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ABSTRACT

This paper addresses practical issues for the implemen-
tation of sequential Monte Carlo sampling schemes,
also known as particle filtering, for application to track-
ing problems.

The discussion focusses on ways to improve on pre-
vious resampling schemes, resulting in significantly im-
proved performance.

These conclusions are demonstrated and supported
by examples of application of the particle filter to a
sequential tracking of a known number of directions of
arrival.

1. INTRODUCTION

Many problems can be modelled in the state-space para-
digm. The hidden parameters of interest evolve in time
following the update equation while the observations
are functions of these parameters. The objective is to
sequentially estimate the hidden parameters, based on
the observations. If the system is linear and Gaussian,
the optimal filter is the Kalman filter. However, many
real problems are neither linear nor Gaussian.

The sequential Monte Carlo sampling methods, also
called particle filters, offer promising new approaches
to this difficult real-life case. Ground breaking work in
the area is presented in [1][2].

In this paper, we offer a modification of the method
in [1], by proposing a Metropolis-Hasting resampling
[3][4] of the parameters, using an improved proposal
distribution. We verify our method by appliyng a par-
ticle filter to the sequential tracking of the directions of
arrival on targets of interest from an array of sensors.

The paper is organised as follows. Section II presents
the state-space model. Section IIT emphasises the pro-
posed improvements to the algorithm. Results from
simulations are presented in Section IV, with conclu-
sions in Section VI.

2. THE STATE-SPACE MODEL

The state-space model for the sequential tracking prob-
lem considered is given by:
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z(t—1)+ o,v(t) (1)
y(t) = S(z(t))a(t) + oww(t), (2)

where the noise variables v(t) and w(t) are iid Gaus-
sian variables with zero mean and unit variance, inde-
pendant of the parameters. The matrix S(z) € CM**
is the usual steering matrix. In the proposed system of
equations, the noise variances o, and o, are assumed
unknown but constant(for a stationary system). The
unknown parameter of amplitudes a(t) are allowed to
change slowly between snapshots. The directions of ar-
rival, & (t), are to be sequentially estimated based on
the observations y(t).

Similar notation to that of [1] is adopted. Let’s
define the vector of parameters:
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and the whole parameter space as:
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The parameter k, which is the dimension of «, is as-
sumed known. This aspect of the algorithm (joint de-
tection of the number of sources) will constitute the
focus of another paper.

The joint distribution of all the parameters is:

p(00:t, Y1.4) X P(Y1.¢|co:¢)p(xo:t) (5)

X P(Y1.¢10:t)P(€0:¢101:4)P(O1:¢).
(6)

It is assumed that the observations, given the states,
are 7id and that the state conditional update likelihood
is also 4id. Therefore, assuming the distribution of the
initial states to be uniform, and using the Markov prop-



erties of the model, (6) can be written in the form:
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To complete the model, prior distributions of the pa-
rameters are required. These prior distributions are
chosen as non-informative as possible. When conve-
nient, the conjugate forms were favoured.

e The amplitudes are chosen iid with different vari-
ances (to accomodate for different signal ampli-
tudes and different SNR):

t
p(a1=t|0-12ua62) ~ HN(OaO-?uA) (8)
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where A = diag(é%,...,d2) and the &7 are hyper-
parameters to be determined.

e The prior distribution on the noise variances are
all assumed to follow the inverse Gamma distri-
bution, which is the conjugate distribution:

p(e3) ~79(5, %) (9)

p(ol) ~ IG (v, ) (10)
k

p(6°%) ~ HIQ(TLO,QO) (11)

With these considerations, the generic algorithms de-
scribed in [5][6][7] can be used almost as described. The
sequential importance sampling step and the selection
step in these cases work well. Here, we focus attention
on the next step, i.e. the MCMC resampling step, to
recreate diversity amongst the particles.

It is well understood that only a hand-full of par-
ticles at best will have meaningful associated weights.
Therefore, any estimate based on these very few parti-
cles would show a large variance. The easiest remedy
is to multiply/suppress the particles according to their
importance weights. However, this does not add diver-
sity. Some papers simply suggest to add a perturba-
tion to the child particles. But a more clever approach,
proposed by Andrieu and Doucet[1][7], uses an MCMC
step on each particle.

3. THE MCMC DIVERSITY STEP

The selection procedure based on the importance weights
described earlier greatly diminishes the diversity of the

particles. A strategy to rejuvenate the diversity relies
on the use of a MCMC step. This approach is very
interesting in the potential for the application of the
reversible jump algorithm [4]. Using an RIMCMC step
would allow the algorithm to jointly estimate the model
order k, but that is out of the scope of this discussion.

