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ABSTRACT

Wedevelopaparametricsinusoidalanalysis/synthesismodelwhich
canbeappliedto bothspeechandaudiosignals.Thesesignalsare
characterisedby large amplitudevariationsand small frequency
variationwithin a shortanalysisframe. The modelcomprisesof
a Gaussianmixture representationfor the envelopeanda sumof
linear chirps for the frequency components.A closedform so-
lution is derived for the frequency domainparametersof a chirp
with Gaussian-mixtureenvelope,basedon thespectralmoments.
An iterative algorithmis developedto selectandestimatepromi-
nentchirpsbasedon thepsycho-acousticmaskingthreshold.The
modelcanadaptively selectthenumberof time-domainandfrequency-
domainparametersto suitaparticulartypeof signal.Experimental
evaluationof the techniquehasshown that about2 to 4 parame-
ters/msis sufficient for neartransparentquality reconstructionof a
varietyof wide-bandmusicandspeechsignals.

1. INTRODUCTION

Speechandmusicsignalsareinherentlynon-stationary. The im-
portanttime-varying characteristicsof thesesignalsarethe time-
varyingharmonicsandthesignaltime-envelopeasdeterminedby
the signal analysisand psycho-acousticexperiments. The cur-
rently successfulmodelsof speechandaudio,assumethe signal
characteristicsto be time-invariantover an analysiswindow and
estimateeitherthespectralenvelope(LPC) or the individual har-
monics(sinusoids).The time-varying informationis thengener-
atedeither throughinterpolationbetweensuccessive windows or
as a residualwithin the window of the time-invariant envelope.
Therehave beenattemptsto directly estimatetime-varying com-
ponentsin the signal [1, 5, 6], which have usedquite restrictive
modelsin termsof modellingthe time-envelopeor the frequency
variation. Also, the modelsin [2, 5, 6, 7] have beenmainly for
speechsignals;audiosignalmodelsin [3, 8, 9] usestationarysi-
nusoidalmodelappendedwith residualwaveformrepresentation.
We develop a generalmodel for speechandaudiosignalswhich
providesfor time-varyingcharacteristicof theshort-timeenvelope
aswell astime-varyingspectralcomponents.This resultsin min-
imisationof interpolationbetweensuccessivewindowsor theneed
for usingresidualsignals. The improved envelopemodelhasre-
sultedin reducedpre-echo[4] which is a commonproblemin au-
dio signals.

2. MIXTURE GAUSSIAN CHIRP MODEL (MGC)

ThemixtureGaussianmodelis anextensionof theearliermodel
of speechwhich usedGaussianlinear chirps [5, 6]. In general,

time-varying tonal signals,suchasnotesof musicalinstruments
andvoicedspeech,canbe consideredasa sumof partialswith a
time-varyingenvelopeandfrequency, over thedurationof thenote
or thephoneme.Overashortanalysissegment,muchsmallerthan
a note,the signal is usuallyassumedto be time-invariant(quasi-
stationary),which hasleadto thedevelopmentof eitherthesinu-
soidalmodelor linearsystem(LPC)modelof thesignal.It is clear
that over many segmentsof speechor audio,the time-invariance
is not valid, leadingto poor quality synthesis. To improve this
situation,we canconsiderlinearchirpsfor the frequenciesof the
partialsanda Gaussianmixture function for the envelopeof the
signalsegmentof theorderof
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which is a sumof B �DC�E distinctchirp components(for a realval-
uedsignal)wheretheinstantaneousfrequency (IF) of the F �	� com-
ponentis givenby G 7 � �����H�JI 7 �LK E�M 7 � � . Thetotal signalen-
velopeis representedasasumof N � numberof Gaussiancompo-
nentswith meansO � � , variances

�PC�E.Q � � andscalefactors
� � � .

For shortsegmentsof the signal, the Gaussianmixture model is
consideredadequatesinceit canrepresentsuddenattacksor de-
caysor multi-modalshapes.

3. MODEL ESTIMATION

Thejoint estimationof theparametersin eqn(1) is quitecomplex
andmay not yield any useful results. Instead,we resortto a se-
quentialapproachof first estimatingtheenvelopeparametersand
thenthespectralcomponents,successively.

