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ABSTRACT 2. DEVELOPING THE POSTERIOR DISTRIBUTION

This paper presents a novel approach for characterizing wide- FOR COLOURED NOISE
band (CDMA) multiple dimensional channels for the wireless en-
vironment in arbitrarily coloured additive Gaussian noise. This For the purposes of this presentation, we assume all relative delays
characterization is sufficient for the specification of optimal mul- of the individual scattering components are upper bounded by the
tichannel space-time receivers. The proposed solution is definedsymbol duration, and the delay spread from each scattering point
in the Bayesian framework and uses the Reversible Jump Markovis small compared to the chip duratidaZ’. (The treatment can
Chain Monte Carlo (MCMC) method to obtain estimates of the be readily extended so that these restrictions can be relaxed). Let
number of scatterers, their directions of arrival and their times of the number of chips in one symbol in the received CDMA data
arrival. The developed method is applied to simulated and real sequence b&. Then, the data received over thth symbol from
measured data to verify the performance of the approach. an array ofM antenna elements consists of a complex data matrix

Y (n) € CM*F given by
1. INTRODUCTION Y (n) =S(@p)A(n)T(r)+Q(n)n=1,...,N, 1)

In this paper, we address the problem of characterizing wireless
multipath channels for CDMA receivers which use an array of an- where the matrix§ (¢) € ¢ **° is a function of the directions of
tennas. We assume the propagation channel consists of a discretarrival ¢ and is the standard steering matrky; is the (unknown)
number of independent Rayleigh-faded components, each with anumber of scattering components; the diagonal ma#ix) €
distinct direction of arrival and relative delay time. We consider C*o**o contains the quickly—varying signal amplitudes at ittle
the special case where the noise covariance matrix of the antenn@ymbol; the structure of the matriR(r) € C***¥ is given later;
elements is unknown and arbitrarily coloured. Our objective is to the elements of the matr®(n) € ¢ ** are distributed as (0, ., ),
estimate the number of scatterers, the corresponding delay timesvhere X, is unknown, andN is the number of symbols over
(TOAS), and the directions of arrival (DOAs) of the multipath com- which the data is collected.
ponents using only the data received from an antenna array in a  Each row of the matriXxI’(+) consists of all zero elements
wideband scenario. This characterization is sufficient for the con- except for a single one in theth position. This element indicates
struction of optimal multiple channel space-time receiver struc- that the relative delay of the corresponding scattering component
tures, e.g. BLAST receivers. Such characterizations are also suffi-is pAT.
cient for estimating channel capacity, etc.[1] Our objective is to jointly estimate the number of scatterers,

A Bayesian approach is proposed, where the undesired nui-k,, their directions of arrivalgp € [0, 2x]" and their times of
sance parameters representing the instantaneous amplitudes ardgrival represented by the vector of integers,c [0, P]®. It
the known noise covariance matrix are integrated out, after assign-is assumed that the scatterers have unique DOAs and TOAs, to
ing suitable noninformative priors. The resulting posterior distri- avoid degeneracy of the model. Since the number of scatterers
bution is highly nonlinear in the parameters, making it difficult g, is unknown, the dimension of the paramet¢rand+ are also
to achieve a global optimum by ordinary numerical techniques. unknown. We therefore denote themes and 7, respectively,
Moreover, the number of parameters of the distribution dependswherek is the hypothesized number of signals. It is assumed that
on the unknown model order. Well known methods, such as AIC ¢, andr;, remain stationary over th¥ snapshots, and the ampli-
or MDL, cannot be used to determine the model order, as the noisetudes{a(n)} areiid between snapshots.
is coloured. The model described by (1) can be rearranged, to a more fa-

MCMC methods e.g. [2][3] have been quickly gaining the at- miliar form, using Kronecker algebra, as follows:
tention of the signal processing community, especially for prob-
lems which involve nonlinear and/or high dimensional models. y(n) = Z(1,$)b(n) +w(n) n=1,...,N, 2
Here, we propose the reversible jump MCMC method [4] for the
estimation of our desired parameters. This technique is capable ofyith:
exploring a parameter space of varying model order, thus allowing
an estimate of the number of scatterers to be made. Under benign y(n) = veqY (n)) ©)
conditions, it can be proved the global optimum is always achieved _
with this method. Simulation results, and results obtained from b(n) = vedA(n)) )
real measurements, verify the usefulness of the proposed method. Z(T,¢) =T (T) ® S(¢). (5)



where ve€-) is thevecoperator. Furthermore, noting that the ma-
trix A(n) is diagonal, the vectds(n) defined previously only op-
erates on a few columns @&. Regrouping these usefull columns
in a new matrixH (, ¢):

y(n) = H(r, p)a(n) + w(n) (6)

wherea(n) holds the diagonal elements &f(r), and the ma-
trix H(r,¢) defines the space-time structure of the multipath.
This form is more familiar and can now easily be analyzed in the
Bayesian framework, as in [3].

