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Abstract–The quality against speed control for real-time video

applications, such as the speed-oriented video conferencing or

the high quality video entertainment, usually absents from many

traditional fast block motion estimators. In this paper, a novel

block-matching algorithm for fast motion estimation named gen-

eralized partial distortion search algorithm (GPDS) is proposed.

It uses halfway-stop technique with progressive partial distor-

tion (PPD) to increase the chance of early rejection of impossi-

ble candidate motion vectors at very early stages. Simulations

on PPD show that 28 to 38 times computational reduction with

only 0.45-0.50dB PSNR performance degradation as compared

to full search algorithm. In addition, a new normalized partial

distortion comparison method is also proposed for enabling the

control of searching speed against the prediction quality by a

speedup factor k. This method also generalizes the conventional

partial distortion search algorithm when k is equal to 1, and the

normalized partial distortion search algorithm (NPDS) when k

is equal to infinity. Experimental results show that GPDS with

use of PPD could provide PSNR performance very close to full

search algorithm and NPDS with 7 to 17 times and 22 to 33 times

speedup, respectively, as compared to full search algorithm.

Keywords– Generalized partial distortion search algorithm,

quality control, speedup factor, motion estimation.

I. Introduction

The major compression gain in many video coding like ISO
MPEG-1/2/4 and ITU-T H.261/263 is achieved by motion es-
timation. Motion estimation efficiently removes the temporal
redundancy between successive frames by block-matching al-
gorithms (BMA). Block-based motion estimation is the most
practical approach to obtain motion compensated prediction
frames. It divides frames into equal-sized rectangular blocks
and finds out the displacement of the best-matched block from
previous frame as the motion vector to the block in the current
frame within a search region. Full search (FS) algorithm is the
most straightforward brute force BMA, which provides the opti-
mal results by matching all possible candidates within a search
window (±w pixels). In contrast, it is the most computational
intensive as compared to other popular traditional fast BMA
like three-step search (3SS) [1], new three-step search (N3SS)
[2] and four-step search (4SS) [3], which reduce computational
complexity by limiting the number of search points within the
search window. However, traditional BMA are easily trapped
into local minimum points resulting in loss of visual quality
as the mean absolute distortion (MAD) is always higher than
FS. Recently, some fast search algorithms perform block match-
ing as in FS without limitation of checking points, especially
the normalized partial distortion search algorithm (NPDS) [4].
NPDS introduces the normalized cumulative partial distortion
criteria for early rejection of impossible candidate motion vec-
tors (CMV). However, they all lack the control between speed
and quality. In this paper, a novel fast BMA named generalized
partial distortion search algorithm (GPDS) is proposed. The
proposed algorithm consists of two parts. The first part is to
increase the speed of NPDS by introduction of progressive par-

Order of computation of partial
distortion dp with p from 1 to P.
In this case, M=P=16.

Pixel in light grey is used for the
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Fig. 1. Computation order of partial distortion dp, p = 1 to 16, of

16×16 block. (sp, tp) is the offset of the upper left corner of a partial
distortion from the upper left corner of the candidate block

tial distortion (PPD) at very early stages. The second part is
a new normalized partial distortion comparison method with
speedup control factor against different quality. Experimental
results of GPDS with PPD are also given to show the trade-off
between searching speed and the prediction quality for different
applications.

II. Progressive Partial Distortion

Suppose the block size is M ×M . Let ax,y and bx,y be the
pixel value of row x and column y of block a and b, in current
and previous frame, with horizontal and vertical sampling by q
and r pixels, respectively. The block distortion measure (BDM)
d(x,y;u,v;q,r;M,M) of bx+u,y+v, with (u, v) displacement from ax,y
is, q=r=1, using sum absolute error (SAE):

d(x,y;u,v;q,r;M,M) =

M−1X
i=0

M−1X
j=0

|ax+qi,y+rj − bx+u+qi,y+v+rj | (1)