3.1. Envelope parameters

The parameterswhich determinethe time-envelopeof the signal
are N � ,

� � � , O � � and
Q � � . Let R ����� , �S�UTWVYX4Z+Z+X:�[X�Z+Z+X\V

, be
theenvelopeof thesignalin a frameof duration

E�V K �
. We es-

timate R ����� by filtering the rectifiedsignalwith a low-passfilter
having a transitionbandin the rangeof ] �^TS_?��`ba

. Fig.1 illus-
tratesthealgorithmfor theenvelopeparameterestimation.Among
the variousalgorithmsfor mixture Gaussianapproximation,this
approachis found simple and effective. In this procedure,ma-
jor peaksin the envelopefunction R ����� are identified and each
is fitted with a Gaussianfunction, sequentially. The parameters
of eachGaussianare obtainedfrom the samplemeanand sam-
ple varianceof the windowed envelope, R-c �����d� R ���e�fZ gh����� ;



gh������� ! #i%(j )+* #-,.j /�1 whereO�c is atthechosenpeakand
Q c de-

pendson theadjoiningvalleys. AssumingR ���e�lk � ! #i% )+* #-, / 1 ,
aroundO c ,

�
, O ,

Q
canbeeasilysolvedfrom thecomputedsam-

plemeanO�m , samplevariance
Q m andthechosenO�c and

Q c .
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Fig. 1. Identificationandestimationof envelopeparameters

3.2. Spectral parameters

Thespectralparametersare
I 7 � ,

M 7 � ,
8 7 � , n 7 � and B � . For this

estimation,insteadof the MMSE (minimum meansquareerror)
approach,we have formulateda methodbasedon spectralmo-
ments,which leadsto closed-formsolutionof thespectralparam-
etersfor a single chirp. Taking a successive approximationap-
proach,theparametersof all thechirpsareestimated,sequentially.

3.2.1. Singlechirp

Let s(t) bea linearchirp having anenvelopeof a sumof N Gaus-
sians;i.e.,
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v?� �	p\��� ! #&% ' )<* #-, ' /�1 , and the parametersof
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beenalreadyestimatedthroughthetime-domainenvelopeestima-
tion procedure.Let usconsiderthespectralmomentsof thesignal�$�	p\�
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Sinceeach

v$� �	p\�
is a Gaussianfunction, we caneasilyavoid the

integrationto evaluate� , � � , � � 1 and � � andinsteadobtainthem
throughclosedform expressionsin termsof

u �
,
Q �

, and O � , which
have beenearlierestimated.Also, we can computethe spectral
momentsin eqns(2, 3) from the computed

� �6��I6�4� {
. Thus, us-

ing � X � � X � � 1 X � � and the moments,we can solve for
I��

andM
in a closedform. The sign of

M
is determinedfrom the cur-

vatureof the phasearound
I��

. The complex valuedscalefac-
tor of the chirp is obtainedusing a least squareerror formula-

tion [5, 6], which resultsin
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3.2.2. Multiple chirps

The caseof multiple chirpsis solvedusinga successive approxi-
mation(Fig 2) approachof identifying the dominantcomponent,
isolatingit usinga frequency-domainwindow andestimatingthe
chirp parameters.After theparametersof onechirp areestimated,
thechirpis synthesisedandsubtractedfrom thesignalandthenext
chirp is estimatedfrom the spectrumof the residualsignal. This
processis continueduntil all theidentifiedchirpsareestimated.
For resolvingbetweenchirps, it is clearthat longertime-domain
analysiswindow would bebeneficialwhereastime localisationof
thebeginningandendingof thechirpwouldbeaffectedby thelong
window. Henceframe-window hasto bechosenoptimallyandthe
frequency-domainwindow (for isolating the chirps) shouldbe a
functionof thetime-window. Let G 7 ��I6� bethefrequency-domain
window for estimatingthe F ��� chirp component.The windowed
spectrum,G 7 ��I6�4� �¢��I6�4� { , approximatelyrepresentsa singlechirp
with mixture Gaussianenvelope. Let 
I 7 , �L£ F £ B � be the
prominentspectralpeaksof themulticomponentsignal.Using 
I 7
asthecentre-frequency, aGaussianfrequency-domainwindow can

beused: G 7 ��I6� � ! #i¤ =2¥ 1¦ )<; # 
; = /�1 , whereR {§ is thevarianceof the
analysistime-window and ¨ 7 is a factorchosensuchthatthewidth
of thewindow G 7 ��I6� canbescaleddependingonthenatureof the
peaksin thespectrum.Thescalingis importantbecause,a broad
frequency-window will be affectedby adjacentpeakswhereasa
narrow window causesunderestimationof thechirp rate.Fromthe
samplemeanandvariancecomputedfrom thewindowedspectrum� �6��I¢�4� { G 7 ��I6� , I 7 and

M 7
canbesolvedthroughtheeqns.(2, 3).

