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ABSTRACT

The stability of two-dimensional (2-D) periodically shift
varying (PSV) filters is considered. These filters have appli-
cations in filtering video signals with cyclostationary noise,
image and video scrambling, and design of multiplierless
filters. The considered system is represented in state space
by the first model of Fornasini-Marchesini with periodic co-
efficients. Then the stability of this model is studied. Two
necessary conditions and two sufficient conditions are es-
tablished for asymtotic stability. The conditions are easy to
use and computationally simple.

1. INTRODUCTION

Two-dimensional (2-D) periodically shift varying (PSV) fil-
ters have many applications in engineering, such as in process-
ing digital video with cyclostationary noise, in designing
image scramblers, and in the design of 2-D multirate filter
banks. PSV filters are also important for designing 2-D fil-
ters with power-of-two coefficients[2]. These multiplierless
filters are extremely useful for real-time processing of large
amounts of data. During the past decade, 2-D PSV filters
have been analyzed and designed in [3]-[7]. In [3], 2-D PSV
filters have been analyzed in direct form. In [4], equivalent
shift invariant structures were derived for 2-D PSV filters.
The stability of 2-D PSV filters have been analyzed to some
extent. Stability of PSV filters has also been analyzed by
finding equivalent shift-invariant structures [5],[6]. In [7],
PSV filters formulated as the second model of Fornasini-
Marchesini were considered for stability and some condi-
tions and properties were established.

In this paper, 2-D PSV filters that are formulated as the
first model of Fornasini-Marchesini [8] are considered. This
model is more general since it has three state matrices in
the state equation as opposed to two for the second model.
Also, this model leads to the well known Attasi model [9]
which has found applications in the design of separable 2-
D filters. The considered filter is then analyzed for stability
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using Lyapunov energy functions. Some conditions are then
established for stability.

2. SYSTEM DESCRIPTION

The difference equation representation for a linear 2-D
PSV system can be written in the following form:

y(i, j) =
M−1X
m=0

N−1X
n=0

amn(i, j)y(i−m, j − n)+

M−1X
m=0

N−1X
n=0

bmn(i, j)u(i−m, j − n) (1)

where (m,n) 6= (0, 0) for amn. The coefficients are pe-
riodically shift variant, i.e., amn(i, j) = amn(i + P, j) =
amn(i, j+Q) and bmn(i, j) = bmn(i+P, j) = bmn(i, j+
Q), where the period is (P,Q) and P,Q are positive inte-
gers, not both zero.

Like LSIV system, several different state-space forms
with periodic coefficient matrices can be used to represent
the above 2-D PSV system. The first model of Fornasini-
Marchesini [8] is given below:

x (h+ 1, k + 1) = A1(h, k)x(h, k + 1)+

A2(h, k)x(h+ 1, k)+

A0(h, k)x(h, k)+

B(h, k)u(h, k)

y(h, k) = C(h, k)x(h, k) (2)

where x(h, k) ∈ RL×1, u(h, k), y(h, k) ∈ R1×1, A0(h, k),
A1(h, k), A2(h, k)∈ RL×L,B(h, k) ∈ RL×1, andC(h, k) ∈
R1×L. The coefficient matrices,A0(h, k), A1(h, k), A2(h, k),
are functions of amn(i, j) and bmn(i, j) in (1) and periodi-
cally shift variant with period (P,Q). The initial conditions
are assumed such that x(i, j) = 0, i < 0 or j < 0, and
x(i, 0) = 0, x(0, j) = 0, for i > I, j > J. In this paper,



the zero-input stability of the state equation (2) is studied,
and therefore, only the periodic coefficient matrices are con-
sidered.

3. DEFINITIONS AND OBSERVATION

Definition 1 (2-D system stability): A 2-D state-space sys-
tem with state variable x(i, j) is asypmtotically stable if
limi+j→∞x(i, j) = 0.
Definition 2 (2-D energy function on horizontal and verti-
cal direction): For a 2-D system with state variable x(i, j),
the energy in the horizontal direction is

H(k) =
∞X

l=0

|| x(l, k) ||

and the energy in the vertical direction is

V (h) =
∞X

l=0

||x(h, l) ||

where ||.|| is any vector norm.
Observation 1: If

limk→∞H(k) = 0 and limh→∞V (h) = 0,

then the system is stable.
Observation 1 is true because if the energy in both direc-

tions goes to zero, then the state variable x(i, j) must also
approach zero in any direction in the (i, j) plane.

4. STABILITY OF 2-D PSV SYSTEM

In this section, we begin by establishing a sufficient condi-
tion for the stability of the 2-D PSV filter.

Theorem 1 Consider the zero-input 2-D PSV state space
model given in (2).

