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Abstract

This paper presents an algorithm of blind identification
and equalization of finite-impulse-response and multiple-
input and multiple-output (FIR MIMO) channels driven
by colored signals. This algorithm is an improved
realization of a concept referred to as blind identification
via decorrelating subchannels (BIDS). This BIDS
algorithm first constructs a set of decorrelators which
decorrelate the output signals of subchannels, and then
estimates the channel matrix using the transfer functions
of the decorrelators, and finally recovers the input
signals using the estimated channel matrix. This BIDS
algorithm in general assumes that the channel matrix is
irreducible and the input signals are mutually
uncorrelated and of sufficiently diverse power spectra.
However, for channel matrix identification, this BIDS
algorithm only requires the channel matrix to be
nonsingular (i.e., full rank almost everywhere as opposed
to everywhere) and column-wise coprime. Such a channel
matrix may have zeros and be of non-minimum phase.

1. Introduction

Blind identification and/or equalization of FIR MIMO
channels driven by colored signals are a fundamental
problem one encounters in many applications such as
radar targets identification, wireless communications, and
microphone arrays for speech enhancement. In this paper,
we are interested in the development of the second-order
statistics based algorithms for blind identification and
equalization of FIR MIMO channels. The subspace
algorithm [1] and the matrix pencil (MP) algorithm [2],
require the channel matrix to be irreducible and column-
reduced in addition to other conditions. The algorithms
shown in [3-4] only handle square channel matrices with
unit diagonal elements. The idea of blind identification
via decorrelating subchannels (BIDS) was first presented
in [5-6] where the first BIDS algorithm, to be referred to
as BIDS-1, was developed. The BIDS-1 algorithm
requires the channel matrix to be irreducible, which is a
much weaker condition than those mentioned above. The
BIDS-1 algorithm first constructs subchannel
decorrelators, then forms a set of single-input-multiple-

output (SIMO) subchannels, and finally uses a SIMO
channel algorithm to recover the input signals. In this
paper, we show a second realization of BIDS, referred to
as BIDS-2. The BIDS-2 algorithm differs from the BIDS-
1 algorithm in that the former computes the channel
matrix directly from the decorrelators before the input
signals are estimated. The estimated channel matrix by
BIDS-2 is asymptotically exact if the channel matrix is
nonsingular and column-wise coprime (which can be a
non-minimum phase matrix). The BIDS-2 algorithm
avoids the errors that the BIDS-1 algorithm accumulates
in constructing the SIMO subchannels, and provides a
significant improvement of robustness against noise.

Section 2 lays down the basic problem and provides
some fundamental identifiability conditions. Section 3
describes the BIDS-2 algorithm. Section 4 illustrates the
performance of the BIDS-2 algorithm. Due to space
limitation, a large amount of details can not be given in
this paper but are all available in [8].

2. The Problem

An FIR MIMO channel is described by:
)()()()( nnzn z wxHy += (1)

where x(n) is the 1×I  input vector; y(n) the 1×J  output
vector, w(n) the noise vector; and Hz(z)  is a polynomial
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channel matrix. The problem here is to estimate x(n)
and/or Hz(z) using y(n). Without loss of generality, all
time-domain parameters in (1) are real valued. The
following theorem is proved in [7].
Theorem 1: An FIR MIMO channel is identifiable up to

a scaling and permutation using the second-order
statistics of the channel output if
•  The channel matrix Hz(z) is irreducible (i.e., of full

column rank everywhere in the complex z-plane
except at 0=z ); and

•  The input power spectral matrix Sxx(z) is diagonal and
of distinct diagonal (polynomial or rational) functions.

Proof: See [7].
Theorem 1 is a strong result. But the conditions of the

theorem are too weak for all existing algorithms. In fact,
developing an algorithm that yields the exact channel



identification under those conditions has not been
successful. Some additional condition appears necessary
for developing a practical algorithm. In the next section,
we show the BIDS-2 algorithm, which requires the input
signals to be mutually uncorrelated and of sufficiently
diverse power spectra. With sufficiently diverse power
spectra, the BIDS-2 algorithm can yield the exact channel
matrix even if the channel matrix has zeros and is of non-
minimum phase.

