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ABSTRACT
This paper describes a simple procedure, based on spectral factor-
ization, for the design of a pair of orthonormal wavelet bases where
the two wavelets form a Hilbert transform pair. The two scaling
filters respectively have the numerator and denominator of the flat
delay all-pass filter as factors. The design procedure allows for an
arbitrary number of zero wavelet moments to be specified. A Mat-
lab program for the procedure is given, and examples are also given
to illustrate the results.

1. INTRODUCTION

This paper describes a simple procedure for the construction of two
orthogonal wavelet bases designed so that the two wavelets form a
Hilbert transform pair. Several authors have advocated the simul-
taneous use of two wavelet transforms where the wavelets are so
related. For example, Freeman and Adelson employ the Hilbert
transform in the development of steerable filters [1], Abry suggested
it for the analysis of turbulence [2], Ozturk, Kucur, and Atkin sug-
gested it for waveform encoding [3], and Kingsbury developed the
complex dual-tree DWT [4, 5] and illustrated its numerous benefits
including near shift-invariance and improved denoising capability.

Using the infinite product formula, it was shown in [6] that for
two orthogonal wavelets to form a Hilbert transform pair, the scal-
ing filters should be offset by a half sample. In [6] a design problem
was formulated for the minimal length scaling filters such that (i)
the wavelets each have a specified number of zero moments (K),
and (ii) the half-sample delay approximation is flat at ! = 0 with
specified degree (L). However, this formulation leads to nonlinear
design equations, and the examples in [6] had to be obtained using
Gröbner bases. In the paper we describe a design procedure based
on spectral factorization. It results in filters similar to those of [6],
however the design algorithm is much simpler.

1.1. Preliminaries

Let the filters h0(n), h1(n) represent a CQF pair [7]. That is,X
n

h0(n) h0(n+ 2k) = �(k) =

�
1 k = 0
0 k 6= 0;

and h1(n) = (�1)(1�n) h0(1 � n): Equivalently, in terms of the
Z-transform, we have

H0(z)H0(1=z) +H0(�z)H0(�1=z) = 2
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and

H1(z) =
1

z
H0(�1=z):

Let the filters g0(n), g1(n) represent a second CQF pair. In this pa-
per we assume hi(n), gi(n) are real-valued filters. It is convenient
to write the CQF condition in terms of the autocorrelation func-
tions, defined as

ph(n) := h0(n) � h0(�n); pg(n) := g0(n) � g0(�n);

or equivalently as

Ph(z) := H0(z)H0(1=z);

Pg(z) := G0(z)G0(1=z):

Then h0(n) and g0(n) satisfy the CQF conditions if and only if
ph(n) and pg(n) are halfband filters:

ph(n) =

�
1 n = 0
0 n = �2;�4; : : :

and similarly for pg(n). This can be written more compactly as

ph(2n) = �(n) and pg(2n) = �(n): (1)

The dilation and wavelet equations give the scaling and wavelet
functions,

�h(t) =
p
2
X
n

h0(n)�h(2t� n)

 h(t) =
p
2
X
n

h1(n)�h(2t� n):

The scaling function �g(t) and wavelet g(t) are defined similarly,
but with filters g0(n) and g1(n).

Notation: The Z-transform of h(n) is denoted by H(z). The
discrete-time Fourier transform of h(n) will be denoted by H(!),
although it is an abuse of notation. The Fourier transform of  (t)
is denoted by 	(!) = Ff (t)g.

1.2. Hilbert transform pairs

In [6], it was shown that if H0(!) and G0(!) are lowpass CQF
filters with

G0(!) = H0(!) e
�j !

2 for j!j < �;



then the corresponding wavelets are a Hilbert transform pair,

 g(t) = Hf h(t)g:
That is,

	g(!) =

� �j 	h(!); ! > 0
j 	h(!); ! < 0:

Equivalently, the digital filter g0(n) is a half-sample delayed ver-
sion of h0(n),

g0(n) = h0(n� 1=2):

As a half-sample delay can not be implemented with an FIR filter
(not even a rational IIR filter can be exact), it is necessary to make
an approximation.

2. DESIGN PROCEDURE

In this paper, we look for solutions of the following form

h0(n) = f(n) � d(n);
g0(n) = f(n) � d(L� n);

where the filter d(n) will be chosen to achieve the (approximate)
half-sample delay. The first step of the design procedure will be to
determine the appropriate filter d(n) so as to achieve the desired re-
lationship between h0(n) and h1(n). In terms of the transfer func-
tions, we have

H0(z) = F (z)D(z)

G0(z) = F (z) z�LD(1=z):

H0(z) and G0(z) have the common divisor F (z) which will be
determined later. We can write

G0(z) = H0(z)
z�LD(1=z)

D(z)

where we can recognize that the transfer function

A(z) :=
z�LD(1=z)

D(z)

is an all-pass system, jA(!)j = 1: Therefore

jG0(!)j = jH0(!)j; jG1(!)j = jH1(!)j
and

j	g(!)j = j	h(!)j:
If the all-pass system A(z) is an approximate half-sample delay,

A(!) � e�j!=2

or equivalently, A(z) � z�1=2; then the sought approximation is
achieved,

G0(!) � H0(!) e
�j !

