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ABSTRACT The KaGE KalmanGain Estimator) RLS algorithm is
a new fast RLS algorithm which generates the Kalman gain
vector, and therefore the transversal filter weights, in a nov-
el, numerically robust manner, usin@(Nlog, N) opera-
tions per time step. This is achieved by making use of RLS
interpolation as well as prediction.

In this paper we define RLS interpolation; express the
Kalman gain vector in terms of interpolation residuals; and
present arO(Nlog,N) method for generating this vector.

A new fast Recursive Least Squares (RLS) algorithm is in-
troduced. By making use of RLS interpolation as well pre-
diction, the algorithm generates the transversal filter
weights without suffering the poor numerical attributes of
the FTF algorithm. The Kalman gain vector is generated at
each time step in terms of interpolation residuals. The inter-
polation residuals are calculated in an order recursive man-
ner. For anNth order problem the procedure requires
O(NlogN) operations. This is achieved via a divide and con- 1 1. RLS Interpolation

quer approach. Computer simulations suggest the new al-

gorithm is numerically robust, running successfully for Define e, (t) as the least squares interpolation residual

many millions of iterations. for a time series element(t) usimy past ad future
samples. That is:
1. INTRODUCTION ep, (1) = X()) =Wl ()X, ((t+1,1) )

Adaptive filtering algorithms have numerous applica- Where WT ¢(t) is avector of lengthp+ f  chosen ac-
tions in fields such as telecommunications, radar, sonar andcording fo the least squares criteria. The vector
speech processing [1]. Recursive Least Squares (RLS) alXp , ¢(t + f,t) is a modified data vector consisting of all
gorithms generate the least squares optimal solution to thethe elements of the conventional single channel data vector
adaptive filtering problem at each time instant and are attime (t+ f) :x , ((t+f) = [x(t+ f), .., x(t=p)]"
therefore highly desirable. We consider here the specialexceptfor the elemenk(t)

case of the single channel adaptive filtering problem. Define
Conventional RLS algorithms requi®(N2)  opera- " (1) = [=Wq(1)..., =W (), 1 )
tions per time step which may be prohibitive for real time P f ! R f R
implementation of large adaptive filters. Fast algorithms ex- Wiy g (1), Wy p(t)]
ist for the single channel problem which require j@xtN) where thew,(t) are the elementsvmé ¢(1)

operations per time step. (The reduction is attained by uti- Equation (1) can be re-wrltten as

lising LS prediction.) These can be split into two categories: (t) = (t+ Hyw. (1), @3)

Fast Transversal Filter (FTF) algorithms and Least Squares ®p. 1 P i+l p, f

Lattice (LSL) algorithms [1]. The unknown elements of the least squares interpola-
LSL lattice algorithms output the RLS filtering residual tion error weight vectow , (t) are defined by the follow-

but not the LS transversal filter weights directly. They can ing rearrangement of the augmented normal equations [1]

be implemented in a numerically stable manner. FTF algo-

rithms generate the transversal filter weights. However, O @)
they are notoriously unstable in finite precision implemen- Mpspaa(t+Hwy (1) = |Ej (1)
tations [2] and so usually considered unsuitable for real . 0p

world application.

For some applications, such as acoustic echo cancella-
tion, it is sufficient for an algorithm to output the filtering
residual. For others, such as system identification, the adap
tive filter weights are also required.

whereM (t) = Z At=ix (|)x (i) isthe data covariance
matrix, andEp (t) is the least squares interpolation resid-
ual power assouated wndu (1)
Define also tha priori |nterpolat|on residual

p, f(t) - 7p+f+1(t+f)wp’ f(t_l) (5)



Stage | Operations at time . Computational Cost
1 Input x(t) .
2 Generatd €] (), €’(t) : (1<i<N-1)} using LS Lattice. | (N—1)(14M + 6A +4D)
3 GeneratdgN(t) using divide and conquer approach. (N(logy(N)-2) +2)(13M + 6A +3D)
4 Update normalisation coefficients using equation (18). N(1M + 1A +0D)
5 Generatek, (t) using equation (10). N(1M +0A +1D)
6 Update filter weights using equation (6). N(2M + 2A +0D)
Table 1: Full algorithm structure.
2. KALMAN GAIN VECTOR equal to zero. The set of residuals

A {& o(t), & ;(t=i)|0<i<n} is output by ann th order
For the generaN th order RLS adaptive filtering problem, LSL algorithm. Hence any interpolation residual can be

the Kalman gain vectok(t) is the vector required for up- . . . .
dating the LS adaptive filter weights at each time instance.generated using either of equatldns (11) or (12) starting
from the outputs of a LSL of sufficient order.