Conventional partial distortion search algorithm (PDS) [5]
provides optimal result equal to FS with speedup ratio twice or
more than that of FS. PDS rejects impossible CMV by means of
half-way stop technique with pixel-by-pixel based partial distor-
tion comparison to the current minimum distortion. To reduce
the number of comparison and increase the chance of early re-
jection of impossible CMV, NPDS divides the matching blocks
into P groups (P=16), as shown in Fig.1, and compares each
group of M2/P pixels based partial distortion with the nor-
malized current minimum distortion, DMIN . Experimental re-
sults in [4] show that NPDS outperforms other BMA such as
3SS with PSNR performance close to FS and highly reduces
the computations 12-13 times by early rejection. It results in
a saving of multiples of 16 pixel-operations for each impossi-
ble CMV. However, NPDS limits the maximum computational

reduction to M2

(no. of pixels at the first partial distortion)
or M2

M2/P
=16

times for M=P=16. In order to further increase the rejection
rate more efficiently, we propose to use progressive partial dis-
tortion (PPD) at the first few stages of the NPDS, such as the
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Fig. 2. Different regular subsampling patterns on the first partial distor-

tion. Computation order of group of pixels is shown in the label of a

pixel. (kh, lh) is the offset of upper left corner of the first PPD from

the upper left corner of the first partial distortion.

first partial distortion, which is further divided into H smaller
dimension and equal-sized partial distortions. It thus increases
the maximum computational reduction of NPDS from 16 times

to M2

M2/(PH)
=64 times if H=4.

With PPD, matching blocks are firstly divided into P equal-
sized partial distortions in which the dimension of the first par-
tial distortion d1 (i.e. p=1) is further reduced from

M
s
× M

t
to

M
sk
× M

tl
in order to support H equal-sized progressive partial

distortions. Each partial distortion dp|16p6P is firstly sampled
by horizontal s and vertical t pixels, respectively. The first par-
tial distortion d1 is subsampled by horizontal k and vertical l
pixels, respectively. Thus, d1 is replaced by H dp,h|p=1,16h6H
and the two types of partial distortions are defined as in Eqn(2)
and Eqn(3), respectively.

dp,h = d(x+sp+kh,y+tp+lh;u,v;k,l;Msk ,
M
tl
)|p=1,16h6H (2)

dp = d(x+sp,y+tp;u,v;s,t;Ms ,
M
t )
|26p6P (3)

The total number of partial distortions are G=H+P -1. The
original p-th cumulative partial distortion Dp of NPDS and its
normalization DNORM(p) cumulated to n pixels are defined as
in Eqn(4).

Dp =

pX
k=1

dk; DNORM(p) =
M2

n
Dp (4)

where n = p×M2/P for 1 6 p 6 P

They are rewritten as in Eqn(5) for the g-th cumulative par-
tial distortion D0

g and Eqn(6) for its normalization D
0
NORM(g)

cumulated to n pixels after PPD is introduced.

D0
g =

gX
k=1

d0k; (5)

where d0g =
½
dp,h for p = 1, 1 6 g 6 H
dp for 2 6 p 6 P, (H + 1) 6 g 6 G

D0
NORM(g) =

M2

n
D0
g; (6)

where n =

½
h× M2

PH
for p = 1, 1 6 g 6 H

p×M2/P for 2 6 p 6 P, (H + 1) 6 g 6 G

BMA LS ABS Comp. +/- Total SpeedUp PSNR

FS – 52870 105534 206 158610 1 26.92

PDS – 22838 45469 1617 69924 2.27 26.92

3SS – 4022 8021 258 12301 12.89 25.43

4SS – 3228 6437 204 9869 16.07 26.18

N3SS – 3795 7569 241 11605 13.67 25.98

NPDS 55 4234 8292 454 13035 12.17 26.69

PPDS(v1) 258 1071 2060 628 4017 39.48 25.95

PPDS(v2) 133 1313 2480 529 4455 35.60 26.21

PPDS(v3) 81 1759 3350 482 5672 27.96 26.42

PPDS(v4) 62 2614 5050 462 8188 19.37 26.59

PPDS(v5) 158 1148 2120 561 3987 39.78 26.06

TABLE I

PSNR performance comparison with different PPD against

computation reduction on sequence ”tennis”. [Remark:

PPDS:v1=1-pixel, v2=2-pixel, v3=4-pixel (proposed), v4=8-pixel

grouping and PPDS.v5=(1,1,2,4,4,4) sample sequence.]

