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ABSTRACT

This work proposes a stochastic model for continuous
speech recognition that provides automatic segmentation of
spoken utterances into phonemes and facilitates the quan-
titative assessment of uncertainty associated with the iden-
tified utterance features. The model is specified hierarchi-
cally within the Bayesian paradigm. At the lowest level
of the hierarchy, a Gibbs distribution is used to specify
a probability distribution on all the possible partitions of
the utterance. The number of partitioning elements which
are phonemes is not specified a priori. At higher level in
the hierarchical specification, random variables represent-
ing phoneme durations and acoustic vector values are as-
sociated with each phoneme and frame. Estimation of the
posterior distribution is done using Gibbs sampler scheme.

1. INTRODUCTION

By assuming the model parameters to be random vari-
ables, the posterior distribution of these parameters given
the observed data can be constructed. This in turn makes
inference about the model parameters more efficient. This
work proposes a stochastic model for continuous speech
recognition that provides automatic segmentation of spo-
ken utterances into phonemes and facilitates the quantita-
tive assessment of uncertainty associated with the identified
utterance features [1]. Through techniques like Gibbs sam-
pling [2], this parametrization provides a mechanism for
estimating the posterior distribution of the spoken utter-
ance. Posterior distribution models provide a broader and
potentially more powerful class of discriminant functions
[3]. They need not be resticted to fixed length features dif-
ferent versions of which are used and which are problematic
from a statistical point of view. Posterior distributions have
been used successfully in HMM’s. For segmental posterior
distributions, however, somme additional difficulties are en-

countred. The bigger problem relates to conditional inde-
pendence assumptions, which are theoretically inconsistent
in some of the currently proposed segmental posterior dis-
tribution models. Successive triphones necessarily depend
on each other. It is not reasonable to assume that a given
phoneme is independent of all the feature vectors to which
it does not correspond. The model is specified hierarchi-
cally within the Bayesian paradigm [4]. At the lowest level
of the hierarchy, a Gibbs distribution is used to specify a
probability distribution on all the possible partitions of the
utterance. The number of partitioning elements which are
phonemes is not specified a priori. In the second level of the
model a random variable representing phoneme durations is
associated with each phoneme. Partitioning segment dura-
tions are assumed to be drawn from a distribution centered
around phoneme durations. This is a typical model for an
empirical Bayes approach [5]. At higher level in the hier-
archical specification, multinormal random variables repre-
senting acoustic values are associated with frames. Gibbs
model is extensively used in the analysis of noisy images
[1,6,7]. The attractiveness of these distributions originates
from their Markovian property: Gibbs distributions are spe-
cial cases of Markov random fields. Because of this prop-
erty, the prior distribution can be specified in terms of local
conditional distributions involving only nearby phonemes.
As demonstrated by Geman and Geman this Markovian
property also facilitates both sampling from the posterior
distribution using a technique known as the Gibbs sam-
pler and maximization of the posterior distribution using
a method called simulated annealing. A final point con-
cerning the hierarchical specification of the model is that
observations at frames are considered to be independent
given their phoneme associations.

2. MODEL DESCRIPTION

In speech recognition, a spoken utterance can be rep-
resented by a sequence (in time) of m symbols: x =
(z1,22,...,Tm), where each symbol z; can be one of ¢



phonemes (or other speech units), labelled 1,2,...,c with ¢
finite. After the utterance speech signal has been processed,
each phoneme gives rise to a set of varying number of p di-
mensional acoustic vectors. Thus, the problem considered
can be formulated as follows. Given an observed time series
{y::t=1,...,T} of p dimensional acoustic vectors, parti-
tion the time index set S = {t:¢t=1,...,T} into subsets
Sl = {t:tzl,...,tl}, ,...,Sm = {t:tztmfl,...,T}
and identify the phoneme z; generating the subset of vec-
tors with index in S;, ¢ = 1,...,m. We write x* for
the true but unknown sequence of phonemes and inter-
pret this as a particular realization of a random vector
X =(X1,Xa,...,Xm) where X; assigns symbol to position
% of the utterance. Similarly, each y; is a particular realiza-
tion of the random vector Y. It is clear that the change-
points t1,t2,...,tm—1 and the number of phonemes in the
utterance m are values of random variables. Thus, we set
d= (dl,dz, e ,dm), where dl = (ti - tifl), 1= 1, ceey, MMy
withto =1 and ¢t,, =T.

