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Abstract— This paper presents a improvement of high or-
der cumulant-based parameter estimation using delta oper-
ator applied to instrumental variable algorithm. It is based
on a modification of the classical least squares estimation
and the utilization of the delta operator and the introduc-
tion of an additional term in the parameter estimates. Com-
puter simulation results are given to illustrate the behavior

of this method.

I. INTRODUCTION

ECOND order statistics (SOS) parameter estima-

tion, using of a d-operator has shown advantages
over the classical g-operator, in terms of numerical abil-
ity and ill-conditions processing. Moreover, it has been
shown that the least squares estimation convergence rate
can be improved [1]- [3] using a d-operator . Concern-
ing high order statistics (HOS), the major problems are
the convergence rate and the fluctuations of parameter es-
timation when the algorithms, particularly the Recursive
Instrumental Variable (RIV), work on short-length data,
[4]-[6]. To this day, no d-operator type algorithm applica-
ble to HOS is available. Such an algorithm, by using the

properties of §-operator, could lead to an improvement of

classical algorithms. The aim of this paper is to investi-

gate a d-operator high order statistics recursive instrumen-

tal variable method.

II. PRELIMINARIES

The following notations will be used. x denotes a vec-

tor, z(n) denotes the n'”(time) element of z. Uppercase

(X) denotes a matrix. The finite difference d-operator is

defined by: dz(n) = w = 12%3(n), where T is

the (normalized) sampling period of the process z. ¢ is the

delay operator that is, for an integer i, ¢'z(n) = x(n — i).

Thus, we define §iz(n) = (1;§)i FE e D

T

m-order cumulant of z is denoted by Cya (t1, ...tm—1). Con-
sider a real discrete time process,

z(n) =Y _a(k)z(n — k) +u(n), y(n) = z(n) + w(n) (1)

k=1

where u(n) is an independent input excitation, y(n) the
observed output, and w(n) a zero-mean gaussian colored
noise (which can be an MA process). Here, we consider the
problem of estimating the AR parameter, a(k), k= 1,...,p,
using recursive instrumental variable transversal structure.
This problem has been thoroughly covered in many papers,
e.g.[7].

The Instrumental Variable (IV) estimation of the

AR part of (1) uses a process z(n) referred to as instru-



mental variable, which will be discussed below. We define

y(n—1),..y(n=p), ¢ (n) = [z(n-1),..2(n—p)]

[a(1)...a(p)]. The process z(n), assumed to be un-

correlated to the additive noise w(n), asymptotically yields

¢ (n) =

and 87 =

the (p + 1) rank matrix

n

=D A" Fp(k)g" (k) (2)

k=0

P '(n)

Equation (2) gives the classical correlation-based estimate

for z(n) = y(n). In this case, the parameter estimates
can be obtained via the Recursive Least Squares (RLS)
method. To overcome RLS limitations, classically z(n) is
chosen so that P(n) is an m-order cumulant matrix (m >
2). Typical choices e.g. [4] are:

e z(n) = y(n)y(n + ng); this leads to estimates based on
1D slice Csy(k, k + no). Generally ng is set to zero and
z(n) = y%(n) and then estimates are based on the diagonal
slice of the 3"%-order cumulants of y.

e 2(n) = y3(n) — 30%y(n), with o> = C,(0); this leads
elements of P to be sample estimates of Cuy(k,k,k) the
diagonal slice of the 4"-oder cumulant of y.

Here, we consider the case of estimation using m-order
cumulant(m > 2).

The classical g-operator Recursive In-

strumental Variable algorithm is then given by :

_ P —1)p(n)¢" (n)P(n —1)
A+ ¢T(n)P(n—1)¢(n)

] (4)
with 0 < A < 1 This algorithm suffers from high fluctua-

tions related to the use of High Order Cumulants (HOC)

when applied to short-length data.