BMA LS ABS Comp. +/- Total SpeedUp PSNR

FS – 52870 105534 206 158610 1 26.17

PDS – 16868 33529 1244 51641 3.07 26.17

3SS – 2788 5552 181 8521 18.61 25.66

4SS – 2211 4405 138 6754 23.48 25.82

N3SS – 2347 4676 148 7171 22.12 25.93

NPDS 20 3782 7369 426 11597 13.68 25.97

PPDS(v1) 116 692 1220 514 2542 62.39 25.35

PPDS(v2) 53 898 1610 459 3020 52.52 25.55

PPDS(v3) 28 1309 2420 435 4192 37.84 25.72

PPDS(v4) 21 2142 4090 428 6681 23.74 25.87

PPDS(v5) 86 728 1260 494 2568 61.76 25.45

TABLE II

PSNR performance comparison with different PPD against

computation reduction on sequence ”football”. [Remark:

PPDS.v1=1-pixel, v2=2-pixel, v3=4-pixel (proposed), v4=8-pixel

grouping and PPDS.v5=(1,1,2,4,4,4) sample sequence.]

Fig. 2 shows different subsampling patterns on the first par-
tial distortion. Regular subsampling ψ {ψ ∈ Ψ;Φ = Ψ ∪ ∆}
with i pixel(s) taken out at a time from a group of S=M2/P

pixels has combinations of
PS

i=1

hQbS/ic−1
j=0 (S−ijCi)

i
, where

nCr=
n!

(n−r)!r! . Thus, the total combination Φ if including

the remaining progressive regular and irregular subsampling
∆ is very large. Regularity favors practical implementations.
Fig.2(c) is the PPD (version 3) proposed for progressive par-
tial distortion search algorithm (PPDS) by employing total 19
partial distortions: H=4 equal-sized PPD d1,h, and 15 par-
tial distortions dp|26p616 (P=16). With M=P=16, s=t=4,
H=4 and k=l=2, D0

NORM(g)|16g6H and D0
NORM(g)|(H+1)6g6G

are equal to D0
NORM(h) and DNORM(p) respectively, such that

D0
NORM(H) = DNORM(1) as shown in Eqn(7).

D0
NORM(g) =

½
D0
NORM(h) =

64
h
D0
h for p=1; 16g,h6H

DNORM(p) =
16
p
Dp for 26p6P ;(H+1)6g6G

(7)

PPDS performs normalized cumulative partial distortion cri-
teria D0

NORM(g)>DMIN and rejects any impossible CMV if

D0
NORM(g) is greater than the current minimum distortion

DMIN = min(x,y)∈W DG, where W=[x ± w, y ± w]. Other-



0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

M
S

E

Frame number

MSE of sequence "tennis" (0-80)

FS
3SS
N3SS
4SS
NPDS
PPDS.v3
GPDS k=42

Fig. 3. MSE performance comparison on “tennis”.

Fig. 4. Generalization function f(n, k) for GPDS comparison.

wise, D0
NORM(g) is recomputed with inclusion of next partial

distortion d0g+1and repeats the comparison until the last partial
distortion G. Different kinds of PPD are studied and the per-
formances on sequences “tennis” and “football” are shown in
Table I and II. PPD with the lowest regular dimension, such
as grouping of 1 pixel at a time in Fig.2(a), provides highest
computational reduction due to the highest very early rejection

