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Abstract|This paper presents a improvement of high or-

der cumulant-based parameter estimation using delta oper-

ator applied to instrumental variable algorithm. It is based

on a modi�cation of the classical least squares estimation

and the utilization of the delta operator and the introduc-

tion of an additional term in the parameter estimates. Com-

puter simulation results are given to illustrate the behavior

of this method.

I. Introduction

S
ECOND order statistics (SOS) parameter estima-

tion, using of a Æ-operator has shown advantages

over the classical q-operator, in terms of numerical abil-

ity and ill-conditions processing. Moreover, it has been

shown that the least squares estimation convergence rate

can be improved [1]- [3] using a Æ-operator . Concern-

ing high order statistics (HOS), the major problems are

the convergence rate and the 
uctuations of parameter es-

timation when the algorithms, particularly the Recursive

Instrumental Variable (RIV), work on short-length data,

[4]-[6]. To this day, no Æ-operator type algorithm applica-

ble to HOS is available. Such an algorithm, by using the

properties of Æ-operator, could lead to an improvement of

classical algorithms. The aim of this paper is to investi-

gate a Æ-operator high order statistics recursive instrumen-

tal variable method.

II. Preliminaries

The following notations will be used. x denotes a vec-

tor, x(n) denotes the nth(time) element of x. Uppercase

(X) denotes a matrix. The �nite di�erence Æ-operator is

de�ned by: Æx(n) = x(n)�x(n�1)
T

= 1�q
T
x(n), where T is

the (normalized) sampling period of the process x. q is the

delay operator that is, for an integer i, qix(n) = x(n � i).

Thus, we de�ne Æix(n) = (1�q)i

T i x(n) = 1+:::+(�1)iqi

T i x(n).

m-order cumulant of x is denoted by Cmx(t1; :::tm�1). Con-

sider a real discrete time process,

x(n) =

pX
k=1

a(k)x(n� k) + u(n); y(n) = x(n) + w(n) (1)

where u(n) is an independent input excitation, y(n) the

observed output, and w(n) a zero-mean gaussian colored

noise (which can be an MA process). Here, we consider the

problem of estimating the AR parameter, a(k); k = 1; :::; p,

using recursive instrumental variable transversal structure.

This problem has been thoroughly covered in many papers,

e.g.[7]. The Instrumental Variable (IV) estimation of the

AR part of (1) uses a process z(n) referred to as instru-



mental variable, which will be discussed below. We de�ne

�T (n) = [y(n�1); :::y(n�p)];  T (n) = [z(n�1); :::z(n�p)]

and �T = [a(1):::a(p)]. The process z(n), assumed to be un-

correlated to the additive noise w(n), asymptotically yields

the (p+ 1) rank matrix

P�1(n) =

nX
k=0

�n�k (k)�T (k) (2)

Equation (2) gives the classical correlation-based estimate

for z(n) = y(n). In this case, the parameter estimates

can be obtained via the Recursive Least Squares (RLS)

method. To overcome RLS limitations, classically z(n) is

chosen so that P (n) is an m-order cumulant matrix (m >

2). Typical choices e.g. [4] are:

� z(n) = y(n)y(n + n0); this leads to estimates based on

1D slice C3y(k; k + n0). Generally n0 is set to zero and

z(n) = y2(n) and then estimates are based on the diagonal

slice of the 3rd-order cumulants of y.

� z(n) = y3(n) � 3�2y(n), with �2 = C2y(0); this leads

elements of P to be sample estimates of C4y(k; k; k) the

diagonal slice of the 4th-oder cumulant of y.

Here, we consider the case of estimation using m-order

cumulant(m > 2). The classical q-operator Recursive In-

strumental Variable algorithm is then given by :

�̂(n) = �̂(n� 1) + P (n) (n)[y(n) � �T (n)�(n � 1)] (3)

P (n) = ��1[P (n�1)�
P (n� 1) (n)�T (n)P (n� 1)

�+ �T (n)P (n� 1) (n)
] (4)

with 0 < � � 1 This algorithm su�ers from high 
uctua-

tions related to the use of High Order Cumulants (HOC)

when applied to short-length data.

III. Proposed Algorithm

Now consider the extension of model (1) using the Æ-

operator, which can be written as:

A(Æ)x(n) = u(n); with A(Æ) =

pX
i=0

�(i)Æi (5)

De�ne:

��T = [��(p� 1):::� �(0)] (6)

��T (n) = [Æ(p�1)x(n):::x(n)] (7)

�y(n) = Æ(p)x(n) + w(n) (8)

� T (n) = [Æ(p�1)z(n):::z(n)] (9)

Remark 1 : Relations between general model (5) (say �(n))

and (1),(say a(n)) come immediately by expanding (5), for

example

�̂(1) = 2 + T �̂�(1); �̂(2) = �1� T �̂�(1) + T 2 �̂�(2)

It is well known that the methodology in developing IV es-

timates is based on modi�cation of least squares covariance

matrix so that the observations are not correlated to the

noise, through introduction of an instrumental process [7].

