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Abstract

This paper presents an algorithm of blind identification
and equalization of finite-impulse-response and multiple-
input and multiple-output (FIR MIMO) channels driven
by colored signals. This algorithm is an improved
realization of a concept referred to as blind identification
via decorrelating subchannels (BIDS). This BIDS
algorithm first constructs a set of decorrelators which
decorrelate the output signals of subchannels, and then
estimates the channel matrix using the transfer functions
of the decorrelators, and finally recovers the input
signals using the estimated channe matrix. This BIDS
algorithm in general assumes that the channel matrix is
irreducible and the input signals are mutually
uncorrelated and of sufficiently diverse power spectra.
However, for channel matrix identification, this BIDS
algorithm only requires the channd matrix to be
nonsingular (i.e., full rank almost everywhere as opposed
to everywhere) and column-wise coprime. Such a channel
matrix may have zeros and be of non-minimum phase.

1. Introduction

Blind identification and/or equalization of FIR MIMO
channels driven by colored signals are a fundamental
problem one encounters in many applications such as
radar targets identification, wireless communications, and
microphone arrays for speech enhancement. In this paper,
we are interested in the development of the second-order
statistics based agorithms for blind identification and
equalization of FIR MIMO channds. The subspace
algorithm [1] and the matrix pencil (MP) algorithm [2],
require the channel matrix to be irreducible and column-
reduced in addition to other conditions. The algorithms
shown in [3-4] only handle square channd matrices with
unit diagonal eements. The idea of blind identification
via decorrdating subchannels (BIDS) was first presented
in [5-6] where the first BIDS algorithm, to be referred to
as BIDS1, was developed. The BIDS-1 agorithm
requires the channd matrix to be irreducible, which is a
much wesaker condition than those mentioned above. The
BIDS-1 algorithm  first  constructs  subchannel
decorrelators, then forms a set of single-input-multiple-

output (SIMO) subchannels, and finally uses a SIMO
channel algorithm to recover the input signas. In this
paper, we show a second redlization of BIDS, referred to
as BIDS-2. The BIDS-2 agorithm differs from the BIDS-
1 dgorithm in that the former computes the channd
matrix directly from the decorrelators before the input
signals are estimated. The estimated channel matrix by
BIDS-2 is asymptotically exact if the channel matrix is
nonsingular and column-wise coprime (which can be a
non-minimum phase matrix). The BIDS-2 agorithm
avoids the errors that the BIDS-1 algorithm accumulates
in constructing the SIMO subchannds, and provides a
significant improvement of robustness againgt noise.

Section 2 lays down the basic problem and provides
some fundamental identifiability conditions. Section 3
describes the BIDS-2 algorithm. Section 4 illustrates the
performance of the BIDS-2 agorithm. Due to space
limitation, a large amount of details can not be given in
this paper but are al availablein [8].

2. The Problem

An FIR MIMO channel is described by:

y(n) =H(2)x(n) + w(n) D
where x(n) isthe | x1 input vector; y(n) the J x1 output
vector, w(n) the noise vector; and H,(2) is a polynomial

LH
matrix, i.e, HZ(z):ZH(I)z‘l, which is caled the

channel matrix. The problem here is to estimate x(n)
and/or H,(2) using y(n). Without loss of generdity, all
time-domain parameters in (1) are real valued. The
following theorem isproved in [7].

Theorem 1. An FIR MIMO channd is identifiable up to
a scaling and permutation using the second-order
statistics of the channel output if

e The channel matrix H,(2) is irreducible (i.e, of full

column rank everywhere in the complex zplane
exceptat z=0); and

e Theinput power spectral matrix S, (2) is diagona and

of distinct diagonal (polynomial or rational) functions.
Proof: See[7].

Theorem 1 isa strong result. But the conditions of the
theorem are too weak for all existing algorithms. In fact,
developing an agorithm that yields the exact channel



identification under those conditions has not been
successful. Some additional condition appears necessary
for developing a practical dgorithm. In the next section,
we show the BIDS-2 algorithm, which requires the input
signals to be mutually uncorrdated and of sufficiently
diverse power spectra. With sufficiently diverse power
spectra, the BIDS-2 algorithm can yield the exact channel
matrix even if the channd matrix has zeros and is of non-
minimum phase.