It may be notedthat all the frequency-domainparameterscanbe
refinedthroughsubsequentiterationsof re-estimatingeachchirp
from the residualsignal obtainedafter subtractingthe contribu-
tionsof all otheridentifiedchirpswith thelatestestimatedparam-
eters.Wecanalsohavedifferentenvelopefunctionsfor eachchirp
(generalisationto the presentmodel), by re-estimatingthe time-
domainparametersalso, after eachchirp is estimatedand sub-
tractedfrom the signal. But, initial experimentsdid not indicate
a needfor thisgeneralisation.
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Fig. 2. Frequencydomainparameterestimationthroughsucces-
siveapproximation

4. PERFORMANCE COMPARISON

The performanceof the new parameterestimationtechniqueis
comparedwith othertechniquesavailablein theliteraturefor esti-
mationof constantamplitudemulti-componentchirpsignals.Also,
theperformanceof themodelonrealsignalsof speechandaudiois
determinedusinga measureof thenumberof parametersrequired
to synthesisethesignal,with neartransparentquality.



4.1. Synthetic Signals

Thefirst signalis a two componentconstant-amplitudechirp sig-
nal, reportedin [5, 6]. The signal hassignificantspectralover-
lap becauseof high

M 7
aswell assmall

I 7
separation.Theactual

parametervaluesand thoseestimated,are comparedin Table-1.
It can be seenthat estimationerror is © �Pª

and this compares
favourablywith thatreportedin [5, 6]. Thesecondsignal,shown in
Table-2,simulatesavoicedspeechsegment.It canbeseenthatthe
new modelis ableto estimatemostof theparameterswith © ��ª
error, only the

M 7
of thehigh-frequency components(

�?�
to
�P«

) are
foundto havemoreerror. This is aconsiderableimprovementover
theresultsfor thesamesignal,reportedusinganalgorithmbased
on MMSE [5], whichshowedthatit waspossibleto estimateonly
thefirst

«
harmonics.

Table 1. Two componentconstantamplitudechirp signalparame-
tersandMGC estimates

Cmp
� 7 
� 7 n 7 
n 7 I 7 
I 7 M 7 
M 7

1 1 0.99 0 -0.03 1.0 1.0 1e-3 1e-3
2 0.8 0.79 1 1.03 1.2 1.2 1e-3 1e-3

Table 2. Syntheticspeechsegmentparametersandestimatedpa-
rametersusingtheMGC model

Cmp
� 7 
� 7 n 7 
n 7 I 7 
I 7 M 7�¬ �4�?­ 
M 7

1 0.8 0.80 0 0.0 0.2 0.20 1.5 1.5
2 0.7 0.70 1 1.0 0.4 0.40 3.0 3.0
3 0.9 0.90 0 0.0 0.6 0.60 4.5 4.5
4 1.0 1.00 -1 -1.0 0.8 0.80 6.0 6.0
5 0.9 0.90 0 0.0 1.0 1.00 7.5 7.5
6 0.8 0.80 1 1.0 1.2 1.20 9.0 9.0
7 0.6 0.60 0 0.0 1.4 1.40 10.5 10.5
8 0.4 0.40 -1 -1.0 1.6 1.60 12.0 12.0
9 0.3 0.30 0 -0.0 1.8 1.80 13.5 13.5
10 0.4 0.40 1 1.0 2.0 2.00 15.0 15.0
11 0.5 0.49 0 0.0 2.2 2.19 16.5 16.4
12 0.4 0.39 -1 -0.9 2.4 2.39 17.5 16.9
13 0.4 0.39 0 -0.0 2.6 2.60 19.0 20.4
14 0.3 0.29 1 1.1 2.8 2.79 20.5 17.5
15 0.2 0.17 0 0.0 3.0 2.97 22.0 16.4

4.2. Speech/Audio signals

Theconcernin modellingspeechandaudiois to obtainaminimum
numberof components( N � K B � ) i.e., thenumberof Gaussians
for the envelopeand the numberof chirps, which can result in
transparentquality reconstruction.It is seenthatdifferenttypesof
signals(transient,tonal)requiredifferent N � and B � . Hence,the
MGC parameterestimationalgorithmdeterminesthesequantities
adaptively for eachframe, to meetthe psychoacousticthreshold
[10] for the frame. Thus,we canquantify the averagemodelling
costas

� �® t ®� ���i¯ N � K ]?B �0�qC�°&±�²(� ! �4³�a ! ���b�P� , whereeach
Gaussianin the envelopeis

¯
parametersandeachchirp is ] pa-

rameters. It may be notedthat the measureof parameters/msis
similar to the measureof perceptualentropy, indicatingthe min-
imum numberof parametersto achieve neartransparentquality
reconstruction.