For n = 0, 1, 2, ..., Q− 1, define

Fn =

max
∀ l

µ |||A2((l-1)mod P ,n)|||
+|||A0(lmod P ,n)|||

¶
1−max

∀ l
( |||A1(lmod P ,n)||| ) (3)

and for m = 0, 1, 2, ..., P − 1, define

Gm =

max
∀ l

µ |||A1(m,(l-1)mod Q)|||
+|||A0(m,lmod Q)|||

¶
1−max

∀ l
( |||A2(m,lmod Q)||| ) (4)

where |||.||| is any matrix norm.
If |||A1(h, k)||| < 1, |||A2(h, k)||| < 1 for all (h, k),

and
0Y

n=Q−1

Fn < 1 and
0Y

m=P−1

Gm < 1, (5)

then the system is asymptotically stable.
Proof: For the horizontal direction, using the system

description and the initial conditions, we can write the state
variables on the k-th horizontal line as

x(0,k) =A2(-1,k-1)x(0,k-1)
=A2(P-1,k-1)x(0,k-1),

x(1,k) =A1(0,k-1)x(0,k)+A2(0,k-1)x(1,k-1)
+ A0(0,k-1)x(0,k-1),

...
x(i,k)=A1((i-1)mod P ,k-1)x(i-1,k)

+A2((i-1)mod P ,k-1)x(i,k-1)
+A0((i-1)mod P ,k-1)x(i-1,k-1),

...
Taking any vector norm on both sides and using the tri-

angular inequality of norms, gives
||x(0,k)|| 6 |||A2(-1,k-1)|||.||x(0,k-1)||,
||x(1,k)|| 6 |||A1(0,k-1)|||.||x(0,k)||

+|||A2(0,k-1)|||.||x(1,k-1)||
+|||A0(0,k-1)|||.||x(0,k-1)||,

...
||x(i,k)|| 6 |||A1((i-1)mod P ,k-1)|||.||x(i-1,k)||

+|||A2((i-1)mod P ,k-1)|||.||x(i,k-1)||
+|||A0((i-1)mod P ,k-1)|||.||x(i-1,k-1)||,

...
Then summing up the above equations and transposing

similar terms, we get
(1-|||A1(0,k-1)|||).||x(0,k)||+
(1-|||A1(1,k-1)|||) .||x(1,k)||+ . . .
(1-|||A1((i-1)mod P ,k-1)|||) .||x(i-1,k)||+ . . .

6
µ |||A2(−1, k − 1)|||

+|||A0(0, k − 1)|||
¶
.||x(0, k − 1)||+µ |||A2(0, k − 1)|||

+|||A0(1, k − 1)|||
¶
.||x(1, k − 1)||+ . . .µ |||A2((i− 1)mod P , k − 1)|||

+|||A0(imod P ,k − 1)|||
¶
.||x(i, k− 1)||+ . . .

The above can be written in closed form as
∞X

l=0

(1− |||A1(lmod P , k − 1)|||) ||x(l, k)|| 6

∞X
l=0

µ |||A2((l − 1)mod P , k − 1)|||
+|||A0(lmod P ,k − 1)|||

¶
||x(l, k − 1)||.

(6)



The left-hand side can be written as

min
∀ l

(1− |||A1(lmod P ,k − 1)|||)
∞X

l=0

||x(l, k)||

6
∞X

l=0

(1− |||A1(lmod P , k − 1)|||) ||x(l, k)||. (7)

Similarly, the right-hand side of (6) can be written as,
∞X

l=0

µ |||A2((l − 1)mod P , k − 1)|||
+|||A0(lmod P , k − 1)|||

¶
||x(l, k − 1)|| 6

max
∀ l

µ |||A2((l− 1)mod P , k − 1)|||
+|||A0(lmod P , k − 1)|||

¶ ∞X
l=0

||x(l, k − 1)||.

(8)

Combining (6), (7), and (8), we get

min
∀ l

(1− |||A1(lmod P , k − 1)|||)
∞X

l=0

||x(l, k)|| 6

max
∀ l

µ |||A2((l− 1)mod P , k − 1)|||
+|||A0(lmod P ,k − 1)|||

¶ ∞X
l=0

||x(l, k − 1)||.

(9)

DefiningH(k) =
∞P

l=0

|| x(l, k) ||,(9) can be written as

min
∀ l

(1− |||A1(lmod P , k − 1)|||)H(k)

6 max
∀ l

µ |||A2((l− 1)mod P ,k − 1)|||
+|||A0(lmod P ,k − 1)|||

¶
H(k − 1).

The above is equivalent toµ
1−max

∀ l
( |||A1(lmod P ,k − 1)||| )

¶
H(k)

6 max
∀ l

µ |||A2((l− 1)mod P ,k − 1)|||
+|||A0(lmod P ,k − 1)|||

¶
H(k − 1).

Since |||A1(i, j)||| < 1 for all (i, j),

H(k) 6
max
∀ l

µ |||A2((l− 1)mod P , k − 1)|||
+|||A0(lmod P , k − 1)|||

¶
µ

1−max
∀ l

( |||A1(lmod P ,k − 1)||| )
¶ H(k − 1)

Now using definition (3), the above becomes

H(k) 6 Fk−1H(k − 1).