The MCMC step, as described in [1] has an invari-
ant distribution Hi\; p(@o:¢|Y;.:), which is applied to
each of the IV particles, one at the time. In the original
paper, all the parameters are re-sampled using a Gibbs
sampler. To re-sample the state parameter z(?) (t), the
proposal distribution first suggested is the importance
function used at the sampling step. This choice slows
down the acquisition of the tracks because it relies
too much on the current estimates of all the other pa-
rameters. Early in the tracking, when the parameters
are not estimated accurately, this proposal distribution
does not offer the flexibility to explore the whole pa-
rameter space and therefore slows down considerably
the acquisition of the track. Also, this situation cre-
ates a vicious circle in which the algorithm has great
difficulty at breaking: if the particles have small vari-
ances in x, the estimated o, will be small, which in
turn will prevent the particles, at the next iteration, to
adequately explore the parameter space.

This paper proposes the use of a Metropolis-Hasting
one-at-the-time scheme with a less informative candi-
date distribution that will show more variance in its
candidates. This allows the algorithm to pick up on
any fast variation of the states, or to acquire a track
faster, by allowing potentially larger jumps. The pro-
posal distribution is:

2 (t) ~ N (D (t — 1), 0 (1)). (12)

The candidate a:,(;i) (t) is accepted with probability a,,
defined as a, = min(r,, 1), with:
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with the covariance matrix D, 2 02" (t)I;. Even

though this proposal distribution is suboptimal by be-
ing independent of the observations, it has proved to
be the most effective approach in practice.

Secondly, it cannot be assumed that the amplitudes
a(t) have the same variances. Therefore, forcing A in
(8) to have constant diagonal elements, as in previous
work, leads to poorer results if the signals have differ-
ent SNRs: the tracks with high SNRs show very tight
tracking, while the others exhibit more variance in the
error. It seems more appropriate to attribute a differ-
ent prior variance for each amplitude as in (8).



In doing so, the prior distribution on the amplitude
remains uninformative, in the sense that it does not
assume the same variance. In summary, the MCMC
step for regenerating the diversity of the particles in-
cludes the following proposal distribution for the M-H
algorithms.

e The parameters of interest:
2 (1) ~ N (- 1),03" (1) (13)
e The parameter of amplitudes:
al)(t) ~ N(m), 02" 50)  (14)

with 571 = §% (2 (1) S (2 (1) + AO™" and
m{) =387 (20 1)y ?).
e The update noise variance:
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with g% = Ef:l(a’(”(l)—m("’(l—;))’(m“)(z)—a:(“(z_l))

e The observation noise variance:
o2 ~IG(vr + (k+ M)ty + BL)
(16)
with
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e The hyper-parameters dy:
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4. SIMULATIONS RESULTS

The proposed algorithm is now applied to simulation
data, generated for k, = 2 sources with the parameters
described in table 4.1. The received array is composed
of 8 elements. The amplitudes follow an 4" order AR
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Parameter o o
1 deg. 0.

Value

z(0) o
[50°,100°] 0.3

Table 4.1: Parameters of the state-space model for sim-
ulated data

process with coefficients [0.1,0.2, —0.3,0.5], and noise

variance o2, with an initial SNR of 20dB. The direc-
tions of arrival follow a random walk, with noise vari-
ance o2.

The particle filter uses 300 particles only (as op-
posed to one hundred times that number as suggested
in previous works) and is run for 500 observations. Fig-
ure 1, 2 and 3 show the results.
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Figure 1: Sequential estimates of the directions of ar-
rival
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Figure 2: Sequential estimates of amplitudes

Figure 1 clearly shows that the directions of arrival
are well traced by their estimates throughout the entire
tracking process. Similar findings can be seen in Figure
2, which shows that the trajectories of the real part of
the amplitude paramter. The imaginary part is not
shown, but is also correctly estimated. At the same
time, the noise variances converge slowly to the correct
values.

These results use the suggested proposal function
and kg different distributions when sampling the vector

6? (i), each distribution of which depends on a,(:,)t. This



Sequential estimates of the noise parameters
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Figure 3: Sequential estimates of variances of the noises
(dashed line is the true value)
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approach provides better candidates to Ji,t and hence
to all the interdependent parameters, especially when
the amplitudes differ a lot.

4.1. Performance of the tracking

In this subsection, the proposed algorithm was applied
to 50 different scenarios of 50 observations, for differ-
ent values of SNR, in order to estimate the variance of
the estimate as a function of the SNR. For each run,
the first 25 sequential estimates (considered in the ac-
quisition mode) were discarded and the following 25
estimates were used to get one sample of the variance.
Table 4.2 summurizes the parameters of the simulations
and figure 4 shows the results.

Parameter | o2 o2  x(0) a(l) SNR

v a
Value 5deg. 0.005 [90°] [4] 0-18dB

Table 4.2: Parameters of the state-space model for
Monte Carlo estimation

5. CONCLUSION

In this paper, suggestions were made to improve a pre-
viously proposed method for recreating the diversity of
the particles with an MCMC step. The new filter re-
quires fewer particles to achieve the same performance
and converges faster. It is also less sensitive the to
value of the other nuisance parameters.

Such improvements are explained by the use of a
less informative candidate function in the MCMC move
for diversity, which allow the particles to explore the
space more freely.
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Figure 4: Variance of the estimates vs SNR
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