coefficients at the highest decomposition level that allow the 
execution of mirroring and filtering in both directions, rows 



 

 

and columns, so as to produce the quadruplet of coefficients 
shown in the highest decomposition level of Figure 1. 
However, until that point, a significant amount of high-
frequency coefficients is produced as well and, in order for the 
first PCT to contain the correct children for each parent, the 
Tree Memory is utilized for each decomposition level. 

2.2 Implementation Benefits. 
In Figure 4, the entire architecture used for the transform 
engine is depicted. It must be noted that for streaming 
applications, I_Mem, which is the image memory, does not 
correspond to the entire image but only to one block-scanning 
line, thus its vertical size is restricted to 2N samples. In this 
case, memory reduction by a factor of magnitude is achieved in 
comparison to the classical row-column approach [6], where 
the entire wavelet-coefficient matrix needs to be buffered. 

From the described execution flow, it is clear that for the 
processing of each block, the image memory (I_Mem) is read, 
row-column filtering takes place using the depicted 
architectural components and the outputs are flushed in the 
Tree Memory.  Thus, the accesses to large memory 
components, such as I_Mem and TM, are restricted to the start 
and completion of each block-processing iteration. As a result, 
if the implementation platform provides enough design-
flexibility so that the OM, IPM and FF components are placed 
internally, a near optimal minimization of the memory accesses 
to external (off-chip) memory components is achieved. This 
will have a very positive impact on the execution speed as well 
as on the reduction of the system power-consumption [6]. 
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Figure 4 ─ The architecture used for the wavelet-transform 
production. 

3 THE CODING ENGINE 
Each PCT that is produced by the transform engine is 
independently coded by a low-complexity zero-tree algorithm 
that exploits the parent-children dependencies similar to the 
SPIHT variations presented in [11]. The main differences lay in 
the fact that the proposed coding scheme can exploit the 
pipelined PCT production-consumption and that competitive 
coding results can be obtained by selecting the truncation 
points for each PCT coding with a mathematical optimization 
tool, the Lagrangian multiplier method. 

The coding of each PCT occurs in sequential bit-plane passes 
with a decreasing Quantization Step [7]. For each bit-plane, 
three sequential sub-passes occur, following a breadth-first 
traversal and beginning from the highest decomposition level. 
The partitioning rules are identical to the ones used in the 
SPIHT algorithm [7], but the linked list functionality is 

avoided, since the scanning order is fixed. Apart from the 
memory necessary to store each PCT, two buffers are used that 
correspond to the status information for each coefficient:  

•  Buffer of Coefficient Significance (BCS). Holds 
quaternary values that show if each corresponding coefficient 
is significant or insignificant for the current Quantization Step. 

•  Buffer of Subtree Partitioning (BSP). Holds quaternary 
values that show if the subtree that is rooted to each 
corresponding coefficient is valid or not, and if true, if it should 
follow the type A or type B partition rule [7].  

Instead of updating the LIP, LIS and LSP lists of [7], the 
appropriate bits in the BCS, BSP should be asserted. For each 
PCT, the coding is terminated after the Quantization Step is 
below a predetermined value. 

To increase the coding efficiency, the compressed bit stream is 
not transmitted immediately; an intermediate buffer is used to 
accumulate all outputted bits for all the PCTs. In addition, after 
the completion of each step of the pseudocode of [7], one Rate-
Distortion (R-D) point is accumulated in memory. We used the 
MSE as the Distortion metric. After the completion of the 
coding, the optimal truncation point for each PCT was 
identified using the well-known Lagrangian multiplier λ  
method [1], in a similar way to the Post-Compression Rate-
Distortion Optimization of EBCOT [14]. Thus, given a target 
bit-rate, compression to this rate is feasible by establishing a 
monotonically decreasing set of R-D slope values [14] and 
then, based on the λ  value, selecting the compression rate for 
each PCT. Since the proposed algorithm follows the 
partitioning ideas of SPIHT but applies them directly in the 
parent-children trees without any list functionality and uses a 
post-compression optimization method, it is called Parent-
Children Tree Set Partitioning with Optimization (PCTSPO). 