3. Blind Identification via Decorrelating
Subchannels

3.1 Decorrdating Subchannels

All BIDS agorithms assume that the input signds are
mutually uncorrelated and there are more output signals
than input signals, i.e, J>1. Note that to reduce (or
remove asymptotically) the noise effect, the condition
J>1 is necessary in genera. The noise effect on the
second-order satistics of the channel output can be
diminated (asymptatically) if the noise is spatialy white.
For convenience, we now write
y(n) =H(2)x(n) @)

where the noise term is removed. We have also dropped
the subscript "Z' from H(2). Let S; bea | xJ sdection

matrix. All BIDS algorithms first form subchannd output
vectors as

yi(n) =S;y(n) ©)
wherei=1,2, ..., M,and M = JI/[(J-1)!I!] isthetotal
number of such subchannels. For each i, the BIDS
algorithmsthen search for adecorrelator G;(z) such that

the power spectral matrix Suiui (2) of
ui(n) =G; (2)y; (n) (4)
LG
is diagonal. Let Gi(z):ZGi(I)z‘I . Then, we can

write
g yin O
SHOS) Sl
g/i (n- LG)E
or smply, u;(n) = Gyi (n) . The autocorrelation matrix of
u; (n) can be computed as

N-1

Ry, (@ :ﬁZui (M, (1-1)

u (=[G G @

It follows that Iiuiui (1)=G,R.. (1)G," where

YiYi
Iiwi (t) is computable from the available data y(n). In
fact, if the noise is spatialy and temporaly white, the
noise effect can be removed asymptoticaly from
Iiwi (r) via eigenvalue decomposition. The cost
function for constructing the decorrelator can be defined
as the mean squared values of the off-diagona eements

of Iiuiui (t) over asufficientrangeof 7, i.e,

_ 1 a ( TR )2
E; —m;; gix Ryy (D)9

where g, is defined by

G'= [gi,l Gi2 - Giy ] -
The cost function E; is a non-quadratic function of G; .
But it is quadratic with respect to each (individual) row of
Ei . So, a smple agorithm consists of a sequence of the
following sweeps until convergence. During each sweep,
the rows of Ei are updated sequentially. When updated,

each row of G; is constrained to have a constant norm

but minimizes E with all other rows fixed. The above
procedure may be referred to as alternating projection.
One can dso apply gradient based algorithms here as
well. But in general, E; has local minima. Hence, a good
initidization is required. |dedly, the minimum of E is

zero (for large N). In our simulation shown later, Ei is
initidized in a neighborhood of an ided G;, and the
alternating projection procedure is applied to search for
the optimal G, .

We now go back to (4) and discuss the conditions

under which the decorrelation will lead to the desired
result. We can rewrite (4) as

ui(N=G;(2y;(n)=G;IH;(@x(n) (5
where H; (2) =S;H(z) . We will show next that with a
proper choice of deg(Gi(2), G;(2H(2) s
diagonaizableby G;(2) . If G;(2)H;(2) isdiagond, we
see that each element of u; (n) corresponds to a distinct
input signal, and hence G, (2) is aso a sgna separator.
It is such separators G;(z) that will be further exploited
by the BIDS algorithms. However, a decorrelator is not
necessarily a separator unless a diversity condition on
S«(2) issatisfied. This condition will also be shown next.

Lemma 1: Provided deg(G; (2))= (I -1)deg(H; (2)),
there always exists a G;(2) such that G;(2)H;(2) is
diagondl.

Proof: Thisisafact easy to prove[8].



Definition of diversity: Given two polynomials, we
say that the digtinction of one polynomial from the other
isthe number of distinct zeros of the first polynomial that
are not shared by the second polynomial. The diversity of
two polynomialsis defined to be the larger digtinction of
the two polynomials. The diversity of two diagonal
functions of a power spectral matrix is defined to be half
the diversity of the two functions. The diversity of a
power spectral matrix is defined to be the minimum
diversity between any two diagona functions of the
matrix. The diversity of S(2) will be denoted by
div(S«(2)).

Theorem 2: Let C(2) be a nonsingular (i.e., full rank
amost everywhere) | x| polynomia matrix. The

diagondization of C(z)SXX(z)C(z"l)T implies the

diagonalization of C(2) up to arow permutation if
div(S«(2)> (1 -1)deg(C(2).  (6)

Proof: See|§].

Corollary 1: Provided tha G;(9H;(2) is
nonsingular, the diagonalization of Suiui (2) implies the
diagonalization of G;(2)H,(2) up to a row permutation
if

ceo(c,(2)< D) 2).

Proof: It follows from Theorem 2.

Note that G;(2)H;(2) is nonsingular if and only if
Suy, (2 is nonsingular (assuming that Sw(?) is
nonsingular). Hence, the nonsingularity condition can be
verified even with unknown H(2).

Assuming that the conditions of Lemma 1 and
Corollary 1 are met, we can now find a G;(2) by
diagonalizing Suiui (2) suchthat G;(2)H,(2) isdiagona
up to an unknown row permutation. The row permutation
on each G;(2) can be determined using the corrdations
among u; (n) [8].

