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ABSTRACT

In this paper, we propose a method –based on the discrete
evolutionary transform (DET)– to estimate the instantaneous
frequency of a signal embedded in noise or noise-like sig-
nals. The DET provides a representation for non-stationary
signals and a time-frequency kernel that permit us to ob-
tain the time-dependent spectrum of the signal. We will
show the instantaneous phase and the corresponding instan-
taneous frequency (IF) can also be computed from the evo-
lutionary kernel. Estimation of instantaneous frequency is
of general interest in time-frequency analysis, and of spe-
cial interest in the excision of jammers in direct sequence
spread spectrum. Implementation of the IF estimation is
done by masking and a recursive non-linear correction pro-
cedure. The proposed estimation is valid for monocompo-
nent as well as multicomponent signals in the noiseless and
noisy situations. Its application to jammer excision in direct
sequence spread spectrum communication is considered as
an important application. The estimation procedure is illus-
trated with several examples.

1. INTRODUCTION

Although time-frequency analysis methods [1] typically con-
sider the spectral representation of non-stationary signals,
it is of interest to have signal representations to which a
time-dependent spectra can be associated. Recently, we
proposed the Discrete Evolutionary Transform (DET) [3]
that provides a signal representation from which a kernel is
obtained to compute the evolutionary spectrum. In many
applications, instantaneous phase as well as instantaneous
frequency need to be computed. For instance, in the exci-
sion of jammers in direct sequence spread spectrum (DSSS)
[6, 7, 8], the instantaneous frequency is needed in the syn-
thesis of the jammers. Existing IF estimation procedures are
computationally expensive [7, 8] or deal with monocompo-
nent signals. We will show that the DET permits the com-
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putation of the instantaneous phase and the instantaneous
frequency from the evolutionary kernel. Masking makes
it possible to obtain the IF of each component in a multi-
component signal embedded in noise or noise-like signals
(as is the case in DSSS where the message and the channel
noise are both wide-band). Masking serves as a denoiser.
Our estimator uses the peaks of the evolutionary spectrum
to obtain an initial estimate which is then recursively cor-
rected by means of dechirping, linear and non-linear filter-
ing. Masking, and recursive correction provide excellent
results in estimating the IF of monocomponent signals, but
for the case of multicomponent signals we need to develop
a segmentation procedure that separates the spectra of the
different components so that each can be dealt separately.

The synthesis of multicomponent chirp jammers is of
practical application in the jammer excision in direct se-
quence spread spectrum. Although DSSS is robust to in-
terferences, wide-band jammers can seriously affect its per-
formance. Subtracting the synthesized jammer from the re-
ceived signal provides a very efficient way to improve the
robustness of DSSS to wide-band jamming. In such cases,
the IF of each of the components of the jammer is needed.
Many of the proposed methods based on time-frequency are
computational expensive and depend on an a-priori para-
metric representation for the IF. The proposed estimation
depends on the DET and does not require parametric char-
acterizations.

2. THE DISCRETE EVOLUTIONARY
TRANSFORM

Given a non-stationary signal,x(n); 0 � n � N � 1, a
discrete Wold-Cramer representation [2] for it is given by

x(n) =

K�1X

k=0

X(n; !k)e
j!kn; (1)

where!k = 2�k=K, K is the number of frequency sam-
ples, andX(n; !k) is an evolutionary kernel. To obtain a



more general representation, one can replace the sinusoidal
basis by a chirp basis to obtain a chirp representation:

x(n) =

P�1X

p=0

K�1X

k=0

Xp(n; !k)e
j(!kn+�p(n)) (2)

where the chirpsfej(!kn+�p(n))g cover the time-frequency
plane and�p(n) can be considered very general functions of
n. The chirp representation provides a more parsimonious
representation, but it requires we estimate the IF of each
component.