Using f(-) to denote probability density functions
(p.df) and p to denote discrete probabilities of named
events, we make the following assumptions:

The first-stage of the model supposes that the true se-
quence of phonemes x* is a realization of a locally depen-
dent Markov random field (M.r.f.) [8]. We shall be con-
cerned with a first order M.r.f. in which the phoneme sym-
bol at position ¢ of the utterance string depends only on the
adjacent phoneme symbols at position (¢ — 1) and (¢ + 1).
For any sequence (r, s) of two consecutive phonemes, let:
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and p (Uk, V}) the correlation coefficient between Uy and V.
When p =1 the two phonemes k and ! are not associated.
When p = 1 phoneme k always precedes phoneme [/, and
phoneme [ always succeeds to phoneme k, with a similar
interpretation for p = —1. The prior probability of (M, X)
is taken to be:

p(m,x | p) o

)+ S 0] ©

where the potential wm? is used to discourage configu-
rations having large numbers of phoneme symbols and p de-
notes the set of all correlation coefficients p (Uk, Vi), k,1 =
1,...,c

exp (—wm —|—Z Ug;_1, Vi

=2

In the second stage of the model, a distribution for
the mean time duration of each phoneme is specified. We
shall assume that D;, the number of acoustic vectors with
time index in S;, has a Poisson distribution with parame-
ter A; that is D; | \sP (A:) and that given z; = k, A; has
a Gamma distribution with parameters a; and [ that is
Ai | i =k — G (ag, Br) with density function

£ O | ot Bi) = o2V exp (—B)
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where i =1,... ,c. It follows that

fdisAi | ok, Br) =p(di | M) x f(Ni | ar, Br)  (2)

ymand k=1,...

Also, the marginal distribution of D; when the Poisson dis-
tribution is compounded with the Gamma distribution is
the Negative Binomial distribution with parameters o and
1/ (1 + Bx)

p(di | zs =k, ax, Br)

CT(ax+d) (B \™[ 1 \® 3)
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In the sequel, we shall let A ={\;:i=1,...,m}.

In the third and last stage of the model, we specify the
mean distributions of the acoustic vectors Y; for ¢ in S;.
We shall assume that:

1. Given x the random vectors Y, t = 1,...,T are
conditionally independent ie.  f(yi,y2,..,¥7 |

Ht Syl x)
2. For t € §;, the distribution of Y; depends only on x;
Le. f(ye|x)=f(y:|mi)

3. Y: has a multivariate Normal distribution with mean
®; and precision matrix V; that is Y; | (@, Vi) —
Np (©®+, V). Moreover, for t € S; and z; = k,
V: =V a known symmetric positive definite preci-
sion matrix and the prior distribution of ®; is multi-
variate Normal with mean vector p; € R? and known
symmetric positive definite precision matrix 3, that
is O | (z; =k, pr, ) — Np (b, k). Then the
posterior distribution of ®; when Y; =y, (t € S;) is
a multivariate Normal distribution [9,10], with mean
vector

pe = (B, + Vi)™ (Seprk + Viye)
and precision matrix

3 = (Zk + Vi)

that is the posterior distribution of ®; given Y; = y;
teS;z;==kIis

F(® | yi, pr, Vi, B, t € Sy i = k)

i) Sk (0 — Nk)} (4)

From Bayes’ rule, one has the following joint poste-
rior density for the unknown parameters m,x,d, A and
®={®t :t=1,...,T}

X exp {(Gg —

p(m,x,d, A, @ | y) o p(x,m) x p(d, A | x,m)
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where p(x,m) is given by Eq.(1), p(d, A | x,m) is given by
Eq.(2) and

m

p(d,, A | xm) = [ £ (i, N | a, Bi)