rate
D0
h
h
>DMIN

256
. However, it gives the worse prediction qual-

ity among PPD. PPD with the highest regular dimension, such
as grouping of 8 pixels in Fig.2(b), it gives the lowest computa-
tional reduction but with the best prediction quality. The lower
the dimension of grouping is, the larger the computation reduc-
tion is. PPDS as in Fig.2(d) shows the intermediate results on
both prediction quality and speedup ratio with lower to higher
dimensionality, i.e. (1,1,2,4,4,4) sample sequences, in which dif-
ferent levels of sub-grouping perform at the first partial distor-
tion. Table I and II show that PPDS provides speedup ratio
from 19.37 to 62.39 times computational reduction with 0.30-
0.97dB degradation on average PSNR performance as compared
to FS. The proposed PPDS (v3: grouping of 4 pixels) with sub-
sampling pattern shown in Fig. 2(c) provides more than twice of
speedup ratio of 3SS and with better PSNR performance by less
than 1dB. As compared to NPDS, it provides 2.30-2.77 times
speedup ratio of NPDS with only less than 0.27dB degradation
on PSNR performance. In general, PPDS(v3) results in 28-38
times speedup with 0.45-0.50dB degradation from FS. The pro-
posed PPDS on sequence “tennis”, as shown in Fig.3, gives MSE
performance very close to or even better than traditional BMA

such as 3SS, N3SS and 4SS.

III. Generalized Partial Distortion Comparison

GPDS is to provide generalization of the normalized cumula-
tive partial distortion D̃NORM so that the NPDS matching cri-
teria againstDMIN can be adjusted to provide different speedup
ratio and prediction quality. The generalized normalization of
n-pixel cumulative partial distortion Dn from Eqn(4) can be
rewritten as:

D̃NORM(n) =
M2

f(n)
Dn; where f(n)=n. (8)

Since the proposed PPDS(v3) at the first partial distortion
of NPDS gives H equal-sized PPD with lower dimension, it in-
creases the early rejection rate for the first group of M2/P=16
pixels to H=4 times. It lowers the computations and thus in-
creases the speedup ratio by about three times of NPDS but
with MSE performance degraded slightly. Generalization func-
tion f(n, k) is designed to replace f(n) by introducing a quality
factor or speedup factor k, which relates the PSNR performance
from conventional PDS to NPDS. The generalized D̃NORM(n)

provides matching criteria for optimal result as in PDS when
k=1, i.e. f(n, k)|k=1=M2. When k → ∞, GPDS gives the
performance as in NPDS, i.e. f(n, k)|k→∞=n. Thus, f(n, k) is
defined as in Eqn(9) and plotted as in Fig.4.

f(n, k) = n+

µ
M2 − n
k

¶
(9)

In general, f(n, k) starts at M2 (i.e. PDS matching criteria)
and going to become f(n)=n (i.e. NPDS matching criteria) as
k increases from 1 to infinity. Thus, it is suitable for adjustment
of speedup versus quality between PDS and NPDS. As f(n, k)
decreases with k dramatically for small n, but gets to become
M2 for larger n. It implies D̃NORM(n) increases with k dramat-
ically at small n, and thus favors early rejection purposes. With
the dramatical slope of f(n, k), NPDS favors to give result near
to that of PDS (at small value of k) by rejection of impossible
CMV at early stages (small value of n).

IV. Experimental Results

The proposed algorithm GPDS with PPD is simulated us-
ing the luminance of the popular SIF (360×240) video sequence
“tennis” and “football”. The block size and search window used
are 16×16 (M ×M) and ±7 (w), respectively. In NPDS, each
block is sampled evenly in both horizontal and vertically by
s=4 and t=4 pixels, respectively, into P=16 partitions. For
PPDS(v3) and GPDS, the first partial distortion d1 is subsam-
pled by k=2 and l=2 into H=4 PPD. All 3SS, 4SS and N3SS
are implemented to use halfway-stop BDM for fair comparison.
Their predication quality in terms of PSNR and MSE, and com-
putational complexity are compared.
Results using various PPD can be referred to section II, Table

I and II. In general, PPDS gives 19.37 to 62.39 times speedup
with 0.30 to 0.97dB PSNR degradation compared to FS. The
PPDS (v3) employs totalG=19 partial distortions with compro-
mised performance and is generalized by f(n, k) to form GPDS
for normalized partial distortion comparison.
Table III compares the speedup ratio and PSNR performance

of different BMA against GPDS of different speedup factor k.
GPDS maintains its PSNR performance very close to FS at 7.24
and 17.21 times speedup, for sequence “tennis” and “football”,
respectively. As compared to traditional BMA, firstly, GPDS
has a speedup ratio of 1.49-2.11 times with better or similar
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Fig. 5. PSNR performance and speedup ratio against speedup factor k

on sequence “Tennis”.

