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ABSTRACT

Wedevelopaparametrisinusoidahnalysis/synthesimodelwhich
canbeappliedto bothspeectandaudiosignals.Thesesignalsare
characterisedy large amplitudevariationsand small frequeny
variationwithin a shortanalysisframe. The modelcomprisesof
a Gaussiammixture representatioffor the ervelopeanda sumof
linear chirpsfor the frequeng components.A closedform so-
lution is derived for the frequeng domainparametersf a chirp
with Gaussian-mixturenvelope,basedon the spectralmoments.
An iterative algorithmis developedto selectand estimatepromi-
nentchirpsbasedon the psycho-acoustimaskingthreshold.The

modelcanadaptvely selecthenumberof time-domairandfrequeng-

domainparameterso suitaparticulartypeof signal. Experimental
evaluationof the techniquehasshavn that about2 to 4 parame-
ters/mds sufiicientfor neartransparenguality reconstructiorof a
variety of wide-bandmusicandspeectsignals.

1. INTRODUCTION

Speechand musicsignalsareinherentlynon-stationary The im-

portanttime-varying characteristicef thesesignalsarethe time-
varying harmonicsandthe signaltime-ervelopeasdeterminedyy
the signal analysisand psycho-acousti@xperiments. The cur

rently successfumodelsof speechandaudio, assumehe signal
characteristicgo be time-invariantover an analysiswindow and
estimateeitherthe spectralervelope(LPC) or the individual har

monics(sinusoids). The time-varying informationis thengener

atedeitherthroughinterpolationbetweensuccessie windows or
as a residualwithin the window of the time-invariant ervelope.
Therehave beenattemptsto directly estimatetime-varying com-
ponentsin the signal[1, 5, 6], which have usedquite restrictve
modelsin termsof modellingthe time-ervelopeor the frequeny

variation. Also, the modelsin [2, 5, 6, 7] have beenmainly for

speectsignals;audiosignalmodelsin [3, 8, 9] usestationarysi-

nusoidalmodelappendedvith residualwaveformrepresentation.
We develop a generalmodelfor speechand audio signalswhich

providesfor time-varyingcharacteristiof theshort-timeenvelope
aswell astime-varying spectralcomponentsThis resultsin min-

imisationof interpolationbetweersuccessie windows or theneed
for usingresidualsignals. The improved ervelopemodelhasre-
sultedin reducedpre-echd4] whichis acommonproblemin au-
dio signals.

2. MIXTURE GAUSSIAN CHIRP MODEL (MGC)

The mixture Gaussiarmodelis an extensionof the earliermodel
of speechwhich usedGaussiarinear chirps[5, 6]. In general,

time-varying tonal signals,suchas notesof musicalinstruments
andvoicedspeechganbe consideredasa sumof partialswith a
time-varyingenvelopeandfrequeng, overthedurationof thenote
orthephonemeOverashortanalysissggment,muchsmallerthan
a note, the signalis usuallyassumedo be time-invariant(quasi-
stationary)which hasleadto the developmentof eitherthe sinu-
soidalmodelor linearsystem(LPC) modelof thesignal.lt is clear
that over mary segmentsof speector audio, the time-invariance
is not valid, leadingto poor quality synthesis. To improve this
situation,we canconsiderinear chirpsfor the frequencieof the
partialsand a Gaussiammixture function for the envelopeof the
signalsegmentof theorderof 100ms. Thereconstructegignalin
them!* framecanberepresentedss,, (n) =
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whichis asumof L,, /2 distinctchirp componentgfor arealval-
uedsignal)wheretheinstantaneousequeny (IF) of thel*” com-
ponentis givenby ;. (n) = wy,, + 286, n. Thetotal signalen-
velopeis representedsa sumof G,, numberof Gaussiartompo-
nentswith meansy;,, , variancesl /2«;,, andscalefactorsA;,, .
For shortsegmentsof the signal, the Gaussiarmixture modelis
consideredadequatesinceit canrepresensuddenattacksor de-
caysor multi-modalshapes.