3. ESTIMATION

Estimation techniques that attempt to maximize the
posterior distribution given by Eq.(5) may not adequately
represent all plausible phoneme sequences for the given ut-
terance. Also, due to random variation in acoustic data,
there is often substantial uncertainty regarding the precise
location of segment endpoints. Therefore, the posterior dis-
tribution is likely to be multimodal, with distinct modes
corresponding to plausible positions of the change points.
Thus estimation strategies that describe posterior uncer-
tainty in utterance features are required. One possibility for
representing such uncertainty is to generate samples from
the posterior distribution of the utterance. A mechanism
that can be used to generate such samples is Gibbs Sampler
proposed in the imaging context by Geman and Geman.
The basic requirement for implementing the Gibbs sam-
pler is that full or reduced conditional distributions for all
unknown quantities be available. In the hierarchical speci-
fication of our model, the full conditional distributions for
the duration and acoustic related parameters given the se-
quence of phonemes may be derived using standard results
in Bayesian inference [11,12]. For instance, sampling from
the duration distribution of phoneme k can de done using
Eq.(3).

Estimation of m,p(Uk, Vi), k, Bk, ik, Vi and 32y,
k,1=1,...,c, can be done from a training corpus. m can be
taken as the average number of phonemes per utterance in
the training corpus. Estimation of p (Ug, Vi), k,1=1,...,c
is as follows.

Let N be the (¢ xc¢) contingency table where cell
(k,1) contains ng; the number of times phoneme ! follows
phoneme k, k,l=1,...c. Let:

N4 = E Ngt, N1 = E Nk,
1 k
Ng+ = E E N1y Mgl = E E Ny

kAR 1 kUL
then p(k,1) is estimated by:

Pk, 1) = E
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this is the maximum likelihood estimate under the
multinomial sampling model.

Estimation of ug, Vi and Xy are obtained as follows:

) 1
Pk =—— ) Vijk
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f(y,® |m,x,d, A) is given by Eq.(4) and

f(y,© |m,x,d,A) o (O | y,;m,x,d,A)
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where y;;; denotes the it" acoustic vector in the jth oc-
currence of phoneme k in the training corpus k =1,...,¢,
n;) is the number of acoustic vectors in the j** occurrence
of phoneme k£ and nj; the number of times phoneme % is
present in the training corpus.

An initial step in estimating the posterior distribution
of the utterance is to identify plausible values of the hy-
perparameter w. Unfortunately, the intractability of the
normalization constant prevents an analytic approach from
being taken in the selection of this hypermarameter. The
Gibbs sampler can be used to obtain samples from the prior,
and examination of these samples provides guidance into
appropriate choices for this hyperparameter. We begin by
selecting values for zi,...,Z,. Then, using equation (3)
we draw values for di,...,d,. Equation (4) generates val-
ues for 61, ...,0r. All these values are replaced in equation
(5) from which new values of z1,...,Zm are obtained. This
completes one cycle of the Gibbs sampling scheme. Unfor-
tunately, there is no criteria to determine how many cycles
are needed for convergence.

4. EXPERIMENTAL RESULTS

The validation experiments were based on task-
independent acoustic training, i.e., the vocabulary of the
training text has been designed to have little coverage over
that of recognition text. The speech data base is in Ara-
bic. The training utterances consist of 80 phonetically rich
sentences. The testing utterances consist of 300 sentences
with 1481 words. All utterances were sampled from infor-
mation requests of travel agencies. Speech was sampled
at 16 kHz, blocked each 10 ms with a 25.6-ms window
and parametrized using 17 Mel-frequency cepstral coeffi-
cient (MFCC) (energy included) unless otherwise specified.
Utterances were recorded in two sessions over several days.
Seven speakers were recorded. Four of them were used for
development and the remaining for evaluation. All tests
are in speaker-dependent mode. No speaker selection was
performed to maximize the recognition rate.

Thirty-eight context-independent phone models includ-
ing one silence model were used for all experiments. The



Speaker | %Cor | %Acc | Cor | Del | Sub | Ins W
abj 98.99 | 98.92 | 1467 1 14 1| 1481
abn 99.46 | 99.33 | 1474 0 8 2 | 1481
jar 98.92 | 98.65 | 1466 0 16 4 | 1481
fab 98.79 | 98.58 | 1464 0 18 3| 1481

overall | 99.04 | 98.87 | 5871 1 56 | 10 | 5924

Table 1: Word Recognition Results for different Speakers

initial segmentation of the training utterances were pro-
vided by an automatic time-alignment procedure. Typi-
cally, there were about 2753 segments per speaker in the
training database.

