
ABSTRACT

A new fast Recursive Least Squares (RLS) algorithm is in-
troduced. By making use of RLS interpolation as well pre-
diction, the algorithm generates the transversal filter
weights without suffering the poor numerical attributes of
the FTF algorithm. The Kalman gain vector is generated at
each time step in terms of interpolation residuals. The inter-
polation residuals are calculated in an order recursive man-
ner. For anNth order problem the procedure requires
O(NlogN) operations. This is achieved via a divide and con-
quer approach. Computer simulations suggest the new al-
gorithm is numerically robust, running successfully for
many millions of iterations.

1. INTRODUCTION

Adaptive filtering algorithms have numerous applica-
tions in fields such as telecommunications, radar, sonar and
speech processing [1]. Recursive Least Squares (RLS) al-
gorithms generate the least squares optimal solution to the
adaptive filtering problem at each time instant and are
therefore highly desirable. We consider here the special
case of the single channel adaptive filtering problem.

Conventional RLS algorithms require opera-
tions per time step which may be prohibitive for real time
implementation of large adaptive filters. Fast algorithms ex-
ist for the single channel problem which require just
operations per time step. (The reduction is attained by uti-
lising LS prediction.) These can be split into two categories:
Fast Transversal Filter (FTF) algorithms and Least Squares
Lattice (LSL) algorithms [1].

LSL lattice algorithms output the RLS filtering residual
but not the LS transversal filter weights directly. They can
be implemented in a numerically stable manner. FTF algo-
rithms generate the transversal filter weights. However,
they are notoriously unstable in finite precision implemen-
tations [2] and so usually considered unsuitable for real
world application.

For some applications, such as acoustic echo cancella-
tion, it is sufficient for an algorithm to output the filtering
residual. For others, such as system identification, the adap-
tive filter weights are also required.

O N2()

O N()

The KaGE (KalmanGain Estimator) RLS algorithm is
a new fast RLS algorithm which generates the Kalman gain
vector, and therefore the transversal filter weights, in a nov-
el, numerically robust manner, using opera-
tions per time step. This is achieved by making use of RLS
interpolation as well as prediction.

In this paper we define RLS interpolation; express the
Kalman gain vector in terms of interpolation residuals; and
present an method for generating this vector.

1.1. RLS Interpolation

Define as the least squares interpolation residual
for a time series element using past and future
samples. That is:

(1)

where is a vector of length chosen ac-
cording to the least squares criteria. The vector

is a modified data vector consisting of all
the elements of the conventional single channel data vector
at time :
except for the element .
Define

(2)

where the are the elements of .
Equation (1) can be re-written as

. (3)

The unknown elements of the least squares interpola-
tion error weight vector are defined by the follow-
ing rearrangement of the augmented normal equations [1]

(4)

where is the data covariance
matrix, and is the least squares interpolation resid-
ual power associated with .
Define also thea priori interpolation residual

. (5)

O N Nlog2()

O N Nlog2()

ep f, t()
x t() p f

ep f, t() x t() ŵp f,
T t()xp f+ t f+ t,()–=

ŵp f,
T t() p f+

xp f+ t f+ t,()

t f+() xp f+ t f+() x t f+() … x, t p–(),[]T=
x t()

wp f,
T

t() ŵ– 1 t()… ŵ– f t() 1

ŵ– f 1+ t() … ŵ– f p+ t()

, ,

, , ,

[

]

=

ŵi t() ŵp f, t()

ep f, t() xp f 1+ +
T

t f+()wp f, t()=

wp f, t()

M p f 1+ + t f+()wp f, t()
0 f

Ep f, t()

0p

=

Mn t() λt i– xn i()xn
T

i()
i 0=

t
∑=

Ep f, t()
wp f, t()

ep f, t() xp f 1+ +
T t f+()wp f, t 1–()=

KAGE: A NEW FAST RLS ALGORITHM
I. D. Skidmore, I. K. Proudler.

DERA, St. Andrews Road, Malvern, Worcs, WR14 3PS, United Kingdom.
skidmore@signal.dera.gov.uk ; proudler@signal.dera.gov.uk

Stage Operations at time . Computational Cost

1 Input .

2 Generate using LS Lattice.

3 Generate using divide and conquer approach.

4 Update normalisation coefficients using equation (18).

5 Generate using equation (10).

6 Update filter weights using equation (6).

Table 1: Full algorithm structure.

t

x t()
ei

f t() ei
b t() : 1 i N 1–≤ ≤(),{ } N 1–() 14M 6A 4D+ +()

k̂N t() N N() 2–log2() 2+() 13M 6A 3D+ +()
N 1M 1A 0D+ +()

kN t() N 1M 0A 1D+ +()
N 2M 2A 0D+ +()

2. KALMAN GAIN VECTOR

For the general th order RLS adaptive filtering problem,
the Kalman gain vector is the vector required for up-
dating the LS adaptive filter weights at each time instance.
That is

(6)

where is thea priori filtering residual given by
and is thedesiredsignal.

