VARIABLE-SIZE VECTOR ENTROPY CODING OF SPEECH AND AUDIO

Yair Shoham

Bell Laboratories, Lucent Technologies
700 Mountain Ave.
Murray Hill, NJ 07974, USA

ABSTRACT

Many modern analog media coders employ some form of en-
tropy coding (EC). Usually, a simple per-letter EC is used to
keep the coder’s complexity and price low. In some coders,
individual symbols are grouped into small fixed-size vectors
before EC is applied. In this work we extend this approach
to form Variable-Size Vector EC (VSVEC) in which vector
sizes may be from 1 to several hundreds. The method is,
however, complexity-constrained in the sense that the vec-
tor size is always as large as allowed by a pre-set complexity
limit. The idea is studied in the framework of an MDCT
transform coder. It is shown experimentally, using diverse
audio material, that a rate reduction of about 37% can be
achieved. The method is, however, not specific to MDCT
coding but can be incorporated in various speech, audio,
image and video coders.

1. INTRODUCTION

Analog media (speech, audio, image, etc) source coding is
often carried out in two steps. First, a lossy transforma-
tion of the analog data into discrete symbols is performed.
Second, lossless compression, commonly referred to as en-
tropy coding, is performed to further reduce the bit stream
length. Often, the distinction between these two steps is
vague or impossible (example: Entropy-based vector quan-
tization [8]). Sometimes, one step is entirely missing, as
in most standard speech coders where no entropy coding is
used (see ITU-T standards G.728, G.729, etc) or in the op-
posite case of file compression (Ziv-Lempel and derivatives
[9]) where no lossy coding is used.

In simple EC applications, the source symbols are pro-
cessed individually (per-letter EC) using techniques like
Huffman coding [1], [2] and arithmetic coding [3], [4]. More
complex EC coders parse the symbol sequence into fixed or
variable-size strings to form Vector EC (VEC). [9] [5]. VEC
utilizes inter-symbol dependencies to achieve high compres-
sion ratios because, fundamentally, the entropy of the com-
bined symbols is never greater than that of the elementary
symbols and most of the times it is significantly lower. The
price paid for this is an increase in complexity which usu-
ally grows exponentially with the vector size and quickly
becomes unmanageable. Also, the VEC coder usually re-
quires a considerable ”lookahead”. This translates into cod-
ing delay that may be disadvantageous in communication
applications. Real-time coders usually use per-letter EC for
speed, simplicity and efficiency [6], [7]. However, in some

modern audio coders, an attempt is made to employ a sim-
ple form of VEC with fixed vector size of 2 to 5. Examples
are the PAC [11], AAC [12] and the PTC [13] coders.

In this work, an improved VEC is proposed. The pro-
posed algorithm is size — unconstrained but complexity —
constrained. The "unbounded” vector size changes as a
function of the local statistics and becomes part of the in-
formation stream. Subject to allowed complexity, the vector
size may be as small as 1 and as big as the whole frame, a
few hundreds or even a few thousands symbols (depending
on the frame size). We refer to this approach as variable-
size VEC (VSVEC). The proposed VSVEC is studied in
the framework of a transform coder that employs the com-
monly used Modified Discrete Cosine Transform (MDCT)
[10]. The coder performs lossy coding of the MDCT coef-
ficients using a set of scalar quantizers (or possibly, a set
of low-dimensional vector quantizers). The quantizer reso-
lution is dynamically adjusted by a perceptual control unit
(PCU) for best perceptual performance. The symbols emit-
ted from these quantizers are subjected to the VSVEC unit
for further lossless compression. In the next section, the
VSVEC algorithm is described in details.

2. VARIABLE-SIZE VECTOR ENTROPY
CODING

2.1. Introduction

Let S, be a discrete symbol, typically, a quantizer index.
It is assumed (without loss of generality) to be a non-
negative integer in the range 0,..,S — 1. The index n is
the location of the symbol in a frame of size N. The first
step in the VSVEC process is the grouping of the symbols
Sy into variable-size vectors represented by a new set of
combined symbols (vectors) Cp, of size N,,, where the in-
dex m points to the mth such symbol in the current frame.
The size N,, may take any value, up to the frame size V.
In this study we allow only contiguous and non-overlapping
grouping. Otherwise, the segmentation is unconstrained.
Non-contiguous grouping may be explored in future work
on VSVEC. It is immediately evident that the EC task is
enormously complex since the alphabet of C,, is astronomic
and so is the number of possible segmentations. For the
VSVEC to be practical, some structure has to be intro-
duced to the segmentation process and to the way C,, are
generated. This is discussed in the next subsection.

