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ABSTRACT
This paper presents a novel approach for characterizing wide-

band (CDMA) multiple dimensional channels for the wireless en-
vironment in arbitrarily coloured additive Gaussian noise. This
characterization is sufficient for the specification of optimal mul-
tichannel space-time receivers. The proposed solution is defined
in the Bayesian framework and uses the Reversible Jump Markov
Chain Monte Carlo (MCMC) method to obtain estimates of the
number of scatterers, their directions of arrival and their times of
arrival. The developed method is applied to simulated and real
measured data to verify the performance of the approach.

1. INTRODUCTION

In this paper, we address the problem of characterizing wireless
multipath channels for CDMA receivers which use an array of an-
tennas. We assume the propagation channel consists of a discrete
number of independent Rayleigh-faded components, each with a
distinct direction of arrival and relative delay time. We consider
the special case where the noise covariance matrix of the antenna
elements is unknown and arbitrarily coloured. Our objective is to
estimate the number of scatterers, the corresponding delay times
(TOAs), and the directions of arrival (DOAs) of the multipath com-
ponents using only the data received from an antenna array in a
wideband scenario. This characterization is sufficient for the con-
struction of optimal multiple channel space-time receiver struc-
tures, e.g. BLAST receivers. Such characterizations are also suffi-
cient for estimating channel capacity, etc.[1]

A Bayesian approach is proposed, where the undesired nui-
sance parameters representing the instantaneous amplitudes and
the known noise covariance matrix are integrated out, after assign-
ing suitable noninformative priors. The resulting posterior distri-
bution is highly nonlinear in the parameters, making it difficult
to achieve a global optimum by ordinary numerical techniques.
Moreover, the number of parameters of the distribution depends
on the unknown model order. Well known methods, such as AIC
or MDL, cannot be used to determine the model order, as the noise
is coloured.

MCMC methods e.g. [2][3] have been quickly gaining the at-
tention of the signal processing community, especially for prob-
lems which involve nonlinear and/or high dimensional models.
Here, we propose the reversible jump MCMC method [4] for the
estimation of our desired parameters. This technique is capable of
exploring a parameter space of varying model order, thus allowing
an estimate of the number of scatterers to be made. Under benign
conditions, it can be proved the global optimum is always achieved
with this method. Simulation results, and results obtained from
real measurements, verify the usefulness of the proposed method.

2. DEVELOPING THE POSTERIOR DISTRIBUTION
FOR COLOURED NOISE

For the purposes of this presentation, we assume all relative delays
of the individual scattering components are upper bounded by the
symbol duration, and the delay spread from each scattering point
is small compared to the chip duration�T . (The treatment can
be readily extended so that these restrictions can be relaxed). Let
the number of chips in one symbol in the received CDMA data
sequence beP . Then, the data received over thenth symbol from
an array ofM antenna elements consists of a complex data matrix
Y (n) 2 CM�P given by

Y (n) = S(�)A(n)T (� ) +
(n) n = 1; : : : ; N; (1)

where the matrixS(�) 2 CM�ko is a function of the directions of
arrival� and is the standard steering matrix;ko is the (unknown)
number of scattering components; the diagonal matrixA(n) 2
Cko�ko contains the quickly–varying signal amplitudes at thenth
symbol; the structure of the matrixT (� ) 2 Cko�P is given later;
the elements of the matrix
(n) 2 CM�P are distributed as N(0;�w),
where�w is unknown, andN is the number of symbols over
which the data is collected.

Each row of the matrixT (� ) consists of all zero elements
except for a single one in thepth position. This element indicates
that the relative delay of the corresponding scattering component
is p�T .

Our objective is to jointly estimate the number of scatterers,
ko, their directions of arrival,� 2 [0; 2�]ko and their times of
arrival represented by the vector of integers,� 2 [0; P ]ko . It
is assumed that the scatterers have unique DOAs and TOAs, to
avoid degeneracy of the model. Since the number of scatterers
ko is unknown, the dimension of the parameters� and� are also
unknown. We therefore denote them as�k and� k respectively,
wherek is the hypothesized number of signals. It is assumed that
�k and� k remain stationary over theN snapshots, and the ampli-
tudesfa(n)g areiid between snapshots.