It must be noted that the examination of the PCT-coefficient 
memory is passive, since only read operations are performed 
without copying anything into lists. In addition, the proposed 
algorithm can be modified to compress independently each 
PCT. This is feasible if one arbitrary selects a value for the λ  
parameter, thus viewing the Lagrangian multiplier as a quality 
factor; higher values give better PSNR results and smaller 
compression ratios. This makes the coding algorithm easily 
parallelizable for a set of PCTs and reduces to a minimum the 
memory requirements. 

4 EXPERIMENTAL RESULTS 
In this section, the proposed system is compared with respect 
to memory utilization and coding efficiency with two state-of-
the-art image-compression algorithms, the binary-uncoded 
SPIHT implementation from [7] and JPEG 2000 VM 6.0 [3]. 

Both the transform and the coding engine were developed in 
standard ANSI-C without any platform-dependent 
customizations. For the experimental setup, the 9/7 filter pair 
of [4] was used in a 5-level decomposition. The test images 
Lena, Goldhill and Bridge were used. All three are of size 
512x512. For the SPIHT implementation, 4 decomposition 
levels were used because a 4-level wavelet tree used in SPIHT 
coding corresponds to the same number of subband coefficients 
as a 5-level PCT [7]. The size of the code-blocks in JPEG 2000 
VM 6.0 implementation was selected based on the same 
criterion.  



 

 

Table 1 ─ Memory sizes and profiling results for the three 
modes of operation (100% of the transform execution). The 
accesses to the FF do not include the filtering operations. 

Memory Module Size (coefficients) # Accesses 
(#/pixel) 

OM_rows 217 268282 (1.02) 
OM_cols 7161 256170 (0.98) 

IPM 1024 1475085 (5.63) 
TM 93744 262144 (1.00) 
IM 16384 262144 (1.00) 
FF 9 1171981 (4.47) 

TOTAL: 118539 3695806 (14.10) 
 

Figure 5 ─ Coding results for three standard test images. 
 
Profiling results were obtained for the memory accesses to the 
various components. All the memory modules are considered 
to have bandwidth 1 coefficient/access. These results, along 
with the transform-engine memory requirements, are shown in 
Table 1. Even with the addition of the coding memory, the total 
memory used for encoding corresponds roughly to 1.3x105 
coefficients (for a maximum 2.0 bpp compression rate, using 
the λ  parameter as a quality factor), which is at least 5 times 
less than the minimum memory needs of the SPIHT linked-list 
implementation used in our experiments. In addition, if one 
assumes 16-bit quantization for the wavelet coefficients, the 
proposed system implementation is 100% more memory 
efficient from line-based implementation of JPEG 2000 [3], 
with respect to the numbers reported for the ‘-mem’ parameter 
in the same experimental setup. To improve the memory 
efficiency of the VM6.0 software, code-blocks with size 8x128 
were used. This corresponds to a low-memory setting but 
comes with a penalty of 0.3 dB degradation in PSNR [14].  

The coding efficiency of the proposed scheme is illustrated in 
Figure 5. For all cases, the proposed system has inferior coding 
results to SPIHT, something that is in fact observed in all the 
similar compression methods [11] [16]. The average reduction 
in PSNR in comparison to the SPIHT is limited to 0.16 dB, 
while our results surpass in most cases the EZW coder.  

5 CONCLUSION 
In this paper, an efficient implementation of a novel image 
coding system has been proposed. Apart from the exploitation 
of the pipelined functionality between the transform and the 
coding system, the proposed approach combines also other 

advantages such as reduced memory utilization and inherent 
minimization of the external memory accesses without 
significant reduction of the compression efficiency.  
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