2 :

Several authors have addressed the design of D(z) such that
the all-pass systemA(z) approximates a fractional delay [8, 9, 10].
The following formula for the maximally flat delay all-pass filter

is adapted from Thiran’s formula for the maximally flat delay all-
pole filter [11]. The maximally flat approximation to a delay of �
samples is given by

D(z) = 1 +
LX

n=1

d(n) z�n

where

d(n) = (�1)n
 
L

n

!
(� � L)n
(� + 1)n

(2)

and (x)n represents the rising factorial,

(x)n := (x) (x+ 1) � � � (x+ n� 1)| {z }
n terms

:

With this D(z) we have the approximation

A(z) =
z�LD(1=z)

D(z)
� z�� around z = 1

and

G0(!) = H0(!) e
�j � ! around ! = 0:

In our problem, we will use d(n) in (2) with � = 1=2. They can
be computed very efficiently using the following ratio.

d(n+ 1)

d(n)
= �

�
L

n+1

��
L
n

� � (� � L)n+1
(� � L)n

� (� + 1)n
(� + 1)n+1

=
(L� n)(L� n� �)

(n+ 1)(n+ 1 + �)

From this ratio, it follows that the filter d(n) can be generated as
follows.

d(0) = 1

d(n+ 1) = d(n) � (L� n)(L� n� �)

(n+ 1)(n+ 1 + �)
; 0 � n � L� 1:

This can be implemented in Matlab with only two commands.

n = 0:L-1;

d = cumprod([1, (L-n).*(L-n-t)./(n+1)./(n+1+t)]);

To obtain wavelet bases with K zero moments, we let

F (z) = Q(z) (1 + z�1)K :

Then

H0(z) = Q(z) (1 + z�1)K D(z); (3)

G0(z) = Q(z) (1 + z�1)K z�LD(1=z): (4)

We now have the following design problem. Given D(z) and K,
findQ(z) of minimal degree such that h0(n) and g0(n) satisfy the
CQF conditions (1). Note that with (3, 4) h0(n) and g0(n) have
the same autocorrelation function:

P (z) := Ph(z) = Pg(z)

= Q(z)Q(1=z) (z + 2 + z�1)K D(z)D(1=z):

Similar to the way Daubechies wavelet filters are obtained, we can
obtain Q(z) using a spectral factorization approach as in [7]. The
procedure consists of two steps.



1. Find r(n) of minimal length such that

(a) r(n) = r(�n)
(b) R(z) (z + 2 + z�1)K D(z)D(1=z) is halfband.

Note that r(n) of minimal length will be supported on the
range (1 �K � L) � n � (K + L� 1).

2. Set Q(z) to be a spectral factor of R(z),

R(z) = Q(z)Q(1=z): (5)

To carry out the first step, we need only solve a system of linear
equations. Defining

S(z) := (z + 2 + z�1)K D(z)D(1=z)

we can write the halfband condition as

�(n) = [#2] (s � r)(n)
=
X
k

s(2n� k) r(k):

When written in matrix form, this calls for a square matrix of di-
mension 2(K+L)�1which has the form of a convolution (Toeplitz)
matrix with every second row deleted.

The second step assumes R(z) permits spectral factorization,
which we have found to be true in all our examples. With Q(z)
obtained in this way, the filters H0(z) and G0(z) defined in (3, 4)
satisfy the CQF conditions and have the desired half-sample delay.
Note that Q(z) is not unique.

This design procedure yields filters h0(n) and g0(n) of (min-
imal) length 2L + 2K. A Matlab program to implement this de-
sign procedure is given Table 1. The commands binom and sfact
for computing binomial coefficients and performing spectral fac-
torization are not currently standard Matlab commands. They are
available from the author.

2.1. Examples

Example 1: WithK = 4 andL = 2 the filtersh0(n) and g0(n) are
of length 12. Fig. 1 illustrates a solution obtained from a mid-phase
spectral factorization. jH0(!)j and jG0(!)j are identical. The plot
of the phase of G0(!)=H0(!), denoted by �(!), shows its agree-
ment with !=2 near ! = 0. The plot of the function j	h(!) +
j	g(!)j shows that it approximates zero for ! < 0 as expected if
 h and  g make a Hilbert transform pair.
Example 2: WithK = 3 andL = 3 the filtersh0(n) and g0(n) are
again of length 12. Fig. 2 illustrates a solution using a mid-phase
spectral factor. It can be seen that j	h(!) + j	g(!)j is closer to
zero for negative frequencies. This is to be expected, as we have re-
duced the number of zero moments and at the same time increased
the degree of approximation for the half-sample delay.

3. CONCLUSION

This paper describes a simple procedure, based on spectral factor-
ization, for the design of a pair of orthonormal wavelet bases where
the two wavelets form a Hilbert transform pair. Given the flat delay
all-pass filter and a specified number of zero wavelet derivatives,
the procedure as outlined in this paper yields the CQF filters of min-
imal length. (However, any other all-pass filter that approximates
a delay of a half sample could also be used.) A Matlab program for
the procedure is given, and examples are also given to illustrate the
results.

Table 1. Matlab program.

function [h,g] = hwlet(K,L)
% Hilbert transform pair of orthogonal wavelet bases
% h, g - scaling filters of length 2*(K+L)
% K - number of zeros at z=-1
% L - degree of fractional delay

n = 0:L-1;
t = 1/2;
d = cumprod([1, (L-n).*(L-n-t)./(n+1)./(n+1+t)]);
s1 = binom(2*K,0:2*K);
s2 = conv(d,d(end:-1:1));
s = conv(s1,s2);
M = K+L;
C = convmtx(s',2*M-1);
C = C(2:2:end,:);
b = zeros(2*M-1,1);
b(M) = 1;
r = (C\b)';
q = sfact(r);
f = conv(q,binom(K,0:K));
h = conv(f,d);
g = conv(f,d(end:-1:1));
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Fig. 1. Example of near Hilbert transform pair of orthonormal wavelet bases, with N = 12, K = 4, L = 2.
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Fig. 2. Example of near Hilbert transform pair of orthonormal wavelet bases, with N = 12, K = 3, L = 3.