3. Blind Identification via Decorrelating
Subchannels

3.1 Decorrelating Subchannels

All BIDS algorithms assume that the input signals are
mutually uncorrelated and there are more output signals
than input signals, i.e., IJ > . Note that to reduce (or
remove asymptotically) the noise effect, the condition

IJ >  is necessary in general. The noise effect on the
second-order statistics of the channel output can be
eliminated (asymptotically) if the noise is spatially white.
For convenience, we now write

)()()( nzn xHy = (2)
where the noise term is removed. We have also dropped
the subscript "z" from Hz(z). Let iS  be a JI ×  selection
matrix. All BIDS algorithms first form subchannel output
vectors as

)(ˆ)( nn ii ySy = (3)

where i = 1, 2, …, M, and ]!)!/[(!ˆ IIJJM −=  is the total
number of such subchannels. For each i, the BIDS
algorithms then search for a decorrelator )(ziG  such that

the power spectral matrix )(z
iiuuS  of
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or simply, )()( nn iii yGu = . The autocorrelation matrix of

)(niu  can be computed as
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)(ˆ τ
ii yyR  is computable from the available data y(n). In

fact, if the noise is spatially and temporally white, the
noise effect can be removed asymptotically from

)(ˆ τ
ii yyR  via eigenvalue decomposition. The cost

function for constructing the decorrelator can be defined
as the mean squared values of the off-diagonal elements

of )(ˆ τ
iiuuR  over a sufficient range of τ , i.e.,
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The cost function Ei is a non-quadratic function of iG .
But it is quadratic with respect to each (individual) row of

iG . So, a simple algorithm consists of a sequence of the
following sweeps until convergence. During each sweep,

the rows of iG  are updated sequentially.  When updated,

each row of iG  is constrained to have a constant norm
but minimizes Ei with all other rows fixed. The above
procedure may be referred to as alternating projection.
One can also apply gradient based algorithms here as
well. But in general, Ei has local minima. Hence, a good
initialization is required. Ideally, the minimum of Ei is

zero (for large N). In our simulation shown later, iG  is

initialized in a neighborhood of an ideal iG , and the
alternating projection procedure is applied to search for

the optimal iG .
We now go back to (4) and discuss the conditions

under which the decorrelation will lead to the desired
result.  We can rewrite (4) as

)()()()()()( nzznzn iiiii xHGyGu == (5)

where )()( zz ii HSH = . We will show next that with a

proper choice of ( ))(deg ziG , )()( zz ii HG  is

diagonalizable by )(ziG . If )()( zz ii HG  is diagonal, we

see that each element of )(niu  corresponds to a distinct

input signal, and hence )(ziG  is also a signal separator.

It is such separators )(ziG  that will be further exploited
by the BIDS algorithms. However, a decorrelator is not
necessarily a separator unless a diversity condition on
Sxx(z) is satisfied. This condition will also be shown next.

Lemma 1: Provided ( ) ( ) ( ))(deg1)(deg zIz ii HG −≥ ,

there always exists a )(ziG  such that )()( zz ii HG  is
diagonal.
Proof: This is a fact easy to prove [8].



Definition of diversity: Given two polynomials, we
say that the distinction of one polynomial from the other
is the number of distinct zeros of the first polynomial that
are not shared by the second polynomial. The diversity of
two polynomials is defined to be the larger distinction of
the two polynomials. The diversity of two diagonal
functions of a power spectral matrix is defined to be half
the diversity of the two functions. The diversity of a
power spectral matrix is defined to be the minimum
diversity between any two diagonal functions of the
matrix. The diversity of Sxx(z) will be denoted by
div(Sxx(z)).

Theorem 2: Let C(z) be a nonsingular (i.e., full rank
almost everywhere) II ×  polynomial matrix. The

diagonalization of Tzzz )()()( 1−CSC xx  implies the
diagonalization of C(z) up to a row permutation if

( ) ( ) ( ))(deg1)( zIzdiv CS xx −> . (6)
Proof: See [8].

Corollary 1: Provided that )()( zz ii HG  is

nonsingular, the diagonalization of )(z
iiuuS  implies the

diagonalization of )()( zz ii HG  up to a row permutation
if
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Proof: It follows from Theorem 2.
Note that )()( zz ii HG  is nonsingular if and only if

)(z
iiuuS  is nonsingular (assuming that Sxx(z) is

nonsingular). Hence, the nonsingularity condition can be
verified even with unknown H(z).