2.2. Segmentation

A segmentation is a set of indices kn,,m = 0,.., M —1. M is
the number of segments. k,, is an address to the m—th sub-
frame whose size is N,,,. Therefore, k,, = E;n:;l N; < N.
The m — th subframe is associated with a symbol C,, which
is encoded to produce a binary word of b,, bits. An optimal
segmentation {km }opt is defined as the one that minimizes
the total length of the output binary stream associated with
the current frame:

i=M-—1
{km}opt = arg min E b; (1)
all segmentations 4 5
i=

Segmentation of symbol sequences subject to an optimal-
ity criterion as outlined above has been given consider-
able attention in the area of language modeling for applica-
tions like speech recognition, understanding and synthesis
[14] [15] [16] where the task is to parse a string of speech
units, phonemes or words, to obtain a sequence of words
or sentences (called multigrams). However, segmentation
techniques that are feasible there, including dynamic pro-
gramming and Estimate-Maximize iterative procedures, are
highly impractical in our case. This is because the seg-
mentation problem posed here is larger by several order
of magnitudes. Therefore, a different approach is adopted
here. Instead of finding a strictly optimal solution, over
all possible segmentations, the following is done. The seg-
mentation algorithm attempts to maximize the size of each
subframe subject to a limit on the size of the combined-
symbol alphabet, hence, subject to a limit on complexity.
This approach separates the segmentation process from the
subsequent lossless coding step. It is simple, fast, read-
ily realizable and effective in the sense that it produces a
small number of large segments whenever possible. The
subsequent Huffman coder is optimized for the segmenta-
tion output and, therefore, the coded bit stream is generally
short.

The algorithm is based on mapping subframes to com-
bined symbols C,, by using variable-radix arithmetic. Let
R,, > 0 be a radix (basis) for the mth combined symbol.
Then,

Np—1
Cm = Z Skm+n R'm (2)
n=0
Expression (2) is executed subject to:
Ry = 1Ra% Sk, 4m +1 (3)
n=0
and
Cm < C (4)

where C is the alphabet size of Cp,. The constraint (3)
makes the set Sk, +n,7 =0, .., N» — 1 uniquely decodeable
from C,, (knowing N,, and R,,) while generating an integer
Cp, of a minimum decodeable value. The constraint (4) de-
termines the size of the combined-symbol alphabet, thereby
setting the size of the memory space required by the Huff-
man encoder. The algorithm increments the group size Ny,
until (4) is violated, at which point the m — th symbol is
fixed and the algorithm starts processing the next segment.
The algorithm proceeds until the segmentation is complete,

producing M combined symbols with Em N,, = N. The
number of subframes M varies from one main frame to an-
other. Various ad-hoc strategies can be employed for pars-
ing the frame. The simple ones simply scan the frame left-
to-right or right-to-left. A new segment starts where the
previous ends. More sophisticated algorithms can be based
on identifying areas of activity in the current frame, pars-
ing these areas first. This may be suitable for MDCT data
where such areas are distinctly observable. We used the
simple left-to-right method with contiguous parsing.

The data of the current frame is now represented by the
triplet { Cm, Rm, Nim }, the combined symbol, the radix
and the segment size. Each member of this triplet should
be encoded, losslessly compressed and transmitted to the
receiver for perfect reconstruction of the original source.
Since all three streams originate from the same source it is
reasonable to assume that they are statistically redundant
to a certain degree. Therefore it might be more efficient to
encode the triplet as one unit or to try to reduce the number
of streams by modifying the algorithm. The next section
provides experimental data regarding the information rates
of these symbols.

3. INFORMATION RATES OF Sy, Cu, Ry, Nus

For each symbol, two measures of average rates are used:
the entropy and the rate of a trained Huffman coder. All
rates are given in average number of bits per original source
samples. An MDCT-transform coder was used to generate
the stream S,. The source sampling rate was 16 kHz for
a full bandwidth of 7 kHz and frame size of 20 msec, im-
plying a frame length of NV = 280. The training material
consisted of diverse audio passages including speech and
music of various kinds. The total audio duration was about
17 minutes. As the coder was running, the segmentation
algorithm generated the symbols Cy,, R, Ny, as well as
all the required statistics for computing the entropy and
the Huffman rate for each symbol. The rate measurements
were repeated for several values of C, the alphabet size of
the combined symbol. Figure 1 shows the overall average
rate needed for transmission of all symbols as a function of
C. The Entropy rate reflects the minimum possible rate
(assuming each stream is coded separately). The Huffman
rate is that of a practical Huffman coder trained for each
stream. As expected, the difference between the entropy
and Huffman rates is large in the scalar case (C = 1) and
diminished in the vector case, as C increases. The figure
shows that the overall coding rate of the VSVEC (including
all streams) is about 75% of the scalar Huffman rate.