The model described by (1) can be rearranged, to a more fa-
miliar form, using Kronecker algebra, as follows:

y(n) = Z(� ;�)b(n) + !(n) n = 1; : : : ; N; (2)

with:

y(n) = vec(Y (n)) (3)

b(n) = vec(A(n)) (4)

Z(� ;�) = T
t(� )
 S(�): (5)



where vec(�) is thevecoperator. Furthermore, noting that the ma-
trix A(n) is diagonal, the vectorb(n) defined previously only op-
erates on a few columns ofZ. Regrouping these usefull columns
in a new matrixH(� ;�):

y(n) =H(� ;�)a(n) +!(n) n = 1; : : : ; N; (6)

wherea(n) holds the diagonal elements ofA(n), and the ma-
trix H(� ;�) defines the space-time structure of the multipath.
This form is more familiar and can now easily be analyzed in the
Bayesian framework, as in [3].

Since theN snapshots areiid, the total likelihood function of
all the data can be expressed in the following form:

p(Y j�; � ;A;�w; k) =
1

�NMP j�wjN
�

e�
P
N

n=1(y(n)�H(�;� )a(n))H��1w (y(n)�H(�;� )a(n)): (7)

To proceed with the integration of the nuisance parameters� and
A, we first define an orthonormal matrixU (�; � ; k) 2 CMP�MP

as in [5][6]

U(�; � ; k) = [U s(�; � ; k) U�(�; � ; k)];
MP�k MP�(MP�k)

(8)

whereU s(�; � ; k) 2 H, the signal subspace, andU�(�; � ; k) 2
N , the noise subspace. We now transform the received datay(n)
intoH andN to form a signal componentzs(n) and a noise com-
ponentz�(n) respectively as

zs(n) = U
H
s (�; � ; k)y(n) (9)

and

z�(n) = U
H
� (�; � ; k)y(n): (10)

The new parameterszs(n) andz�(n) are both Gaussian. For ar-
bitrary�w, the noise components ofzs(n) andz�(n) may not
be uncorrelated; however, for the sake of tractable analysis, we as-
sume them to be so. In the neighborhood of the true values of the
parameters, it can then be shown [3] thatzs(n) is distributed as
N(~a;C), where the covariance matrixC and mean~a are to be
defined [3], andz�(n) is distributed as N(0;W ), with covariance

matrixW
�
= EfUH

� yny
H
n U�g. The joint likelihood function of

zs andz� is then given as:

p(Zs;Z� j ~A;�; � ; k;W
�1) � ��NkjC�1jN

� exp

(
�

NX
n=1

(zs(n)� ~a(n))HC�1(zs(n)� ~a(n))

)

� ��N(M�k)jW�1jN exp

(
�

NX
n=1

z
H
� (n)W

�1
z�(n)

)
:

(11)

To complete the model, prior distributions are chosen to be non-
informative where possible. When convenient, we also choose the
structural form of these distributions for their desirable conjugate
properties. The priors distributions are described as follows:

� ~A is assigned a conjugate non-informative prior distribu-
tion described as a Gaussian function with a large covari-
ance matrixD (compared toC), and zero mean. Thus,

p( ~Aj�k; k;W
�1) =

NY
n=1

N(0;D) (12)

whereD , d2Ik, which assumes the projected signals are
independent with the same large variance. The choice of
the hyper-parameterd is discussed at length in [3].

� The prior distributions for both� and� are chosen to be
uniform:

p(�jk) = U [0; 2�]k p(� jk) =
1

P k
: (13)

� The prior onk is chosen to be Poisson with expectation�
(a flat prior over a range[0; kmax] is another option, but
tends to slow down the convergence):

p(k) = �ke��=k! (14)

� W�1: We use a non-informative multi-dimensional Jef-
freys’ prior for the unknown transformed noise covariance
matrix [5][3]

p(W�1 j �; k) /jW�1 j�(M�k) (15)

The posterior distribution, after carrying out the integration of the
nuisance parameters and ignoring the constant terms, is then (see
[3] for more details):

p(k;�; � jZ�) /
�
1
2
(MP�k)(MP�k�1)QMP�k

i=1 �(N � i+ 1)