Thatis . Deflne theN th order un-normalised Kalman gain vec-
Wi (1) = wy(t=1) + ey (tky(t) ®  toriM (t) with elements
where ey (t) is_rthea priori filtering residual given by _ ) )
ey (1) =y(t) —wy,(t— 1) (t) andy(t) isthedesiredsignal. {k(1) = ey_y_q(t-i+1[1<isN}  (13)
By definition Using the outputs of a LSL of ordéd —1 it is then pos-
K (t) = M_l(t)x (1) ) sible to generate each elementld\f(t) . For example, to
N °N N A/ENRES calculatek (t)=en-jj-1(t—j+1) for1<J<N one
Considerk; (t) , the th element f(t) could generate the following sequence of parameters:
k(1) = 101, 1, 04 _iTky (1) . € j_1(t—j+1) ~ e j_y(t—j+ 1) |
_ < (t—j+1)
= [07_ 1, 1, 0f _ IME(t) Xy (1) N-1 =1
Si=1 S EN-EN AN vra repeated use of (11). Calculation of &ll  elements of
From equation (4) we then have that k (t) in thrs way requires a total @(N2) operations.
T . Equally, (t) could be calculated by repeated use of
kN@) = Wy ioa (] +.1))*(N(t) (@)  equation (12) via:
B EN—i,i—l(t_I +1) En— i o(t) - ey_ i 1(t 1)
and it follows from equation (3) that i 1(t=j+1)

N—i, L (t=i+1) To calculate aN elements &V(t)  in this method would
K; Nt) = : (10)  also requireD(N2) operations.
EN - ((t=i+1)

Equation (10) is crucial in what follows. It states thatthe 3.1. Divide and Conquer

Kalman gain vector can be calculated as a particular set of.
normalised LS interpolation residuals. The KaGE RLS algorithm uses a divide and conquer ap-

proach to reduce the operation count@g¢Nlog, N) . The
3. GENERATING THE KALMAN GAIN VECTOR scheme is described for filter lengthd = 2K where
k OIN. Problems with other filter lengths can be solved via
the same basic principle.

Consider the following set of RLS interpolation residuals:

It is possible to derive a lattice like structure to generate
RLS interpolation residuals recursively in both time and in
order [3]. Summarising the pertinent information in [3], it 2
is possible to define two functions with the following input/ I = {ep, ¢(t=1)I(p, f) DN} (14)
output relationships: This can be considered as a two dimensional “interpola-
. b tion space” of discrete points. Note that the elements of
€p+, 1(t—T) = Incpley ((t—1). €5, 1, 2(0) (A1) kMt) as well as the prediction residuag (t—n) and

o +1(t— T = Daincf(e, ((t-1), e{H 1), (12) & o(t) areall contained by the st . Note also that at time
instantt all elements of this set are realisable.
where ef p+ f+1(t) ande? p+ f+1(t) are respectively the Figure 1a shows the resrduals that form the un-normal-
forwards and backwards LS prediction residuals of order ijsed Kalman gain vectok (t) , defined by equation (13),
p+ f+1 attimet . within this space. These are denoted by the diagonal line.

Note that the outputs of a LSL algorithm are prediction Each point in the space represents an interpolation residual.
residuals,i.e. interpolation residuals with eithep  dr The horizontal position of a point on the diagram represents



SO o, ot eg(t) = €p, n(t—n) X(t) = €0, olt) €o, 3(t—32) €0, 63(t—63)
f

f
e (1)
= renm’ OW

AN
ky(t) = ey_q o(t)
Figure la: Interpolation Space Figure 1b: O(Nlog, N) structure for N = 64.
the number of future samples of the interpolation residual. from 0. Then for a problem of ordé&dn n#1 , the output
The vertical position represents the number of past samplesvector can be expressed in terms of lower order vectors by
of the interpolation residual. foby

Also shown are the positions of the outputs of a conven- G(2nH, V. p f.e.¢) =

tional LS prediction lattice within the interpolation space. ' _ f by (15

The solid horizontal line depicts the positions of the back- G, H,V(n,....2n=1). (p+n). T, ef eb) (49

wards prediction residuals and the solid vertical line depicts G(n, H(n, ...,2n=-1), V', p,(f+n), e, e")

the positions of the forwards prediction residuals. where the vectorsl’ and' are vectors of Iength calcu-
Given a residual in this space, equations (11) and (12)lated by the following

allow the generation of the residuals either immediately be- H) =V _; H; = incf(H j'—l , e; +tanspforlsj<n

low or to the right on the diagram. P e gt ) b .
The divide and conquer method works as follows: start- Vo ZHpi Vi = Inep(V_q1.€p4 4py ) fOr 1<j<n,

The casen = 2 is of course trivial. The diagonal con-

ing from known re5|duals output by the LSL generate the sists of the two elementd, aht

two central elements df (t) using equations (11) and (12). I -
The particular set of residuals to be calculated at this stage G(2H,V,p f,e,e) = [V, Hyl (16)

is marked by dashed lines on figure 1a. What remains are  The un-normalised Kalman gain vector of length  can
two sub-problems of ordeN/2 . These are then each di- be expressed as

vided into two further sub-problems of si2¢/4 , and so &N = G(N, eﬂ’ e'f\l' 0,0, QL, Eﬁj)- 17)

on. We now describe the full process more precisely. . . .
P P y If NO{2'|i ON} then from equation (15) itis clear that