PSNR performance. Secondly, it also gives better PSNR per-
formance by 0.21-1.41dB with just faster searching speed at
16.24(k=42) times for “tennis” and 23.56(k=31) times for “foot-
ball”, respectively. As compared to NPDS, GPDS has PSNR
performance very close to NPDS at k=122 on both sequences
with computational reduction of 1.82-2.37 times. Fig.3 shows
MSE performance of various BMA on “tennis” in which GPDS
at k=42 almost overlaps the MSE performance of FS at 16.24
times speedup, which is just faster than all traditional BMA.

It is noted that multiplication operations exist in Eqn(8). In
PPDS comparison, all multiplication operations are translated
into combinations of “left-shift” and “addition” operations since
the numeratorM2 of the matching criteria can be simplified into
power of 2 with the values of H and P, which are also power of 2
in M2Dn>f(n)DMIN . However, for generalization function in
Eqn(9), smooth curves of speedup ratio and distortion against
speedup factor k are expected theoretically from PDS to NPDS,
but impractical for implementation. Thus, nineteen f(n, k) val-
ues are computed for desired k in advance by means of integer
precisions and round-off operations from k=1 to 256 such that
f(n, k) saturates at k=256. It results in stepping-behavior of
the speedup ratio and PSNR performance against k as shown in
Fig.5 and Fig.6. Since dramatical behavior exists in the small
k and the proposed working value for k 6100, which provides
obvious speedup ratio up to 21.60-32.04 times with 0.18-0.20dB
slightly degradation compared to FS.

V. Conclusions

In this paper, progressive partial distortion (PPD) is pro-
posed at the first few stages of NPDS to increase the early
rejection rate of impossible candidate motion vectors. Simula-
tion on NPDS with different PPD provides speedup ratio from
19.37 to 62.39 times computational reduction with 0.30-0.97dB
degradation on PSNR performance as compared to FS. In ad-
dition, generalized partial distortion search algorithm (GPDS)
is proposed. It introduces a speedup factor k to the normalized
partial distortion comparison so that NPDS can be adjusted
to provide an optimization on the tradeoff between speed and
quality from PDS to NPDS. Experimental results show that the

S e q u e n c e  F o o tb a ll: P S N R /S p e e d u p  R a t io

V .S . S p e e d u p  fa c to r  k

0

5

10

15

20

25

30

35

40

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

Speedup factor k

Speedup Ratio

25.7

25.75

25.8

25.85

25.9

25.95

26

26.05

26.1

26.15

26.2

PSNR (dB)

Speedup(Football)

PSNR(Football)

Fig. 6. PSNR performance and speedup ratio against speedup factor k

on sequence “Football”.

Sequence “tennis” Sequence “football”

BMA(k) SpUp PSNR BMA(k) SpUp PSNR

GPDS(9) 7.24 26.92[˜FS] GPDS(16) 17.21 26.17[˜FS]

GPDS(42) 16.24 26.84 GPDS(31) 23.56 26.14

GPDS(100) 21.60 26.72 GPDS(100) 32.04 25.99

GPDS(122) 22.19 26.69[˜NPDS] GPDS(122) 32.44 25.96[˜NPDS]

GPDS(256) 27.20 26.42 GPDS(126) 32.95 25.93[˜N3SS]

4SS 16.07 26.18 GPDS(252) 34.97 25.80[˜4SS]

N3SS 13.67 25.98 GPDS(256) 36.17 25.72

3SS 12.89 25.43 3SS 18.62 25.66

TABLE III

Speedup ratio and PSNR(dB) performance on different BMA and

GPDS with different speedup factor k.

proposed GPDS has PSNR performance very close to NPDS at
k=122 with computational reduction of 1.82-2.37 times as com-
pared to NPDS. Thus, GPDS is very suitable for a wide range
of video applications such as speed-oriented video conferencing
and high quality video coding.
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