(2�P=�)kk!(d2)kN

�
���NŴ ����N ; (16)

with NŴ (�; � ; k)
�
=
PN

n=1 z�(n)z�(n)
H . Take note that this

function depends only on the slowly varying parameters of inter-
est. The objective is to estimate the parameters of this highly non-
linear function, as the Maximum A Posteriori (MAP) estimates:

fk̂; �̂; �̂g = arg max
k;�;�2�

p(k;�; � jZv): (17)

3. THE REVERSIBLE JUMP MCMC ALGORITHM

We now propose an MCMC method to perform the Bayesian com-
putation in extracting the parameters of interest from the posterior
distribution (16).

A powerful MCMC technique is the ”reversible jump MCMC”
from Green [4], which is a variation of the Metropolis Hastings
method, for the cases where the model order is a part of the un-
known parameters. With this method, assume at theith iteration,
we are in state
(i)k . A candidate
?k for the next state of the chain
is drawn at random from a so-called proposal distributionq(�j�),
which may be conditional on(
(i)k ). The distributionq(�j�) is cho-
sen to be easy to draw samples from, and also ideally, to closely
approximate the desired posterior distribution. The candidate sam-
ples are randomly accepted according to an acceptance ratio that
ensures reversibility, and therefore the invariance of the Markov
chain with respect to the desired posterior distribution. In the case
where the model order is unknown, we allow the dimension of
?k
to vary at each iteration. As such, we choose our set of proposal
distributions to correspond to the following set of moves, accord-
ing to [2]:

1. thebirth move, valid fork < M � 1. Here, a new scatterer
point is proposed at random on(0; 2�]� (0; P ).



2. thedeathmove, valid fork > 0. Here, a randomly chosen
scatterer point is removed.

3. theupdatemove, valid fork > 0. Here, the parameters
describing the multipath characteristics are updated for a
fixed value ofk.

The probabilities for choosing each move are denoteduk, bk and
dk, respectively, such thatuk + bk + dk = 1 for all k, chosen in
accordance with [4]. The distinguishing features of each move are
now summarized in the following subsections.

3.1. Update move

Here, we assume that the current state of the algorithm is
(�k; � k; fkg). When the update move is selected, the algorithm
samples only on the space of(�k; � k), sequentially for all the
parameters, fork fixed. This is a Metropolis-one-at-the-time ap-
proach. The proposal distribution of the parameters is assumed
separable (even though in practice these two parameters are de-
pendant, this assumption is justified for the purpose of proposing
candidate states):

q(�; � ) = q1(�)q2(� ) (18)

In this case, the proposal distributionq1(�j�) for the candidate DOA
parameter�? is two-fold: with a certain probability, it is assigned
to be the multidimensional uniform distribution over[0; 2�], for
a fully random exploration; or it is a perturbation of the actual
state, for a local exploration. This hybrid approach gives the best
performance in terms of rate of convergence and variance of the
estimate [2]. For the TOA parameter, the proposal distribution
q2(�j�) is simply a uniform distribution. The acceptance ratior =
rupdate from (16) for the update move is therefore:

rupdate(�
?
k; �

?
k; k;�k; � k; k) =

jNŴ (� ?;�?; k)j�N

jNŴ (� ;�; k)j�N (19)

The candidatef�?; � ?g is then accepted as the current state with
probability �update = min[rupdate; 1], according to the proce-
dure described in more detail in [2].

3.2. Birth and Death moves

In the death move case, we assume the current state is in
(�(k+1); � (k+1); fk + 1g), and we wish to determine whether
the next state is in(�k; � k; fkg) at the next iteration. This in-
volves the removal of a scatterer point, which is chosen randomly
amongst the(k+1) existing points. The candidate state(�?k; �

?
k; k)

is proposed and accepted with probability� = min[rdeath1],
given as:

rdeath(�
?
k; �

?
k; k;�k+1; � k+1; k + 1) =

jNŴ (� ?k;�
?
k; k)j

�N

jNŴ (� k+1;�k+1; k + 1)j�N

� �(MP�k�1)�(N �MP + k + 1)(k + 1)(d2N )

(20)

Similarly, in the birth move case, we assume the current state is
(�k; � k; fkg) and we wish to determine whether the next state is
in (�(k+1); � (k+1); fk + 1g). This involves the addition of a new
scatterer point, which is proposed uniformly over(0; 2�]�(0; P ).