By definition

. (7)

Consider , the th element of

(8)

From equation (4) we then have that

(9)

and it follows from equation (3) that

. (10)

Equation (10) is crucial in what follows. It states that the
Kalman gain vector can be calculated as a particular set of
normalised LS interpolation residuals.

3. GENERATING THE KALMAN GAIN VECTOR

It is possible to derive a lattice like structure to generate
RLS interpolation residuals recursively in both time and in
order [3]. Summarising the pertinent information in [3], it
is possible to define two functions with the following input/
output relationships:

(11)

. (12)

where and are respectively the
forwards and backwards LS prediction residuals of order

 at time .
Note that the outputs of a LSL algorithm are prediction

residuals,i.e. interpolation residuals with either or

N
kN t()

wN t() wN t 1–() eN t()kN t()+=

eN t()
eN t() y t() wN

T
t 1–()xN t()–= y t()

kN t() MN
1–

t()xN t()=

ki
N

t() i kN t()

ki
N

t() 0i 1–
T

1 0N i–
T, ,[]kN t()

0i 1–
T

1 0N i–
T, ,[]MN

1–
t()xN t()

=

=

ki
N

t()
wN i– i 1–,

T
t i– 1+()xN t()

EN i– i 1–, t i– 1+()
--=

ki
N

t()
eN i– i 1–, t i– 1+()
EN i– i 1–, t i– 1+()
--=

ep 1+ f, t f–() ep f, t f–() ep f 1+ +
b t(),()incp=

ep f 1+, t f– 1–() ep f, t f–() ep f 1+ +
f t(),()incf=

ep f 1+ +
f t() ep f 1+ +

b t()

p f 1+ + t

p f

equal to zero. The set of residuals
is output by an th order

LSL algorithm. Hence any interpolation residual can be
generated using either of equations (11) or (12) starting
from the outputs of a LSL of sufficient order.

Define the th order un-normalised Kalman gain vec-
tor with elements

{ } (13)

Using the outputs of a LSL of order it is then pos-
sible to generate each element of . For example, to
calculate for one
could generate the following sequence of parameters:

via repeated use of (11). Calculation of all elements of
 in this way requires a total of operations.

Equally, could be calculated by repeated use of
equation (12) via:

To calculate all elements of in this method would
also require operations.

3.1. Divide and Conquer

The KaGE RLS algorithm uses a divide and conquer ap-
proach to reduce the operation count to . The
scheme is described for filter lengths where

. Problems with other filter lengths can be solved via
the same basic principle.

Consider the following set of RLS interpolation residuals:

. (14)

This can be considered as a two dimensional “interpola-
tion space” of discrete points. Note that the elements of

as well as the prediction residuals and
are all contained by the set . Note also that at time

instant all elements of this set are realisable.
Figure 1a shows the residuals that form the un-normal-

ised Kalman gain vector , defined by equation (13),
within this space. These are denoted by the diagonal line.
Each point in the space represents an interpolation residual.
The horizontal position of a point on the diagram represents

ei 0, t() e0 i,, t i–() 0 i n≤ ≤{ } n

N
k̂N t()

k̂i
N

t() eN i– i 1–, t i– 1+() 1 i N≤ ≤=

N 1–
k̂N t()

k̂ j
N t() e= N j– j 1–, t j– 1+() 1 j N< <

e0 j 1–, t j– 1+() e1 j 1–, t j– 1+()
… eN j– j 1–, t j– 1+()

→
→ →

N
k̂

N
t() O N2()

k̂j
N t()

eN j– 0, t() eN j– 1, t 1–()
… eN j– j 1–, t j– 1+()

→
→ →

N k̂N t()
O N2()

O N Nlog2()
N 2k=

k IN-
-∈

I ep f, t f–() p f,() IN-
- 2∈{ }=

k̂N t() e0 n, t n–()
en 0, t() I

t

k̂N t()

f

p

k̂N
N

t() =

k̂1
N

t() eN 1– 0, t()=

e0 N 1–, t N– 1+()
ep f, t f–()

x t() e0 0, t()= en
b t() e0 n, t n–()=

em
f

t()
em 0, t()=

x t() e0 0, t()=

e63 0, t()

e31 32, t 32–()

e0 63, t 63–()

e32 0, t()