In the first experiment,a male-femaleconversationalspeech
(of GSM evaluationtests)sampledat 8kHz is usedfor evaluation.
A overlappedframeanalysisof 25msframesizeand64msKaiser

window (beta=8) is chosento minimisespectraldomainside-lobe
leakage.An overlap-addsynthesisis performed.It is foundthatan
averageof 3.7852parameters/msresultsin neartransparentqual-
ity speech.In thesecondexperimentalcondition(case-2),thesig-
nal envelopeis restrictedto beoneGaussianwhich resultedin an
overall parameterreductionof 15.27%.But, theperceptualqual-
ity showed several artifacts. In contrast,constrainingthespectral
componentsandleaving theenvelopecomponentsunconstrained,
resultedin a18.66%reduction,but noartifacts;thequality is quite
closeto case-1.This shows the importanceof mixture-Gaussian
envelopemodelling. Fig (3) comparesvoicedspeechmodelling
usingchirpsandconstantsinusoids.It is clearthat thechirpsare
more effective in reducingthe modelling error especiallyin the
mid-high frequency regionswherethespectralpeaksarebroader
andcannotbeaccuratelymodelledby sinusoids.
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Fig. 3. Spectral fit for one frameof voicedspeech (a) residual
spectrumafter sine+ chirp modelis ´ E.� � 8

belowtheoriginal
at peaklocationsthroughoutthefrequencyscale(b) residualwith
sineonly modelshowsthat broaderpeaksat frequenciesµ 1 rad
(1.3kHz)are poorlymodelled

Table 3. MGC modellingof speech;NT = neartransparent,A =
artifacts,NA = no artifacts

Case Gauss/ms Sines+Chirps/ms param/ms quality

1 0.1603 0.9197 4.1597 NT
2 0.0800 0.8000 3.4400 A
3 0.1603 0.7197 3.3597 NA

Next, several piecesof instrumentalmusicareselectedfrom the
‘SQAM’ testdata(16kHzsamplesandmonophonic).The MGC
analysisis donewith 50msframesizeand128msKaiserwindow
(beta=8)with overlap-addsynthesis.The parametricrepresenta-
tion of signals1 to 5 (Table-4)resultedin neartransparentqual-
ity reconstructionof the original sound. Trumpethasthe maxi-
mum richnessamongthe five signals(which is alsoperceptually
justified), whereasflute, piccolo andoboehave lower parametric
entropy. As expected,thepercussiontypeof signalhasthemaxi-
mumrateof parametersfor theenvelopefunctionandtrumpethas
themaximumfrequency domainload. It hasbeenobservedthatre-
ducingthenumberof frequency-domainparametersby

¯ �$ª
with-

out restrictingthetime-domainparametersreducestheperceptual
quality but do not introduceartifacts. It shows thatmodellingthe



time-envelopeof speech/audiosignalsis crucialin preservingtheir
naturalquality and restricting the frequency-domain parameters
offers a moregracefuldegradationin perceptualquality. On the
other hand,reducingthe time-domainparametersresultsin pre-
echoor otherartifacts.
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Fig. 5. Adaptivechoiceof parametersbasedonsignalcharacteris-
tics (a)time-signalof piccolo(b)thenumberof chirps ( B � ) varies
dependingon the psychoacousticthreshold. (c)the numberof
Gaussians( N � ) requiredto modelthetime-envelope(d)segmental
SNRwith average SNR= 18.36db

5. CONCLUSION

A mixtureGaussianenvelopechirp model(MGC) is proposedfor
representingtime-varyingsignalsasa sumof linearchirp compo-
nents.This is ageneralisationof theclassicalstationarysinusoidal

Table 4. MGC modellingof audiofor neartransparentquality
Case Sig Gauss/ms Sines+Chirps/ms param/ms

1 trumpet 0.1025 0.4824 2.2371
2 mari 0.2239 0.3391 2.0281
3 oboe 0.0731 0.3613 1.6645
4 picc 0.0700 0.3288 1.5252
5 flute 0.0918 0.3281 1.5858

modeldevelopedfor speechandlater extendedto sinusoidswith
time-varying amplitudeand linear chirps with a single-Gaussian
envelope. While the existing modelshave beenfound to be in-
sufficient for high quality reconstructionof audiosignals,thenew
MGC modelis shown to beeffectivefor avarietyof signalsthatare
harmonic,tonal,transientandalsonoise-like speechsignals.This
hasbeenachievedbecauseof effective modellingof thesignalen-
velopeaswell asa built-in tradeoff of the numberof parameters
usedfor time-domainenvelopeandfrequency domainchirpsin the
overall model. Theparameterestimationof thenew modelis de-
velopedaroundaclosed-formsolutionfor amixed-Gaussianenve-
lopechirpparametersusingspectralmoments.Anothernovelty of
theproposedschemefor realsignalsis theuseof psychoacoustic
criteriain theselectionof thechirps.
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