Without loss of generality, we can now assume that
G, (2) isavailable such that

G,(2H;(2) =C,(2) =diagonal .
By removing the greatest common divisor (GCD) from
each row of G;(2 [9], G;(2) becomes row-wise
coprime. There are several possible ways to exploit
G,(2) to estimate the channd matrix and/or the input

signals. The BIDS-1 algorithm [6] is one of them. The
BIDS-2 algorithm is another as shown below.

3.2BIDS-2 Algorithm

The BIDS-2 agorithm estimates the channel matrix H(2)
from the decorreaors G;(2), and then estimates the

input signals using the estimated H(2). Recall that we can
obtain the row-wise coprime nonsngular matrices
Gi(2,fori=12, .. M, suchtha G;(2H;(2), fori
=1, 2, ..., M, are diagonal. Furthermore, given the
assumption that H(2) is nonsingular (full column rank for
amogt al 2), we have the following lemmas (al proved
in[8]).

Lemma 2: Each (nonzero) row of H(2) must be arow
of an | x| sguare submatrix H,(z) that is nonsingular
(i.e., with full rank for amost all 2).

Lemma 3: All the submatrices H;(z) that are
nonsingular are "chained" together in the sense that every
two nonsingular submatrices share a common row either
within the two submatrices or with another.

Lemma 4. If H,(2) is nonsingular, so is the
corresponding G;(2) (provided that al rows of G;(2)
are constrained to be nonzero for almost al z, and S, (2)
isnonsingular diagonal).

We now define

Hi(2=hi.(@ hi,@ -~ hi 2]
Gi (2 = G;(2) without itspthrow.
Then, weknow that fori =1, 2, ..., M',

Gip(dhi (=0 ()
Since G; ,(2) has the rank I-1 for dmost al z the
solution to Gi’p(z)ﬁi’p(z):o for ech i s

ﬁi’p(z):hi’p(z)fi’p(z) where f; ,(2) is a scaa
polynomial. From Lemma 3, we know that h; ,(2) for i

=1, 2 .., M are "chained" together through shared
e ements. Hence, the solution to

Gip(@h ,(2=0fordli=1,2 ..., M (9
where ﬁi’p(z) has the same overlapping (or chained)
pattern as h; ,(2), isthen ﬁi’p(z) =h; ,(2f,(2) where
fo(2) isindependent of i. In other words, (9) yields the

pth column of the channel matrix H(Z) up to a common
polynomial. A detailed implementation of (9) is available
in [8]. Thisleadsto the following lemma.

Lemma 5: If H(2) isnonsingular (full column rank for
amost all z) and column-wise coprime (each column is a
coprime vector), then each column of H(Z) can be found
uniquely (up to scaling) from (9).

Like the BIDS-1 dgorithm, the BIDS-2 agorithm
yields the exact input signas in the absence of noise if
H(2) is irreducible and the subchannel decorrdation is
ideal (which requires the diversity condition). However,
unlike the BIDS-1 agorithm, the BIDS-2 agorithm
yields the exact H(2) if H(2) is nonsingular and column-
wise coprime and the diversity condition is satisfied.



Such a matrix H(Z) can have zeros and even be non-
minimum-phase. But for estimating the input signals
using H(2), we need it to be irreducible [8]. Once H(2) is
found, we can check if H(2) isirreducible or not.

4. Simulation

We considered the following data mode!:
y(n) =H(2)x(n) +w(n)

where w(n) is white Gaussian, x(n) is a moving average
random process with auto-corrdation length 12, and the
channd matrix is

+0.1615 00311 095870 [1.1339 1.1339  0.9994 [J
Mo = 02661 19975 004177 {08219 08219 -190347

3-1.2879 05255 1.90720 [-0.2025 -0.2025 0.2828

H2.0602 05089 1.08750 H01754 01754 05040 5
Note that this channd matrix is irreducible but not
column-reduced.

The BIDS-2 agorithm is tested againg the BIDS-1
algorithm [6] and the matrix pencil (MP) algorithm [2].
The data length was chosen to be 10000. The mean
sgquared errors (M SE) of the estimated channd matrix and
the estimated input signals were computed over 50
independent runs. Figures 1 and 2 show, respectively, the
channel estimation error and the signal estimation error in
terms of the signal-to-noise ratio (SNR). The channel
estimation error of the BIDS-2 algorithm is very small
over a wide range of SNR because of the large data
length. The MP agorithm suffers badly because the
channd matrix isnot column-reduced.
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Figure 1: Channel estimation errors
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Figure 2: Signal estimation errors
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