Assuming that the conditions of Lemma 1 and
Corollary 1 are met, we can now find a )(ziG  by

diagonalizing )(z
iiuuS  such that )()( zz ii HG  is diagonal

up to an unknown row permutation. The row permutation
on each )(ziG  can be determined using the correlations

among )(niu  [8].
Without loss of generality, we can now assume that

)(ziG  is available such that

diagonalzzz iii == )(ˆ)()( CHG .
By removing the greatest common divisor (GCD) from
each row of )(ziG  [9], )(ziG  becomes row-wise
coprime. There are several possible ways to exploit

)(ziG  to estimate the channel matrix and/or the input
signals. The BIDS-1 algorithm [6] is one of them. The
BIDS-2 algorithm is another as shown below.

3.2 BIDS-2 Algorithm

The BIDS-2 algorithm estimates the channel matrix H(z)
from the decorrelators )(ziG , and then estimates the

input signals using the estimated H(z). Recall that we can
obtain the row-wise coprime nonsingular matrices

)(ziG , for i = 1, 2, …, M',  such that )()( zz ii HG , for i
= 1, 2, …, M', are diagonal. Furthermore, given the
assumption that H(z) is nonsingular (full column rank for
almost all z), we have the following lemmas (all proved
in [8]).

Lemma 2: Each (nonzero) row of H(z) must be a row
of an II ×  square submatrix )(ziH  that is nonsingular
(i.e.,  with full rank for almost all z).

Lemma 3: All the submatrices )(ziH  that are
nonsingular are "chained" together in the sense that every
two nonsingular submatrices share a common row either
within the two submatrices or with another.

Lemma 4: If )(ziH  is nonsingular, so is the

corresponding )(ziG  (provided that all rows of )(ziG

are constrained to be nonzero for almost all z, and )(zxxS
is nonsingular diagonal).

We now define
[ ])()()()( ,2,1, zzzz Iiiii hhhH �=

)(, zpiG  = )(ziG  without its pth row.

Then, we know that for i = 1, 2, …, M',
0)()( ,, =zz pipi hG (8)

Since )(, zpiG  has the rank I-1 for almost all z, the

solution to 0)(ˆ)( ,, =zz pipi hG  for each i is

)()()(ˆ
,,, zfzz pipipi hh =  where )(, zf pi  is a scalar

polynomial. From Lemma 3, we know that )(, zpih  for i

= 1, 2, …, M'  are "chained" together through shared
elements. Hence, the solution to

0)(ˆ)( ,, =zz pipi hG  for all i = 1, 2, …, M' (9)

where )(ˆ
, zpih  has the same overlapping (or chained)

pattern as )(, zpih , is then )()()(ˆ
,, zfzz ppipi hh =  where

)(zf p  is independent of i. In other words, (9) yields the

pth column of the channel matrix H(z) up to a common
polynomial. A detailed implementation of (9) is available
in [8]. This leads to the following lemma.

Lemma 5: If H(z) is nonsingular (full column rank for
almost all z) and column-wise coprime (each column is a
coprime vector), then each column of H(z) can be found
uniquely (up to scaling) from (9).

Like the BIDS-1 algorithm, the BIDS-2 algorithm
yields the exact input signals in the absence of noise if
H(z) is irreducible and the subchannel decorrelation is
ideal (which requires the diversity condition). However,
unlike the BIDS-1 algorithm, the BIDS-2 algorithm
yields the exact H(z) if H(z) is nonsingular and column-
wise coprime and the diversity condition is satisfied.



Such a matrix H(z) can have zeros and even be non-
minimum-phase. But for estimating the input signals
using H(z), we need it to be irreducible [8]. Once H(z) is
found, we can check if H(z) is irreducible or not.

4. Simulation

We considered the following data model:
)()()()( nnzn wxHy +=

where w(n) is white Gaussian, x(n) is a moving average
random process with auto-correlation length 12, and the
channel matrix is

1

5940.01754.01754.0
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9034.18219.08219.0
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9587.00311.01615.0
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Note that this channel matrix is irreducible but not
column-reduced.

The BIDS-2 algorithm is tested against the BIDS-1
algorithm [6] and the matrix pencil (MP) algorithm [2].
The data length was chosen to be 10000. The mean
squared errors (MSE) of the estimated channel matrix and
the estimated input signals were computed over 50
independent runs. Figures 1 and 2 show, respectively, the
channel estimation error and the signal estimation error in
terms of the signal-to-noise ratio (SNR). The channel
estimation error of the BIDS-2 algorithm is very small
over a wide range of SNR because of the large data
length. The MP algorithm suffers badly because the
channel matrix is not column-reduced.
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Figure 1: Channel estimation errors
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Figure 2: Signal estimation errors
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