It is of interest to look at the segment sizes associated
with the rates shown in figure 1. As shown in figure 2, the
average segment size increases with C. This explains the
rate reduction observed in figure 1. As expected, the lossless
coding is more efficient when applied to longer vectors of
combined indices. Figure 3 shows the entropy and Huffman
rates for the individual symbols as a function of C. As the
range increases, the rates of the segment size and the radix
decrease and the rate of the combined indices increases.

B Erirapy W Hattman

Rz in
kit par

1 L] mn L] (hL]] | 23 1md JuE WIE

Baage o vembiead indican

Figure 1. Total entropy and Huffman rates of all symbol
streams as a function of the range C.

hariigs ® L — -
PEEE AL
(1H ¥

") NN § NN | IS | S S | S NS S— i——

| aw L] (1] 1] g [FE man [A1 1]

Misgs fl uas bk (BdiLEs

Figure 2. Average segment size N,, as a fuction of the
combined symbol range C.

This is intuitively explained by noting that scalars N,, and
R,, become less important when the combined index C,,
represents longer vectors. Figure 3 also shows that the rates
of N, and R,, (the side information) constitute a signifi-
cant part of the overall information, especially for lower
index ranges. This motivates the discussion of the next
section.

4. THE FIXED-RADIX APPROACH

Various approaches may be taken for reducing the rate of
the symbol triplet defined above. Generally, it is possible to
further combine two or more symbols into ”super symbols”
exploiting the their mutual redundancy. Alternatively, a
simpler way is to make one (or more) symbol a constant.
We have investigated several approaches. Limited by space,
we will describe only one such method which uses a constant
radix.

B campizad ndices - Brerapy BCemorsicdcan - H Reie
O pege an] nide . Ssliapp Exkegs orl aire - H Bale

B Emdic - Erirosy WHAsde - H S

LT
W par
Tl

14 El i 1x U LEH) Leld He)] J1LH}

Wiage #7 fambagd Sdidad

Figure 3. Entropy and Huffman rates of combined indices,
segment sizes and radices.

Using a fixed radix R removes the need for its transmis-
sion. However, with a fixed radix, the segmentation usually
generates shorter subframes which translates into a higher
combined-index rate. The overall coding rate is hard to
predict and can only be examined experimentally. With a
fixed radix, the combined symbol is given by

Npm—1

Cn=) SkninR" (5)
n=0

Expression (5) is successively executed with increasing N,
subject to:

R> %“332 Sk tn (6)
and
Cn<C (7)

The segment size N,, is incremented until one or more of
the above constraints is violated, at which point, a new seg-
ment starts. The search proceeds in a left-to-right direction.
This algorithm guarantees a segment size of at least 1 and
at most N. There are now only two streams to code: the
combined symbols and the associated segment sizes. The
performance of this scheme was measured versus the pa-
rameters R and C and is summarized in figure 4. Figure 4
shows a strong dependence on the value of the fixed radix
R and (surprisingly) a weak and unstructured dependence
on the symbol range C. In general, the rates are lower for
higher radices. There is only a slight tendency of lower rates
at higher ranges. It seems that some implicit relation be-
tween R and C affects the overall statics in favor of certain
pairs (R,C). The best result of 1.089 bps is for the pair
(25, 8192) followed by 1.091 bps for (25, 512), followed by
1.095 pbs for (20, 4096). These results are practically all the
same. This indicates that, with this scheme, good perfor-
mance can be obtained without the need for large memory
(high complexity).

Bfwdasd WHasieos 10 Diads = id
ORwdi e 23 WRass» 38

358 NL] g]} (1] HiEs

Rangs of combined indsia

Figure 4. Total Huffman rates for the fixed-radix approach
as a function of the combined symbols range C.

Comparing these results to the data in figure 1 shows that
eliminating the radix stream reduces the rates by 12% to
17% based on same range (same complexity) with the big-
ger rate savings obtained for the lower complexity cases.
overall, the rate reduction is about 37% relative to scalar
Huffman coding. Also, note that the fixed-radix procedure
is less complex than the variable-radix one. This is because
expressions (5) and (6) can be evaluated recursively using
about as low as 7 arithmetic operations per source sample
(the exact number depends on the implementation). Since
the performance for various pairs (R, C) is somewhat un-
predictable, it may be useful to repeat the measurements
on a denser grid in the R, C space to possibly find the best
parameters for the intended application.