The discrete evolutionary transformation (DET) is ob-
tained by expressing the kernelsX(n; !k) andXp(n; !k)
in terms of the signal. This is done by using conventional
representations such as the Gabor and the Malvar trans-
forms. Thus, for the sinusoidal representation in (1) the in-
verse DET that provides the evolutionary kernelX(n; !k),
0 � k � K � 1, is given by

X(n; !k) =

N�1X

`=0

x(`)Wk(n; `)e
�j!k`; (3)

where Wk(n; `) is a time and frequency dependent window.
Similarly the inverse chirp DET can be obtained. The DET
can be seen as a generalization of the short-time Fourier
transform, where the windows are constant, The windows
Wk(n; `) can be obtained from either the Gabor representa-
tion that uses non-orthogonal bases, or the Malvar wavelet
representation that uses orthogonal bases. Details of how
the windows can be obtained for the Gabor and Malvar rep-
resentations are given in [3].

Estimation of instantaneous frequency is a complex and
not well understood task [9, 10]. Conventionally, the IF of a
mono-componentsignal is obtained from its time–frequency
distribution function as the average of frequencies present
in the signal at a given time. For a multi-component signal
such a computation of the IF does not have the same sig-
nificance. Furthermore, the usual definition of the IF being
the derivative of the phase of the corresponding analytical
signal fails (or does not approach our intuition) in the case
of multi-component signals. The DET can be used to obtain
a general definition of IF by considering the signalx(n) a
sum of analytic functions with time-dependent magnitudes
and phases, that is

x(n) =
X

k

jX(n; !k)je
j	(n;!k);

where	(n; !k) = Arg[X(n; !k)]+!kn. Computing	(n; !k)
only wherejX(n; !k)j is significant, a general instantaneous
frequency function is defined as:

IF(n; !k) = 	(n; !k)�	(n� 1; !k): (4)

This can be accomplished by determining the instantaneous
phase at the peaks of the spectra. On the other hand, as
we will see, decomposing the signal into its components
jX(n; !k)je

j	(n;!k) these are analytic functions that will
also provide the instantaneous frequency.

In the direct sequence spread spectrum jamming prob-
lem, one is interested in estimating the multicomponent chirp
jammersj(n) present in the received signal

rk(n) = dkp(n) + j(n) + �(n)

wheredk is the message bit,p(n) is a pseudonoise code,
and�(n) is white Gaussian noise. The jammer synthesis
requires its amplitude and IF. In the next section we consider
estimation of the IF of the jammers embedded in noise and
a noise-like message.

3. RECURSIVE IF ESTIMATION

Let us consider a multi-component non-stationary signal em-
bedded in noise. Estimation of the signal IF is complicated
by the noise and the multicomponent nature of the signal.
We need thus to denoise the signal and to separate the differ-
ent components. The estimation is especially difficult at re-
gions in the TF-plane where there is overlap of the spectra of
the signal components. The basic approach consists in de-
noising by masking the signal evolutionary spectrum, and to
segment the masking function into non-overlapping masks
used to obtain the corresponding analytic signal for each
of the segments by means of the inverse DET. Although,
depending on the SNR, the estimated IF obtained with the
DET in general is good, it can be improved by means of a
recursive correction. The correction is based on dechirping,
linear and non-linear filtering.

3.1. Masking

Masking the evolutionary kernel provides a way to decom-
pose the signal into components, and thus to delete the noise
components. MaskingX(n;wk) provides different compo-
nents that add up to the signalx(n), as can be easily seen
from:

x(n) =
X

i

X

k

X(n;wk)Mi(n; k)e
jwkn

=
X

i

xi(n)

where the mask functionMi(n; k) values are either1 or 0
and
S
iMi(n; k) coincides with the time-frequency support

of X(n;wk). The analytic signal componentsfxi(n)g are
computed as the inverse DET ofX(n;wk)Mi(n;wk). If the
x(n) is embedded in noise, we want to ignore the compo-
nents corresponding to mostly noise. This can be accom-
plished by defining the masks according to a threshold in



the spectrum that would include the significant signal com-
ponents. It can also be done by considering the masking
implementation of the evolutionary Wiener filtering [11].