N 64=

e0 32, t 32–()

e32 31, t 31–()
eN i– i 1–, t i– 1+()

k̂i
N

t() =

p

f

k̂
N

t()

k̂
64

t()

Figure 1a: Interpolation Space Figure 1b: structure for .O N Nlog2() N 64=

k̂N 2⁄
N

t()
k̂N 2⁄ 1+

N
t()

the number of future samples of the interpolation residual.
The vertical position represents the number of past samples
of the interpolation residual.

Also shown are the positions of the outputs of a conven-
tional LS prediction lattice within the interpolation space.
The solid horizontal line depicts the positions of the back-
wards prediction residuals and the solid vertical line depicts
the positions of the forwards prediction residuals.

Given a residual in this space, equations (11) and (12)
allow the generation of the residuals either immediately be-
low or to the right on the diagram.

The divide and conquer method works as follows: start-
ing from known residuals output by the LSL generate the
two central elements of using equations (11) and (12).
The particular set of residuals to be calculated at this stage
is marked by dashed lines on figure 1a. What remains are
two sub-problems of order . These are then each di-
vided into two further sub-problems of size , and so
on. We now describe the full process more precisely.

Consider an isosceles, right angled triangle in , with
catheti of length , oriented as in figure 1a. Define a vector
function which at a given time instant calculates the residu-
als on the diagonal of the triangle from known residuals on the
catheti of the triangle and the set of forwards and backwards
prediction residuals. Let the function be expressed in terms of
input parameters . The parameters
aredefinedasfollows:

: The order of the problem in hand.
: The vector of length of known interpolation re-

siduals on the horizontal cathetus.
: The vector of length of known interpolation resid-

uals on the vertical cathetus.
, : the coordinates in of the right angle of the triangle.
, : the vectors of forward and backward prediction

residuals respectively.
Let the elements of each of these vectors be indexed

k̂N t()

N 2⁄
N 4⁄

I
n

G

G n H V p f ef eb, , , , , ,()

n
H n

V n

p f I

e
f

e
b

from 0. Then for a problem of order , , the output
vector can be expressed in terms of lower order vectors by

(15)

where the vectors and are vectors of length calcu-
lated by the following

; for

; for .
The case is of course trivial. The diagonal con-

sists of the two elements and .

(16)
The un-normalised Kalman gain vector of length can

be expressed as

. (17)
If then from equation (15) it is clear that

the vector can be calculated entirely via a recursive method.
The procedure is illustrated for in figure 1b.

4. FULL ALGORITHM

Equation (10) states that the th element of , can be
expressed as an interpolation residual
divided by that interpolation residual’s power

. The standard time recursion for the
RLS residual power [1] applied to is

(18)

This recursion must be applied to each of the residu-
als which form . At each time step the elements of

are then available via equation (10). The filter
weights can therefore be updated via equation (6).

The full th order algorithm can be split into several con-
catenated stages. A breakdown of the full procedure is given in

2n n 1≠

G 2n H V p f e
f

e
b, , , , , ,()

G n H' V n … 2n 1–, ,() p n+() f e
f

e
b, , , ,, ,()

G n H n … 2n 1–, ,() V' p f n+() e
f

e
b, , , , , ,()

=

H' V' n

H0
′ Vn= Hi

′ H j 1–
′ ep f n j+ + +

f,()incf= 1 j n<≤
V0

′ Hn= V j
′ V j 1–

′ ep f n j+ + +
b,()incp= 1 j n<≤

n 2=
V1 H1

G 2 H V p f e
f

e
b, , , , , ,() V1 H1,[]T

=
N

k̂
N

G N eN
b

eN
f

0 0 eN
f

eN
b, , , , , ,()=

N 2i i IN-
-∈{ }∈

N 64=

i kN t()
eN i– i 1–, t i– 1+()

EN i– i 1–, t i– 1+()
Ep f, t()

Ep f, t() λEp f, t 1–() ep f, t f–()ep f, t f–()+=

N
k̂N t()

kN t()

N

8N SFTF KaGE RLS

Figure 2: Convergence curves for KaGE and SFTF.

table 1. The total operation count where is the number of
multiplies, additions and divides is

(19)

which for large is dominated by terms.