III. PROPOSED ALGORITHM

Now consider the extension of model (1) using the J-

operator, which can be written as:

A(0)z(n) = u(n); with A(0) = Za(i)é’ (5)
Define:
" = [~alp-1).. - a(0)] (6)
¢'(n) = [P Va(n)..z(n)] (7)
g(n) = Wa(n) +w(n) (8)
PT(n) = [P Vz(n)...2(n)] (9)

Remark 1: Relations between general model (5) (say a(n))
and (1),(say a(n)) come immediately by expanding (5), for

example

(1) =2+ TH(1);6(2) = —1 — TH(1) + T24(2)

It is well known that the methodology in developing IV es-
timates is based on modification of least squares covariance
matrix so that the observations are not correlated to the
noise, through introduction of an instrumental process [7].
Following this methodology, the d-operator RIV estimates
f(n) —

mulant matrix Py, the orthogonality condition [7] leads to

are dervived. Using é_(n) = é_(n — 1) and initial cu-

(10)



fn(k) uses the forgetting factor A to account for slow vari-

ations of the parameters. Parameter estimates are then

given by :

B(n) = P(n) Y fulk)d(k) [g(k) — 6T (k)f(n — 1)}
k=0
Pyl + an(k)zp(k)ww)] (11)

k=1

P(n) =

Unlike the classical algorithm, here, the case without for-
getting factor corresponds to A = 0.

For convenience, in the following parts we assume, without
lost of generality, that T'= 1. From these definitions, using
similar derivations as in [8], the d-operator RIV estimates

are obtained by:

50(n) = P(n){Py"80(n — 1)+ (n)[g(n) — 6" (n)(n — 1)]}

(12)

P (mPn), )

1+ ¢ (n)P(n)i)(n)

In practice, Py initial cumulant marix is chosen by setting

E L _3pm) -

Py = ~I, where v is a scalar and I the identity matrix.
Here, one can notice that equations (12) and (13), by using
an additional term P(n)P; '66(n — 1) and by estimating
the finite difference of parameters and cumulant matrix,
differ from equations (3) and (4). This algorithm, first
results in the reduction of parameter estimates fluctuations
and thus accelerates convergence speed. Secondly, it takes
advantage of good numerical properties of the J-operator
[1],[3]- The algorithm can be summarized by :

« choose initial values of P (e.g. Py = vI with I the iden-
tity matrix and v a positive constant) and 5(0)

For n=1,2,...

o compute §(n) ;6(n); y(n); P7(n) eqs. (6)-(9);

« compute §P(n) eq. (13), and P(n) using the definition
of §P(n) as specified in section II.

e compute 55(71) eq. (12) and é(n) using the definition of
86(n) as specified in section II.

o the algorithm ends here if the model used is (5);

« if not compute 4 from 7 using Remarkl.
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Fig. 1.
Parameter estimate with classical RIV algorithm. Theo-
retical values (dash dot) and estimated values (solid lines)

with a single realization

The counterpart of this algorithm is the computation of
the additional term and finite differences. But this is
a small price to pay compared to the improvement in
terms of fluctuations reduction. To illustrate this, we con-
sider for the purpose of a computer simulation the pro-
z(n) — 0.6z(n — 1) — 0.27z(n — 2) =

cess : u(n); with

w(n) = —0.49w(n — 2) + e(n); y(n) = x(n) + w(n) where
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Fig. 2.
Parameter estimate with new RIV algorithm. Theoretical
values (dash dot) and estimated values (solid lines) with a

single realization

u(n) is 2-squewness, unit variance, zero-mean exponen-
tially distributed random process and e a gaussian noise.
In figs.(1) and (2), we show the results of parameter esti-
mates using the 3"%-order cumulant with classical RIV and
the new algorithm for SNR=10 dB. For this simulation, we
use T' = 1 (chosen arbitrarily). The initial cumulant ma-
trix for the two algorithms is chosen as Py = 10*I where I
is the identity matrix. A = 1 for the classical algorithm and
A = 0 for the new algorithm (these two choices for A are
similar). Only one realization of the signals is used for this
simulation. The number of samples is 500 (whereas usually,
classical algorithm necessitates higher numbers and many
realizations and an average of the estimates to reduce the
fluctuations). As it can be seen, even in these conditions,
the new algorithm yields less fluctuations (fig.(2)), com-

pared to classical algorithm (fig.(1)), where it is difficult to

distinguish between the two parameter estimates because

of the high fluctuations.

IV. CONCLUSION

In this paper we have presented a new parameter estima-
tion algorithm which has been applied to HOC . This algo-
rithm is based on the modification of the classical approach
by i using a d-operator. It allows reduction of parameter
estimates fluctuations, even when short-length data is used

as shown by computer simulation.
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