The masking function separates the spectrum into re-
gions of single spectrum (additional noise might be present
in these regions). The analytic signal corresponding to each
of these spectra, orfxi(n)g, are then processed using DET
to estimate their corresponding IFs.

3.2. Recursive Correction

Although masking serves as a denoiser, some of the noise
leaks into the analytic signalsxi(n). We can thus think of
the analytic signals as

xi(n) = Ai(n)e
j�i(n) + �i(n):

Dechirpingxi(n) using the estimated IF, gives

xi(n)e
�j�̂i(n) = Ai(n)e

j(�i(n)��̂i(n)) + �i(n)e
�j�̂i(n)

Passing the dechirped signal through a narrow-band low-
pass filter gets rid of the noise and keeps most of the desired
signal. If the filter output is~Ai(n)e

j ~�i(n) we can then obtain
a new phase estimator as

�̂new(n) = �̂i(n) + ~�i(n)

Repeating the procedure, we recursively improve the phase
estimate. Notice that if~�new(n) = �i(n) � �̂i(n), then
�̂new(n) = �i(n). The recursion is stopped when~�i(n) is
sufficiently small. The final estimate may have outliers that
can be efficiently deleted by median filtering.

4. EXAMPLES

As a first example, consider the estimation of the IF of two
chirps without any added noise. The top part of Fig. 1 shows
the evolutionary spectrum using the Gabor derived windows
with the superposed IF estimate obtained from the DET; the
lower part of the figure shows the comparison with the ex-
act IF. In Fig. 2, we show the corrected IF estimate, again
superposed on on the evolutionary spectrum and comparing
it with the exact IF. The evolutionary spectrum is plotted in
a logarithmic scale.

In Fig. 3, we display the results of estimating the IF of
the signal used above but now with white Gaussian noise
added (SNR 6.5 dB). The top figure shows the masks super-
posed over the spectrum (in logarithmic scale). The lower
figures correspond to the comparison of the exact IF with
the one obtained from the DET directly and from the cor-
recting algorithm. The estimated IF appear noisy but are
close to the exact IF.

In Fig. 4 we consider the case of a jammer composed
of three chirps (with partially overlapping spectra) that has

been added to the DSSS message (JSR=24:7dB) and Gaus-
sian noise (SNR=11:3dB). The top pannel shows the spec-
trum in logarithmic scale with the masks superposed, and
the lower pannel displays the estimated IFs superposed on
the spectrum. The original jammer and the synthesized jam-
mer are shown in Fig. 5, the two differ by a constant but
have similar shape.

5. CONCLUSIONS

In this paper we show that the discrete evolutionary trans-
form can provide not only the spectral characteristics of a
signal, but also its instantaneous phase from which its in-
stantaneous frequency can be computed. Estimation of IF
of signals embedded in noise is of interest in applications
such as jamming excision in direct sequence spread spec-
trum. We consider the case of jammers composed of sev-
eral chirps with different rates. Segmenting the spectrum
by means of masks, permits us to obtain analytic compo-
nents from which we can find their IFs. Although DET
provides very good estimates, these can be improved by a
recursive correcting algorithm and a median filter. Appli-
cation of our procedure to the jamming problem in DSSS
shows very good results compared with the present tech-
niques that are available for IF estimation. Most of these
techniques are computationally expensive, depend on mod-
els of the IF or do not consider multi-component signals.
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Figure 1: IF estimate using DET – Noiseless case.
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Figure 2: Corrected IF estimate – Noiseless case.
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Figure 3: Spectrum, DET estimate, corrected estimate –
Noisy case.
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Figure 4: Evolutionary spectrum with superposed masks; IF
estimates superpossed on spectrum.
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Figure 5: Original jammer (upper) compared with synthe-
sized jammer.