5. CONCLUSIONS

This paper discusses the concept of and an algorithm for
variable-size vector entropy coding (VSVEC). The algo-
rithm is based on complexity-constrained and size-unconst
-rained fast segmentation and combination of a long stream
of source symbols. The method is evaluated in the frame-
work of an MDCT coder using arrays of 280 coefficients
as an input frame of source symbols. It is shown experi-
mentally that a coding rate reduction of about 37% over a
simple scalar Huffman coder can be achieved. The segmen-
tation algorithm requires about 7 arithmetic operations per
sample which is well within the capability of today’s DSP’s,
and CPU’s. The required memory (ROM) should support
Huffman tables of about 512 in size or about 2 kbytes.

Because VSVEC is based on coding high-dimensional
vector-symbols, optimizing the Huffman coder over a short
media passage results in a highly tuned coder and very high
compression ratio. Therefore, VSVEC is an efficient com-
pression method for storage applications.

Finally, the proposed VSVEC is not specific to MDCT
coders. It is generic in nature and can be incorporated in
various types of media coders.

REFERENCES

[1] D. Huffman, A method for the construction of mini-
mum redundancy codes, Proc. IRE 40, pp. 1098-01191,
1952.

[2] G.V. Cormack, R.N. Horspool, Algorithms for adaptive
Huffman codes, Inf. Proc. Letters, 18, 3 (Mar.), pp.159-
165.

[3] J. Rissanen, G.G. Langdon, Arithmetic coding, IBM J.
Res. 23, 2 (Mar.), pp. 149-162, 1979.

[4] A. Moffat, R.M. Neal, I.H. Witten, Arithmetic coding
revisited, ACM Trans., On Information Systems, Vol.
16, No. 3, July 1998, pp. 256-294.

[6] S. A. Savari, R.G. Gallager, Generalized Tunstall codes
for sources with memory, IEEE Trans. IT, Vol. 43 No.
2, pp. 658-667, March 1997.

[6] M.A. Gerzon, P.G. Craven, J.R. Stuart, M.J, Law, R.J.
Wison, The MLP lossless compression system, AES
17th, Int.Conf. on High Qual. Audio Coding, pp. 1-15.

[7] P. Craven, M. Gerzon, Lossless coding for audio discs,
J. audio Eng. Soc., Vol. 44 No. 9 pp. 706-720, Sep.
1996.

[8] P.A. Chou, T. Lookabaugh, R.M. Gray, Entropy-
constrained vector quantization, IEEE Trans. Acoust,
Sp. and Sig. Proc. 37(1), pp.31-42, Jan. 1989.

[9] J. Ziv, A. Lempel, A universal algorithm for data data
compression, IEEE Trans., Inf. Theor., Vol. IT-23,
pp.337-343, 1977.

[10] J.P. Princen, A.B. Bradley, Subband/transform coding
using filter bank designs based on time domain aliasing
cancellation, IACSSP’87, pp. 2161-2167, 1987.

[11] D. Sinha, J.D. Johnston, S. Dorward, S.R. Quacken-
bush, The digital signal processing handbook, Editors:
V.K. Madisetti and D.B. Williams, CRC Press, 1998.

[12] S.R. Quackenbush, J.D. Johnston, Noiseless coding of
quantized spectral components in MPEG-2 advanced
audio coding, IEEE workshop on applications of sig-
nal processing to audio and acoustics, WASPAA’97,
Session 3. Paper No. 3.

[13] PictureTel Corp. Detailed description of the PTC (Pic-
tureTel Transform Coder), ITU-T Standardization sec-
tor, Study Group 15, Question. 6/15, Oct. 8-9, 1996.

[14] F. Jelinek, Self-organized language modeling for speech
recognition, Reading in Speech Recognition, pp. 450-
506, Morgan Kauffmann Pub. Inc., 1990.

[15] S. Deligne, F. Bimbot, Language modeling by variable
length sequences: theoretical formulation and evalua-
tion of multigrams, ICASSP’95 pp. 169-172, 1995.

[16] S. Roucus, M. Ostendorf, Herbert Gish, A, Derr,
Stochastic segment modeling using the Estimat-
Mazimize algorithm, ICASSP’88 pp. 127-130, 1988.