The recognition task is described by a finite-state net-
work with a vocabulary of 1770 words. The equivalent
word-pair perplexity is 40. In our experiments, word tran-
sition probabilities are not used, i.e., the probabilities of all
transitions from a node are equal.

To find the best sentence, the recognition system per-
forms beam search with N-best sentence as final result [13].
If not otherwise stated, the beam size is fixed to 1000 and,
for each utterance to be recognized, the system outputs an
average of 833 complete sentences. In counting errors, only
the top sentence is used.

‘We sampled the partition for a variety of hyperparam-
eter values and found configurations using w = 0.13 and
m = 27 to be appropriate. To speed the convergence of the
algorithm, initial estimate of the phoneme sequences were
obtained using Viterbi algorithm. Following initialization
conditional distributions described in equations (1)-(3) were
successively used to update phonemes, mean durations and
mean acoustic vectors.

HTK toolkits were used for scoring the recognition re-
sults given in table 1 where Cor, Del, Ins, Sub, and W
are, respectively, the number of correct words, deletions,
insertions, substitutions and total number of words in the
test speech, with Cor = W — Del — Sub. The accuracy is
given by the ratio (Cor — Ins)/W.

5. CONCLUSION

This work described a stochastic model for continuous
speech recognition. The proposed model is parametrized
so that estimation of the posterior distribution is provided.
A Gibbs distribution is used to specify a probability distri-
bution on the space of all possible phoneme sequences of
a spoken utterance. The attractiveness of this distribution
originates from their Markovian property: Gibbs distribu-
tions are special cases of Markov random fields. Because
of this property, the prior distribution of the true utterance
sequence of phonemes can be specified in terms of local con-
ditional distributions involving only neighboring phonemes.
Estimation of the posterior distribution is done iteratively
using Gibbs sampler scheme.

(1]

(2]

[10]

(11]

[12]

REFERENCES

V. E. Johnson, “A Model for Segmentation and Analy-
sis of Noisy Images”, Journal of the American Statistical
Association, vol. 89, no. 425, pp. 230-241, 1994.

S. Geman and D. Geman, “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images”,
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 6, pp. 721-741, 1984.

M. Ostendorf, V. V. Digalakis and O. A. Kimball, “From
HMM to Segment Models: A Unified View of Stochas-
tic Modeling for Speech Recognition”, IEEE Trans. on
Speech and Audio Processing, vol. 4, no. 2, pp. 360-378,
1996.

F. Mouria-Beji and J. P. Haton, “A hierarchical Bayesian
model for continuous speech recognition”, To appear in
Pattern Recognition Letters, PATREC-1560, Elsevier.

J. J. Deely and D. V. Lindley, “Bayes Empirical Bayes”,
Journal of the American Statistical Association, vol. 76,
no. 376, pp. 833-841, 1981.

J. E.Besag, “On the Statistical Analysis of Dirty Pic-
tures”, Journal of the Royal Statistical Society, ser. B.,
vol. 48, no. 3, pp. 259-302, 1986.

J.Marroquin, S. Mitter and T. Poggio, “Probabilistic So-
lution of Ill-Posed Problems in Computational Vision”,
Journal of the American Statistical Association, vol. 82,
no. pp. 397, 76-89, 1987.

F. Mouria-Beji, “Segmental phoneme recognition using

Markov random fields”, Submitted to IEEE Trans. on
Speech and Audio Processing, Re: SAP-820.
M. H. De Groot, “Optimal Statistical decisions”,

McGraw-Hill, 1970.

G. E. P. Box and G. C. Tiao, “Baysian Inference in Sta-
tistical Analysis”, Reading, MA: Addison-Wesley, 1973.

A. E. Gelfand and Q. F. M. Smith, “Sampling Based Ap-
proach to Calculating Marginal Densities”, Journal of the
American Statistical Association, vol. 85, no. 410, pp.
398-409, 1990.

M. A. Tanner and W. H. Wong, “The Calculation of Pos-
terior Distributions by Data Augmentation”, Journal of
the American Statistical Association, vol. 82, no. 398,
pp. 528-550, 1987.

Y. Gong, J. P. Haton and F. Mouria-Beji, “Continuous
Speech Recognition Based on High Plausibility Regions”,
IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 1, pp. 725-728, Toronto, Canada,
1991.