3. MODEL ESTIMATION

Thejoint estimationof the parameterin eqn(1) is quite comple
andmay not yield ary usefulresults. Instead,we resortto a se-
guentialapproactof first estimatingthe ernvelopeparameterand
thenthe spectracomponentssuccessiely.

3.1. Envelope parameters

The parametersvhich determinethe time-ervelope of the signal
areGpm, Aip, Wi, anda,,,. Leto(n),n = —N,..,0,.., N, be
the ervelopeof the signalin a frameof duration2V + 1. We es-
timate o (n) by filtering the rectified signalwith a low-passfilter
having a transitionbandin the rangeof 40 — 80H z. Fig.lillus-
tratesthealgorithmfor theervelopeparameteestimation Among
the variousalgorithmsfor mixture Gaussiarapproximation this
approachis found simple and effective. In this procedure ma-
jor peaksin the ervelopefunction o(n) are identified and each
is fitted with a Gaussiarfunction, sequentially The parameters
of eachGaussiarare obtainedfrom the samplemeanand sam-
ple varianceof the windowed ervelope,ow(n) = o(n).w(n);



w(n) = e~ ™k wherep,, is atthechoserpeakanda,, de-
pendson the adjoiningvalleys. Assumingo(n) ~ A==
aroundu.,, A, p, @ canbeeasilysolved from the computedsam-
ple meanu,, samplevariancea, andthechosernu,, anda,,.
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Fig. 1. Identificationand estimationof envelopeparametes

3.2. Spectral parameters

Thespectraparameterarew,,,, 81, Bi.. » ¢i,,, ahdL,. Forthis
estimation,insteadof the MMSE (minimum meansquareerror)
approachwe have formulateda methodbasedon spectralmo-
ments,which leadsto closed-formsolutionof the spectralparam-
etersfor a single chirp. Taking a successie approximationap-
proachtheparametersf all thechirpsareestimatedsequentially

3.2.1. Singlechirp

Let s(t) bealinear chirp having anenvelopeof a sumof G Gaus-
siansj.e.,s(t) = [Zle kigi(t)]Bejﬂtz/“j‘“Ot*‘ﬁO where

gi(t) = e~ (=1)* andthe parameterf g;(t) and k; have
beenalreadyestimatedhroughthe time-domairervelopeestima-
tion procedureLet usconsidertthe spectramomentwf the signal

s(t),
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whereE = [ |s(t)|>dt = [[27, kigi(t)]* dt,

E. = [ts@)?dt = [, kigi(t)]? dt,

B = [Pls@)dt = [ €[00, kigi()] dt,

Be = [[X0, Y5, kikjoian (8 — pa)(t — p13)gi(t)g; (£)] dt.

Sinceeachg;(t) is a Gaussiarfunction, we caneasily avoid the
integrationto evaluateFE, E;, E,» andE. andinsteadobtainthem
throughclosedform expressionsn termsof k;, «;, andp;, which
have beenearlier estimated. Also, we can computethe spectral
momentsin eqns(2, 3) from the computed|S(w)|®. Thus, us-
ing E, E;, E;2, E. and the moments,we can solve for wo and
B in a closedform. The sign of 8 is determinedfrom the cur-
vature of the phasearoundwy. The comple valuedscalefac-
tor of the chirp is obtainedusing a least squareerror formula-

. . ) . X2, @)S(w)d
tion [5, 6], which resultsin Be/?° = [xia@seds
J 1 Xear(w)? dw

Xoat(w) <> [Zil kiefai(nfm)2]ejﬂt2/2+jwot

where

3.2.2. Multiple chirps

The caseof multiple chirpsis solved usinga successie approxi-
mation (Fig 2) approacthof identifying the dominantcomponent,
isolatingit usinga frequeng-domainwindowv andestimatingthe
chirp parametersAfter the parametersf onechirp areestimated,
thechirpis synthesisedndsubtractedrom thesignalandthenext
chirp is estimatedrom the spectrumof the residualsignal. This
processs continueduntil all theidentifiedchirpsareestimated.
For resolvingbetweenchirps, it is clearthat longertime-domain
analysiswindow would be beneficialwhereagime localisationof
thebeginningandendingof thechirpwould beaffectedby thelong
window. Henceframe-windev hasto be choseroptimally andthe
frequeng-domainwindow (for isolatingthe chirps) shouldbe a
functionof thetime-windaw. Let ©;(w) bethefrequeng-domain
window for estimatingthe I** chirp component. The windowed
spectrum£;(w)|S(w)|?, approximatelyrepresents singlechirp
with mixture Gaussiarervelope. Let &;, 1 < | < L,, bethe
prominentspectralpeaksof the multicomponensignal. Usingw;
asthecentre-frequeng aGaussiafirequeng-domainwindow can