Since theN snapshots ariéd, the total likelihood function of
all the data can be expressed in the following form:

1
TNMP|x, |V x

n=1,...,N,

p(Y|p,7,A,00,k) =
o= SN (Yo -H@mam) " B3 (ye-H@mam) (7)

To proceed with the integration of the nuisance paraméteasd
A, we first define an orthonormal matiix(¢, 7, k) € CMF*MFP
as in [5][6]

U(¢a T, k) = [US (¢7 T, k)

MPxk

UV (¢) T, k)]a

MPx(MP—k)

©)

whereU, (¢, T, k) € H, the signal subspace, abd, (¢, T, k) €
N, the noise subspace. We now transform the receivedylata
into H# andA to form a signal component;(n) and a noise com-
ponentz, (n) respectively as

zs(n) = UL (¢, 7, k)y(n) 9)

and
z,(n) = U (¢, 7, k)y(n).

The new parameters; (n) andz, (n) are both Gaussian. For ar-
bitrary ¥.,, the noise components ef,;(n) and z, (n) may not

(10)

be uncorrelated; however, for the sake of tractable analysis, we as-

whereD £ d2I, which assumes the projected signals are
independent with the same large variance. The choice of
the hyper-parametef is discussed at length in [3].

e The prior distributions for botlgp and = are chosen to be
uniform:

1

p(lk) = U[0, 27" P

p(7[k) (13)
e The prior onk is chosen to be Poisson with expectatidn
(a flat prior over a rang@), kmaz] is another option, but
tends to slow down the convergence):
p(k) = AFe ™ /k! (14)
e W~ We use a non-informative multi-dimensional Jef-
freys’ prior for the unknown transformed noise covariance
matrix [5][3]
(W™ | ¢, k) o W1 |7M7H) (15)
The posterior distribution, after carrying out the integration of the
nuisance parameters and ignoring the constant terms, is then (see
[3] for more details):

ﬂ,%(MP—k)(MP—k—l) Hiﬂizlj—k T(N —i+1)

p(k7¢7T|ZV) X (27rP/A)kk!(d2)kN

- (16)

)

X ‘NW

with NW (¢, 7,k) 2 S z,(n)z, (n)". Take note that this
function depends only on the slowly varying parameters of inter-
est. The objective is to estimate the parameters of this highly non-
linear function, as the Maximum A Posteriori (MAP) estimates:

{ka(}:%}:a‘rg max p(k7¢7T|ZU)'
P, Tco

¢

17

sume them to be so. In the neighborhood of the true values of the

parameters, it can then be shown [3] tka(n) is distributed as
N(a, C), where the covariance matri® and mearnz are to be
defined [3], andz, (n) is distributed as KO, W), with covariance

matrix W £ E{UZy, y”U,}. The joint likelihood function of
zs andz, is then given as:

p(Zs, Z,|A, 0,7k, W ) o VoY

X exp{—

N (11)
x 7 NM=F) g =1 N exp {— > zf(n)W_lz,,(n)} )
n=1

N

Y (2:(n) = @(n)" 7" (2:(n) - &(n))

n=1

3. THE REVERSIBLE JUMP MCMC ALGORITHM

We now propose an MCMC method to perform the Bayesian com-
putation in extracting the parameters of interest from the posterior
distribution (16).

A powerful MCMC technique is the "reversible jump MCMC”
from Green [4], which is a variation of the Metropolis Hastings
method, for the cases where the model order is a part of the un-
known parameters. With this method, assume atttéeration,
we are in state/,(j). A candidatey;, for the next state of the chain
is drawn at random from a so-called proposal distribugé),
which may be conditional o(r/g)). The distributiory(+|-) is cho-
sen to be easy to draw samples from, and also ideally, to closely

To complete the model, prior distributions are chosen to be non- approximate the desired posterior distribution. The candidate sam-
informative where possible. When convenient, we also choose theples are randomly accepted according to an acceptance ratio that
structural form of these distributions for their desirable conjugate ensures reversibility, and therefore the invariance of the Markov
properties. The priors distributions are described as follows: chain with respect to the desired posterior distribution. In the case

o Ais assigned a conjugate non-informative prior distribu- where the model order is unknown, we allow the dimensiofyof

tion described as a Gaussian function with a large covari- {0 vary at each iteration. As such, we choose our set of proposal
ance matrixD (compared taC), and zero mean. Thus distributions to correspond to the following set of moves, accord-

ing to [2]:

1. thebirth move, valid fork < M — 1. Here, a new scatterer

12
(12) point is proposed at random @6, 2] x (0, P).

N
p(A|¢kakaW_1) = H N(07D)



2. thedeathmove, valid fork > 0. Here, a randomly chosen
scatterer point is removed.

3. theupdatemove, valid fork > 0. Here, the parameters
describing the multipath characteristics are updated for a
fixed value ofk.

The probabilities for choosing each move are denatgd:, and

dy, respectively, such thaiy, + by + dr = 1 for all k, chosen in
accordance with [4]. The distinguishing features of each move are
now summarized in the following subsections.