The acceptance ratior = rbirth for the birth move can be verified
to be:

�birth = min[1;
1

rdeath
]: (21)

The MCMC sampling process is repeated for many iterations, to
provide a histogram which approximates the posterior pdf (16).
The MAP estimate of the parameters are readily obtained.

4. SIMULATION RESULTS

The proposed algorithm is now applied to simulation data, gener-
ated forko = 2 scatterers with the parameters described in table
4.1. The receiver array is composed of 5 elements. The ampli-

Scatterers DOA (deg) TOA (bins) Amplitude (dB)
S1 65� 8 10
S2 20� 2 10

Table 4.1: Parameters of the multipath for simulated data

tudes areiid Rayleigh distributed overN = 125 received symbols
(or snapshots) forP = 25, with an SNR of 5dB. The noise is
coloured with an AR filter, the poles for which are0:95e�j1:07�

and0:95e�j0:88� .
The Reversible Jump MCMC scheme goes through 1500 iter-

ations after a burn-in period of 300 iterations. The results, as found
by the algorithm, are summarized in figure 1. It is clear from the
histograms that the DOA and TOA parameters concentrate around
their true values. The posterior probability of the number of scat-
terers beingk = 2 was evaluated at 75% (due to a high noise
level), as summarized in table 4.2. Clearly, the algorithm correctly
identified the parameters of the simulated multipath scenario. Fur-
ther simulation results for the DOA case only are presented in [7].
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Figure 1: Simulations: Histogram of the TOA (top); Histogram of
DOA (bottom).

5. APPLICATION TO REAL-LIFE PROBLEM

In this section, we apply our proposed scheme to real-life outdoor
propagation measurements with a typical data set collected on Mc-



p(k̂ = i) % 1 2 3
Simulations 0 75 25

Measurements 1 98 1

Table 4.2: Posterior estimate of the number of paths using MCMC

Master University campus.
The channel impulse response, in time and space, is measured

directly in the time domain from anM = 8 elements experimen-
tal receiver by transmitting a wideband CDMA signal and corre-
lating the received signal with the known transmitted sequence, at
each channel of the receiving array. The transmitted signal is a
255 chip pseudonoise (PN) sequence at 5 MHz IF bandwidth. It
was observed that the maximum excess delay of the channel can
be considered by using onlyP = 25 chips. An initial calibra-
tion was first realized, based on measurements with the antenna
array inside an anechoic chamber. The measurements were con-
ducted with the receiving base station at different locations and at
different heights, in a pico-cell scenario that offers rich multipath
characteristics with severe fading.

For the purpose of demonstrating the proposed algorithm,N =
20 received data symbols (or snapshots) are used, measured from
a position where the multipath characteristics have been geograph-
ically observed to be 2 rays incident approximatively from angles
of arrival of 30� and135�, as shown on figure 2. Figure 3 shows

Figure 2: Map describing the geometry of the setup.

typical results for 1000 iterations of the Reversible Jump MCMC
Sampler. It is clear that the algorithm identifies the two major mul-
tipath components, in time and in direction.

6. CONCLUSION

In this paper, a new and innovative approach to channel character-
isation is presented. In the Bayesian framework, using a Markov
Chain Monte Carlo method to perform the optimisation, the slow
varying parameters of the multipath (� and � ), as well as the
number of scatterers, are jointly estimated. The nuisance param-
eters (amplitudes and unknown noise variance) are integrated out
analytically, for a more efficient sampling sheme. The proposed
method has been verified using simulations and real-life propaga-
tion measurements.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

TOA in nsec

pr
ob

ab
ili

ty

fddl4f1
r
0.dat 

S1
S2

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

DOA in deg

pr
ob

ab
ili

ty

S1 
S2 

Figure 3: Measurements: Histogram of the TOA (top); Histogram
of the DOA (bottom).
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