beused:Q (w) = e~ M7 ~“D? \whereo? is thevarianceof the
analysigime-windov and-; is afactorchosersuchthatthewidth

of thewindow Q; (w) canbescaleddependingonthenatureof the
peaksin the spectrum.The scalingis importantbecausea broad
frequeng-window will be affectedby adjacentpeakswhereasa

narrav window causesinderestimationf thechirprate.Fromthe
samplemeanandvariancecomputedrom thewindowvedspectrum
|S(w)]?Q(w), w; andB; canbesolvedthroughtheeqns.(2, 3).

It may be notedthatall the frequeng-domainparameterganbe

refinedthroughsubsequeniterationsof re-estimatingeachchirp

from the residualsignal obtainedafter subtractingthe contritu-

tionsof all otheridentifiedchirpswith the latestestimatecgaram-
eters.We canalsohave differentervelopefunctionsfor eachchirp

(generalisatiorto the presentmodel), by re-estimatingthe time-

domain parameterslso, after eachchirp is estimatedand sub-
tractedfrom the signal. But, initial experimentsdid not indicate
aneedfor this generalisation.
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Fig. 2. Frequencydomainparameterestimationthroughsucces-
siveapproximation

4. PERFORMANCE COMPARISON

The performanceof the new parameterestimationtechniqueis
comparedvith othertechniquesvailablein theliteraturefor esti-
mationof constanamplitudemulti-componenthirp signals.Also,
theperformancef themodelonrealsignalsof speeclandaudiois
determinedisinga measuref the numberof parametersequired
to synthesiseéhe signal,with neartransparenguality.



4.1. Synthetic Signals

Thefirst signalis atwo componentonstant-amplitudehirp sig-
nal, reportedin [5, 6]. The signal hassignificantspectralover-
lap becausef high 8; aswell assmallw; separation.The actual
parametenaluesand thoseestimated,are comparedn Table-1.
It canbe seenthat estimationerroris < 1% and this compares
favourablywith thatreportedn [5, 6]. Thesecondsignal,shavnin
Table-2,simulatesavoicedspeectsegment.It canbeseerthatthe
nev modelis ableto estimatemostof the parametersvith < 1%
error, only the 3; of the high-frequeng componentg11 to 15) are
foundto have moreerror Thisis aconsiderablémprovementover
the resultsfor the samesignal,reportedusingan algorithmbased
on MMSE [5], which shavedthatit waspossibleto estimateonly
thefirst 5 harmonics.

Table 1. Two componentonstanamplitudechirp signalparame-
tersandMGC estimates

window (beta=8) is choserto minimisespectradomainside-lobe
leakage An overlap-addsynthesiss performed. It is foundthatan
averageof 3.7852parameters/meesultsin neartransparengual-
ity speechln thesecondexperimentalcondition(case-2)the sig-
nal ervelopeis restrictedto be one Gaussiarwhich resultedin an
overall parametereductionof 15.27%. But, the perceptuabual-
ity shaved several artifacts. In contrast,constraininghe spectral
componentsandleaving the envelopecomponentsinconstrained,
resultedn a 18.66%reduction but noartifacts;thequality is quite
closeto case-1.This shavs the importanceof mixture-Gaussian
ervelopemodelling. Fig (3) comparesvoiced speechmodelling
usingchirpsand constantinusoids.|t is clearthatthe chirpsare
more effective in reducingthe modelling error especiallyin the
mid-high frequeng regionswherethe spectralpeaksare broader
andcannotbeaccuratelynodelledby sinusoids.
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4.2. Speech/Audio signals