Since all coefficient matrices are periodic (P,Q), we can write
the above inequality as

H(k) 6 F(k−1) mod QH(k − 1). (10)

Let k = r modQ and using the recursion in (10), we have

H(k) 6


Ã

0Q
l= r−1

Fl

!Ã
0Q

l= Q−1

Fl

!n−1

Ã
(r−R) mod QQ

l= Q−1

Fl

!
H(k − (nQ+R))


(11)

with R 6 r and
0Q

l= −1

Fl = 1 for all integer n and R.

For the vertical direction, a similar approach can be used
to obtain

V (h) 6 G(h−1) mod PV (h− 1), (12)

where V (h) is the energy function defined as V (h) =
∞P

l=0

||x(h, l) ||.
Then using the recursion in (12) with h = r modP , we
have

V (h) 6


Ã

0Q
l= r−1

Gl

!Ã
0Q

l= P−1

Gl

!n−1

Ã
(r−R) mod PQ

l= P−1

Gl

!
V (h− (nP +R))


(13)

withR 0 r and
0Q

l= −1

Gl = 1 for all integers n andR. From

(11) and (13), we can see that if

0Y
l=Q−1

Fl < 1 and
0Y

l=P−1

Gl < 1

then clearly limk→∞H(k) = 0 and limh→∞V (h) = 0.
This completes the proof. ¥

Theorem 2 Consider the zero-input 2-D PSV state space
model given in (2). The system is stable if the following con-
ditions are satisfied:

1) |||A1(h, k)||| < 1, |||A2(h, k)||| < 1
for all (h, k),

2)max
∀(l,k)

|||A1(lmod P , (k − 1)mod Q, )|||+

max
∀(l,k)

µ |||A2((l − 1)mod P , (k − 1)mod Q)|||
+|||A0(lmod P , (k − 1)mod Q)|||

¶
< 1,

and
3)max
∀(h,l)

|||A2((h− 1)mod P , lmod Q)|||+

max
∀(h,l)

µ |||A1((h− 1)mod P , (l − 1)mod Q)|||
+|||A0((h− 1)mod P , lmod Q)|||

¶
< 1.

(14)

Proof: The proof is omitted for brevity and is given in [10].
It can be shown [10] that the conditions given in Theo-

rem 2 are more restrictive than those in Theorem 1. How-
ever the computation required is less in Theorem 2 than in



Theorem 1. Therefore, for a given 2-D PSV system, we first
use Theorem 2 to check the stability. If it fails, we then use
Theorem 1. Now we present the necessary conditions.

Theorem 3 Consider the zero-input 2-D PSV state space
model given in (2). Define Ul = [I − Tl]

−1Sl, where

Tl=


0 · · · A1(P-1,l)

A1(0,l)
. . .

...
...

. . .
0 A1(P-2,l) 0

 ,

Sl=


A2(P-1,l) 0 · · · A0(P-1,l)

A0(0,l) A2(0,l)
...

...
. . . . . .

0 A0(P-2,l) A2(P-2,l)


and 0 denotes the all-zero matrix of appropriate dimension.
If the system is stable, i.e., limi+j→∞ x(i, j) = 0, then

ρ

 0Y
l= Q−1

Ul

 < 1. (15)

where ρ denotes the spectral radius of a matrix.
The above theorem is proved in [10] using the fact that

since the system is stable, the energy on the horizontal lines
diminish to zero. If we use the same idea for the verti-
cal lines, then we get another necessary condition which is
given in the next theorem. The proofs of Theorems 3 and 4
are also omitted and can be found in [10].

Theorem 4 Consider the zero-input 2-D PSV state space
model given in (2). Define Zl = [I −Xl]

−1Yl, where

Xl =


0 · · · A2(l,Q-1)

A2(l,0)
. . .

...
...

. . .
0 A2(l,Q-2) 0

 ,

Yl=


A1(l,Q-1) 0 · · · A0(l,Q-1)

A0(l,0) A1(l,0)
...

...
. . . . . .

0 A0(l,Q-2) A1(l,Q-2)


and 0 denotes the all-zero matrix of appropriate dimension.
If the system is stable, i.e., limi+j→∞ x(i, j) = 0, then

ρ

Ã
0Y

l= P−1

Zl

!
< 1. (16)

where ρ denotes the spectral radius of a matrix.
Due to space limitations, examples are omitted. Several

examples illustrating the theorems can be found in [10].

5. CONCLUSION

The stability of 2-D PSV systems represented as the first
model of Fornasini-Marchesini has been studied in this pa-
per. Four theorems are established for checking the stabil-
ity of the considered system. Two of them are sufficient
conditions and the others are necessary conditions. Among
the sufficient conditions, Theorem 2 is more restrictive than
Theorem 1 but it is easier and faster to apply.
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