3.1. Update move

Here, we assume that the current state of the algorithm is

(¢, Tk, {k}). When the update move is selected, the algorithm
samples only on the space @b, T«), sequentially for all the
parameters, fok fixed. This is a Metropolis-one-at-the-time ap-

proach. The proposal distribution of the parameters is assumed

The acceptance ratio= ry;»:p, for the birth move can be verified
to be:

Qpiren, = min[l, (21)

Tdeath '
The MCMC sampling process is repeated for many iterations, to
provide a histogram which approximates the posterior pdf (16).
The MAP estimate of the parameters are readily obtained.

4. SIMULATION RESULTS

The proposed algorithm is now applied to simulation data, gener-
ated fork, = 2 scatterers with the parameters described in table
4.1. The receiver array is composed of 5 elements. The ampli-

Scatterers DOA (deg) TOA (bins) Amplitude (dB)
S1 65° 8 10
S2 20° 2 10

separable (even though in practice these two parameters are de-

pendant, this assumption is justified for the purpose of proposing
candidate states):

q(p, 7) = q1(P)g2(7)

In this case, the proposal distributigr(-|-) for the candidate DOA
parametegp™ is two-fold: with a certain probability, it is assigned
to be the multidimensional uniform distribution ovig, 2], for

(18)

Table 4.1: Parameters of the multipath for simulated data

tudes aréid Rayleigh distributed ovelN = 125 received symbols
(or snapshots) foP = 25, with an SNR of 5dB. The noise is
coloured with an AR filter, the poles for which abe95e=91-07"
and0.95e70-887

The Reversible Jump MCMC scheme goes through 1500 iter-

a fully random exploration; or it is a perturbation of the actual ations after a burn-in period of 300 iterations. The results, as found
state, for a local exploration. This hybrid approach gives the bestby the algorithm, are summarized in figure 1. Itis clear from the
performance in terms of rate of convergence and variance of thehistograms that the DOA and TOA parameters concentrate around
estimate [2]. For the TOA parameter, the proposal distribution their true values. The posterior probability of the number of scat-

gz2(+|*) is simply a uniform distribution. The acceptance ratie-
Tupdate ITOM (16) for the update move is therefore:

_INW (9% R) Y
INW (7,,k) " (19)

rupdate((b]:ﬂ T;7 k7 ¢k) Tk, k)

The candidatd ¢*, 7*} is then accepted as the current state with
probability aypdate = min[rypdate, 1], according to the proce-
dure described in more detail in [2].

3.2. Birth and Death moves

In the death move case, we assume the current state is in

(@ k+1)s T(k+1),{k + 1}), and we wish to determine whether
the next state is iff¢,, 7r, {k}) at the next iteration. This in-
volves the removal of a scatterer point, which is chosen randomly
amongst th¢k+1) existing points. The candidate st} 77, k)

is proposed and accepted with probability = min[rgeqtnl],
given as:

Tdeath((l);:TZ?k’ ¢k+1’ Tk+17k + 1) =
INW (17, i, k)| ¥
INW (Tht1, Ppep1, b+ 1)[7N (20)
% ﬂ_(MP—k—l)l—\(N —MP+k+1)(k+ 1)(d2N)

Similarly, in the birth move case, we assume the current state is
(¢, Tk, {k}) and we wish to determine whether the next state is
in (@(+1), T(k+1), {k + 1}). This involves the addition of a new
scatterer point, which is proposed uniformly oyey2~] x (0, P).

terers beingk = 2 was evaluated at 75% (due to a high noise

level), as summarized in table 4.2. Clearly, the algorithm correctly
identified the parameters of the simulated multipath scenario. Fur-
ther simulation results for the DOA case only are presented in [7].
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Figure 1: Simulations: Histogram of the TOA (top); Histogram of
DOA (bottom).

5. APPLICATION TO REAL-LIFE PROBLEM

In this section, we apply our proposed scheme to real-life outdoor
propagation measurements with a typical data set collected on Mc-
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Table 4.2: Posterior estimate of the number of paths using MCMC
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Master University campus. !

The channel impulse response, in time and space, is measured osp | st
directly in the time domain from ai/ = 8 elements experimen-
tal receiver by transmitting a wideband CDMA signal and corre-

probability

lating the received signal with the known transmitted sequence, at |
each channel of the receiving array. The transmitted signal is a R = = o
255 chip pseudonoise (PN) sequence at 5 MHz IF bandwidth. It DOAndeg

was observed that the maximum excess delay of the channel can
be considered by using onlf = 25 chips. An initial calibra-

tion was first realized, based on measurements with the antennd_
array inside an anechoic chamber. The measurements were corf the DOA (bottom).
ducted with the receiving base station at different locations and at
different heights, in a pico-cell scenario that offers rich multipath
characteristics with severe fading.

For the purpose of demonstrating the proposed algorifirs; The authors are most greatful to Dr. Christophe Andrieu for the
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igure 3: Measurements: Histogram of the TOA (top); Histogram
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