Theconcerrin modellingspeectandaudiois to obtainaminimum
numberof component$G,, + Ly,) i.e.,thenumberof Gaussians
for the envelope and the numberof chirps, which canresultin
transparengiuality reconstructionlt is seenthatdifferenttypesof
signals(transienttonal)requiredifferentG,, andL,,. Hence the
MGC parameteestimationalgorithmdetermineghesequantities
adaptvely for eachframe,to meetthe psychoacoustithreshold
[10] for the frame. Thus,we canquantify the averagemodelling
costas( SV _ 3G + 4Ln)/ framesize(ms), whereeach
Gaussiarin the ervelopeis 3 parameters&ndeachchirpis 4 pa-
rameters. It may be notedthat the measureof parameters/mss
similar to the measureof perceptuakntropy, indicatingthe min-
imum numberof parameterdo achiere neartransparentuality
reconstruction.

In the first experiment,a male-femalecorversationalspeech
(of GSM evaluationtests)sampledat 8kHz is usedfor evaluation.
A overlappedrameanalysisof 25msframesizeand64msKaiser

artifacts,NA = no artifacts
Case Gauss/ms Sines+Chirps/ms param/ms quality

1 0.1603 0.9197 4.1597 NT
2 0.0800 0.8000 3.4400 A
3 0.1603 0.7197 3.3597 NA

Next, several piecesof instrumentalmusic are selectedrom the
‘SQAM’ testdata(16kHz samplesand monophonic). The MGC
analysisis donewith 50msframesizeand 128msKaiserwindowv
(beta=8)with overlap-addsynthesis.The parametricrepresenta-
tion of signalsl to 5 (Table-4)resultedin neartransparentjual-
ity reconstructiorof the original sound. Trumpethasthe maxi-
mum richnessamongthe five signals(which is also perceptually
justified), whereadlute, piccolo and oboehave lower parametric
entropy. As expected the percussiortype of signalhasthe maxi-
mumrateof parameteror the envelopefunctionandtrumpethas
themaximumfrequeng domainload. It hasbeenobseredthatre-
ducingthe numberof frequeng-domainparameterdy 30% with-
outrestrictingthe time-domainparameterseduceghe perceptual
quality but do notintroduceartifacts. It shavs thatmodellingthe



time-ervelopeof speech/audisignalds crucialin preservingheir

natural quality and restrictingthe frequeng-domain parameters

offers a more gracefuldegradationin perceptualquality. On the
other hand, reducingthe time-domainparametersesultsin pre-
echoor otherartifacts.
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Fig. 5. Adaptivechoiceof parametes basednsignalcharacteris-
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5. CONCLUSION

A mixture Gaussiarervelopechirp model(MGC) is proposedor
representingime-varying signalsasa sumof linear chirp compo-
nents.Thisis ageneralisatiomf theclassicaktationarysinusoidal

Table 4. MGC modellingof audiofor neartransparentjuality

Case Sig Gauss/ms Sines+Chirps/ms param/ms
1 trumpet  0.1025 0.4824 2.2371
2 mari 0.2239 0.3391 2.0281
3 oboe 0.0731 0.3613 1.6645
4 picc 0.0700 0.3288 1.5252
5 flute 0.0918 0.3281 1.5858

model developedfor speechand later extendedto sinusoidswith
time-varying amplitudeand linear chirps with a single-Gaussian
ervelope. While the existing modelshave beenfound to be in-
sufiicient for high quality reconstructiorof audiosignalsthe new
MGC modelis shovn to beeffective for avarietyof signalshatare
harmonic tonal,transientandalsonoise-like speectsignals.This
hasbeenachieved becaus®f effective modellingof the signalen-
velopeaswell asa built-in tradeof of the numberof parameters
usedfor time-domairervelopeandfrequeng domainchirpsin the
overall model. The parameteestimationof the newv modelis de-
velopedaroundaclosed-formsolutionfor amixed-Gaussiaerve-
lope chirp parametersisingspectraimoments Anothernovelty of
the proposedschemedor real signalsis the useof psychoacoustic
criteriain the selectionof the chirps.
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