Consider an isosceles, right angled trianglel in , with h ; b lculated entirely vi ; thod
catheti of lengthn , oriented as in figure 1a. Define a vector € vector can be calculated entirely via a recursive method.
The procedure is illustrated fof = 64  in figure 1b.

functionG which at a given time instant calculates the residu-

als on the diagonal of the triangle from known residuals on the 4. FULL ALGORITHM

catheti of the triangle and the set of forwards and backwards

prediction residuals. Let the function be expressed in terms ofEquation (10) states that the  th elemenkgf(t) , can be

input parametersG(n, H, V, p f, d, eb) . The parameters expressed as an interpolation residegl_; ; _,(t—i+ 1)

are defined asfollows: divided by that interpolation reS|duaI s power
n: The order of the problem in hand. En_ij_1(t—=i+1). The standard time recursion for the
H : The vector of lengtm  of known interpolation re- R'—S residual power [1] applied ®,, ¢(t) s

siduals on the horizontal cathetus. Ep, (1) = )\Ep f(t=1) te, f(t— f)ep ((t=1) (18)
V:The vectqr of lengtin  of known interpolation resid- This recursmn must be applied to each of the  residu-

uals on the vertical cathetus. als which formKk" (t) . At each time step the elements of

p, f:the coordinatesih of the right angle of the trigngle. ky(t) are then available via equation (10). The filter

ef , eb : the vectors of forward and backward prediction weights can therefore be updated via equation (6).
residuals respectively. The full N th order algorithm can be split into several con-

Let the elements of each of these vectors be indexedcatenated stages. A breakdown of the full procedure is given in



table 1. The total operation count whéve is the number of

multiplies, A additions an@® divides is

((13logoN —8)N + 12)M + ((6logoN —3)N + 6) A
+ ((3logoN—=1)N + 2)D

which for largeN is dominated b®( Nlog, N)

(19)
terms.

4.1. Numerical properties

As with a conventional LSL algorithm, there are several
possible implementations of the KaGE algorithm. In the

present work we have used an implementation based on

Square Root Free (SRF) QR-RLS [4]. SRF QR-RLS was
chosen for its good numerical properties plus ease of initial-

ization. The standard recursions are well known and are

guaranteed stable. Each instantiation of these recursion
solves a first order LS problem.
To implement the KaGE algorithm a set of modified first

order LS problems must also be solved. Instead of the con-

ventional two inputs, the modified problem has as inputs
one of the conventional inputs and the conventional output.
From this we must calculate the other conventional input. A

modified set of update recursions ensue. (Note that this is

not a LS downdate.)

The modified recursions have slightly degraded numer-
ical properties. One stored quantity in each instantiation of
the recursions is simply an accumulation of the product of
input terms. Consequently this term exhibits linear error
growth with time. This in turn leads to linear error growth
in KN(t). This is in contrast to the conventional FTF algo-
rithm which exhibits exponential error growth. The Stabi-
lised FTF algorithm has better initial numerical properties

but can still be unstable unless its parameters are tuned té!90rithm which require approximate#6N

the data [5].
5. SIMULATIONS

A 64th order noise cancellation problem was simulated.
The desired signal strength was chosen te-6@dB
serve numerical effects. At = 5x10° a change of data
statistics and of desired filter weights occurred. The graph

of figure 2 shows the square of the difference between the

filtering residual and the desired signal for both the KaGE
algorithm and the Stabilised FTF (SFTF) algorithm as spec-
ified in [5]. A forget factor of A = 0.995 was used. All
functions were performed using 32 bit, single precision,
floating point arithmetic.

Both algorithms converged quickly as expected to the
same solution. The SFTF RLS algorithm diverged from the
correct solution at =2.9x10P . (After this point the algo-
rithm output is not shown.) This was in contras’t[3 to the
KaGE RLS algorithm which ran successfully fbr10 it-
erations (at which point the experiment stopped), quickly
re-adapting to the change of problent at 5x10°

Eventually, the KaGE algorithm would diverge when
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Figure 2: Convergence curves for KaGE and SFTF.
threshold. For such a problem we have not seen this within
S0(107) iterations. The divergence occurs much sooner if
lower precision arithmetic is used. the The KaGE algorithm
implemented using 8 bit mantissa arithmetic diverged with-
in 1x10° iterations in similar simulations.

6. CONCLUSIONS

We have introduced the KaGE RLS algorithm. By making
use of interpolation as well as prediction the KaGE algo-
rithm generates the Kalman gain vector via numerically
well behaved SRF QR RLS techniques usd¢iN log, N)
operations. The transversal filter weights follow immedi-
ately. Assuming that a divide is on average equivalent to 5
multiplies or additions, the total operation count for the
KaGE algorithm is approximatel{34logoN —16)N . For
N = 1024 this is approximately 7 times more than the
SRF QR LSL algorithm and 20 times more than the SFTF
aldN  op-
erations per iteration respectively. However, whilst the FTF
algorithms exhibit exponential error growth with time, the
KaGE RLS algorithm exhibits only linear error growth, and
is thus better suited to many real world applications.

to ob-
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