4.1. Numerical properties

As with a conventional LSL algorithm, there are several
possible implementations of the KaGE algorithm. In the
present work we have used an implementation based on
Square Root Free (SRF) QR-RLS [4]. SRF QR-RLS was
chosen for its good numerical properties plus ease of initial-
ization. The standard recursions are well known and are
guaranteed stable. Each instantiation of these recursions
solves a first order LS problem.

To implement the KaGE algorithm a set of modified first
order LS problems must also be solved. Instead of the con-
ventional two inputs, the modified problem has as inputs
one of the conventional inputs and the conventional output.
From this we must calculate the other conventional input. A
modified set of update recursions ensue. (Note that this is
not a LS downdate.)

The modified recursions have slightly degraded numer-
ical properties. One stored quantity in each instantiation of
the recursions is simply an accumulation of the product of
input terms. Consequently this term exhibits linear error
growth with time. This in turn leads to linear error growth
in . This is in contrast to the conventional FTF algo-
rithm which exhibits exponential error growth. The Stabi-
lised FTF algorithm has better initial numerical properties
but can still be unstable unless its parameters are tuned to
the data [5].

5. SIMULATIONS

A 64th order noise cancellation problem was simulated.
The desired signal strength was chosen to be to ob-
serve numerical effects. At a change of data
statistics and of desired filter weights occurred. The graph
of figure 2 shows the square of the difference between the
filtering residual and the desired signal for both the KaGE
algorithm and the Stabilised FTF (SFTF) algorithm as spec-
ified in [5]. A forget factor of was used. All
functions were performed using 32 bit, single precision,
floating point arithmetic.

Both algorithms converged quickly as expected to the
same solution. The SFTF RLS algorithm diverged from the
correct solution at . (After this point the algo-
rithm output is not shown.) This was in contrast to the
KaGE RLS algorithm which ran successfully for it-
erations (at which point the experiment stopped), quickly
re-adapting to the change of problem at .

Eventually, the KaGE algorithm would diverge when
the noise on the Kalman gain vector exceeded a certain

M
A D

13 Nlog2 8–()N 12+()M 6 Nlog2 3–()N 6+()A
3 Nlog2 1–()N 2+()D

+
+

N O N Nlog2()

k̂N t()

60dB–
t 5 5×10=

λ 0.995=

t 2.9 5×10≈

1
6×10

t 5 5×10=

threshold. For such a problem we have not seen this within
iterations. The divergence occurs much sooner if

lower precision arithmetic is used. the The KaGE algorithm
implemented using 8 bit mantissa arithmetic diverged with-
in iterations in similar simulations.

6. CONCLUSIONS

We have introduced the KaGE RLS algorithm. By making
use of interpolation as well as prediction the KaGE algo-
rithm generates the Kalman gain vector via numerically
well behaved SRF QR RLS techniques using
operations. The transversal filter weights follow immedi-
ately. Assuming that a divide is on average equivalent to 5
multiplies or additions, the total operation count for the
KaGE algorithm is approximately . For

this is approximately 7 times more than the
SRF QR LSL algorithm and 20 times more than the SFTF
algorithm which require approximately and op-
erations per iteration respectively. However, whilst the FTF
algorithms exhibit exponential error growth with time, the
KaGE RLS algorithm exhibits only linear error growth, and
is thus better suited to many real world applications.

7. REFERENCES

[1] Simon Haykin, “Adaptive filter Theory.”, 2nd Edition,
Prentice-Hall, 1991.

[2] M D Levin and C F N Cowan, “Instability Trends in the
Fast Kalman and FTF Algorithms” IEE Colloquium Di-
gest, no. 1992/197, IEE, London, pp.3/1-3/5, Nov 1992.

[3] J-T Yuan, “Asymmetric Interpolation Lattice”, IEEE
Trans. Sig Proc., vol 44, no.5, pp. 1256-1261, May 1996.

[4] S Haykin, J Litva, and T J Shepherd, “Radar Array
Processing”, Springer-Verlag, Berlin, 1993, pp. 169-173.

[5] K Maouche and D. T. M. Slock, “Fast Subsampled-Up-
dating Stabilized Fast Transversal Filter (FSU SFTF)
RLS Algorithm for Adaptive Filtering”, IEEE Trans.
Signal Proc., vol. 48, no. 8, pp. 2248-2257, Aug 2000.

O 107()

1 5×10

O N Nlog2()

34 Nlog2 16–()N
N 1024=

46N 16N

© Crown Copyright 2000 Defence Evaluation and Research
Agency UK. This work was carried out as part of Technology
Group TG10 of the MoD Corporate Research Programme.