Following this methodology, the Æ-operator RIV estimates

are dervived. Using ~��(n) = �̂�(n)� �̂�(n� 1) and initial cu-

mulant matrix P0, the orthogonality condition [7] leads to

:

"
P�10 +

nX
k=1

fn(k) � (k)��
T (k)

#
~��(n) =

nX
k=1

fn(k) � (k)[�y(k)� ��T (k)�̂�(n� 1)]

where fn(k) = (1� ��T )n�k (10)



fn(k) uses the forgetting factor �� to account for slow vari-

ations of the parameters. Parameter estimates are then

given by :

~��(n) = �P (n)

nX
k=0

fn(k) � (k)
h
�y(k)� ��T (k)�̂�(n� 1)

i

�P (n) =

"
P�10 +

nX
k=1

fn(k) � (k)��
T (k)

#
�1

(11)

Unlike the classical algorithm, here, the case without for-

getting factor corresponds to �� = 0.

For convenience, in the following parts we assume, without

lost of generality, that T = 1. From these de�nitions, using

similar derivations as in [8], the Æ-operator RIV estimates

are obtained by:

Æ �̂�(n) = �P (n)fP�10 Æ �̂�(n� 1)+ � (n)[�y(n)� ��T (n)�̂�(n� 1)]g

(12)

Æ �P (n) =
1

1� ��
f�� �P (n)�

�P (n) � (n)��T (n) �P (n)

1 + ��T (n) �P (n) � (n)
g (13)

In practice, P0 initial cumulant marix is chosen by setting

P0 = 
I , where 
 is a scalar and I the identity matrix.

Here, one can notice that equations (12) and (13), by using

an additional term �P (n)P�10 Æ�̂(n � 1) and by estimating

the �nite di�erence of parameters and cumulant matrix,

di�er from equations (3) and (4). This algorithm, �rst

results in the reduction of parameter estimates 
uctuations

and thus accelerates convergence speed. Secondly, it takes

advantage of good numerical properties of the Æ-operator

[1],[3]. The algorithm can be summarized by :

� choose initial values of �P (e.g. P0 = 
I with I the iden-

tity matrix and 
 a positive constant) and �̂�(0)

For n=1,2,...

� compute ��(n) ; ��(n); �y(n); � T (n) eqs. (6)-(9);

� compute Æ �P (n) eq. (13), and �P (n) using the de�nition

of Æ �P (n) as speci�ed in section II.

� compute Æ �̂�(n) eq. (12) and �̂�(n) using the de�nition of

Æ��(n) as speci�ed in section II.

� the algorithm ends here if the model used is (5);

� if not compute �̂ from �̂� using Remark1.
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Fig. 1.

Parameter estimate with classical RIV algorithm. Theo-

retical values (dash dot) and estimated values (solid lines)

with a single realization

The counterpart of this algorithm is the computation of

the additional term and �nite di�erences. But this is

a small price to pay compared to the improvement in

terms of 
uctuations reduction. To illustrate this, we con-

sider for the purpose of a computer simulation the pro-

cess : x(n) � 0:6x(n � 1) � 0:27x(n � 2) = u(n); with

w(n) = �0:49w(n � 2) + e(n); y(n) = x(n) + w(n) where
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Fig. 2.

Parameter estimate with new RIV algorithm. Theoretical

values (dash dot) and estimated values (solid lines) with a

single realization

u(n) is 2-squewness, unit variance, zero-mean exponen-

tially distributed random process and e a gaussian noise.

In �gs.(1) and (2), we show the results of parameter esti-

mates using the 3rd-order cumulant with classical RIV and

the new algorithm for SNR=10 dB. For this simulation, we

use T = 1 (chosen arbitrarily). The initial cumulant ma-

trix for the two algorithms is chosen as P0 = 104I where I

is the identity matrix. � = 1 for the classical algorithm and

�� = 0 for the new algorithm (these two choices for � are

similar). Only one realization of the signals is used for this

simulation. The number of samples is 500 (whereas usually,

classical algorithm necessitates higher numbers and many

realizations and an average of the estimates to reduce the


uctuations). As it can be seen, even in these conditions,

the new algorithm yields less 
uctuations (�g.(2)), com-

pared to classical algorithm (�g.(1)), where it is diÆcult to

distinguish between the two parameter estimates because

of the high 
uctuations.

IV. Conclusion

In this paper we have presented a new parameter estima-

tion algorithm which has been applied to HOC . This algo-

rithm is based on the modi�cation of the classical approach

by i using a Æ-operator. It allows reduction of parameter

estimates 
uctuations, even when short-length data is used

as shown by computer simulation.
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