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ABSTRACT

This paper describes a simple procedure, based on spectral factor-
ization, for the design of apair of orthonormal wavelet baseswhere
the two wavelets form a Hilbert transform pair. The two scaling
filters respectively have the numerator and denominator of the flat
delay all-passfilter as factors. The design procedure allows for an
arbitrary number of zero wavelet moments to be specified. A Mat-
lab program for the procedureisgiven, and examplesare also given
to illustrate the results.

1. INTRODUCTION

This paper describes asimple procedure for the construction of two
orthogonal wavelet bases designed so that the two waveletsform a
Hilbert transform pair. Several authors have advocated the simul-
taneous use of two wavelet transforms where the wavelets are so
related. For example, Freeman and Adelson employ the Hilbert
transforminthe development of steerablefilters[1], Abry suggested
it for the analysis of turbulence [2], Ozturk, Kucur, and Atkin sug-
gested it for waveform encoding [3], and Kingsbury developed the
complex dual-tree DWT [4, 5] and illustrated its numerous benefits
including near shift-invariance and improved denoising capability.

Using theinfinite product formula, it was shown in [6] that for
two orthogonal wavelets to form aHilbert transform pair, the scal-
ing filtersshould be offset by ahalf sample. In[6] adesign problem
was formulated for the minimal length scaling filters such that (i)
the wavelets each have a specified number of zero moments (K),
and (ii) the half-sample delay approximation isflat at w = 0 with
specified degree (L). However, thisformulation leads to nonlinear
design equations, and the examplesin [6] had to be obtained using
Grobner bases. In the paper we describe a design procedure based
on spectral factorization. It resultsin filters similar to those of [6],
however the design algorithm is much simpler.

1.1. Preliminaries

Let thefilters ho(n), hi(n) represent a CQF pair [7]. That is,
1 =

Zho hon+2k)_6(k)_{ : Z#g

and hy(n) = (—1)~™ ho(1 — n). Equivalently, in terms of the
Z-transform, we have

H()(Z)Ho(]./z) + H()(—Z)Ho(—]./z) =2
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and
Hi(z) = % Ho(—1/2).

Let thefilters go(n), g1 (n) represent asecond CQF pair. Inthispa-
per weassume h; (n), g;(n) arereal-valued filters. It isconvenient
to write the CQF condition in terms of the autocorrelation func-
tions, defined as

pr(n) := ho(n) * ho(—n),

or equivalently as

Pg(n) := go(n) * go(—n),

Py (z) := Ho(z) Ho(1/2),
Py(z) := Go(2) Go(1/z).
)

Then ho(n) and go(n) satisfy the CQF conditions if and only if
pr(n) and py(n) are halfband filters:

(n) = 1 n=0
PR =N 0 n=d=4244,...

and similarly for py(n). This can be written more compactly as
pr(2n) = d(n)

The dilation and wavelet equations give the scaling and wavelet
functions,

and p,(2n) = b(n). @

\/_Zho
\/_Zhl

Thescaling function ¢, (t) and wavelet ¢, (¢) aredefined similarly,
but with filters go(n) and g1 (n).

Notation: The Z-transform of h(n) is denoted by H(z). The
discrete-time Fourier transform of h(n) will be denoted by H (w),
athough it is an abuse of notation. The Fourier transform of v (t)
isdenoted by ¥(w) = F{(¢)}.

¢h 2t - n)

¢h Zt - n)

1.2. Hilbert transform pairs

In [6], it was shown that if Ho(w) and Go(w) are lowpass CQF
filterswith
Go(w) = Ho(w)e 7% for

|w| <,



then the corresponding wavelets are a Hilbert transform pair,

Vg (t) = H{vn ()}
That is,

w>0
w < 0.

—7 Uy (w),
v ={ o)

Equivalently, the digital filter go(n) is a half-sample delayed ver-
sion of ho(n),

go(n) = ho(n —1/2).

As a haf-sample delay can not be implemented with an FIR filter
(not even arational IR filter can be exact), it is necessary to make
an approximation.

2. DESIGN PROCEDURE
In this paper, we look for solutions of the following form

ho(n) = f(n) *d(n),
go(n) = f(n) * d(L — n),

where the filter d(n) will be chosen to achieve the (approximate)
half-sample delay. Thefirst step of the design procedure will be to
determinethe appropriatefilter d(n) so asto achievethedesired re-
|ationship between ho(n) and hi(n). Intermsof the transfer func-
tions, we have

QE
S =
nW
OO
TR
o
i
N
O
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F(z) 2z~ " D(1/z).

Hy(z) and Go(z) have the common divisor F'(z) which will be
determined later. We can write

2~ D(1/2)
GO(Z) = H()(Z) W
where we can recognize that the transfer function

isan all-pass system, |A(w)| = 1. Therefore
|Go(w)| = [Ho(w)l, |G1(w)] = [Hi(w)]
and
Wy ()| = [¥n(w)]-
If the al-pass system A(z) isan approximate half-sample delay,
Alw) m e 79/?

or equivalently, A(z) ~ z~'/2, then the sought approximation is
achieved,

Go(w) ~ Ho(w)e 7%,

Several authors have addressed the design of D(z) such that
the all-pass system A(z) approximates afractiona delay [8, 9, 10].
The following formula for the maximally flat delay all-pass filter

is adapted from Thiran’s formula for the maximally flat delay all-
pole filter [11]. The maximally flat approximation to adelay of =
samplesis given by

D(z) =1+ Z d(n)z™"
where
_ (L) =D
d(n) = (-1) (n> s @)
and (x),, represents the rising factorial,
()n :=£x)(x+1) (a:—l—n—l)/.
ntéms

With this D(z) we have the approximation

2~ D(1/2) r
A(z)_wfvz around z =1
and
Go(w) = Ho(w)e 7% aroundw = 0.

In our problem, we will use d(n) in (2) with~ = 1/2. They can
be computed very efficiently using the following ratio.

— (nil) . (T - L)n+l .
d(n) (i) (r—L),
_(L=n)(L=-n—-r)
(n+1)(n+1+7)

dn+1)

(T + 1)n
(T + 1)n+1

From this ratio, it follows that the filter d(n) can be generated as
follows.

d0)=1
(L—n)(L—n—1)
(n+)(n+1+71)’°

This can be implemented in Matlab with only two commands.

d(n+1) =d(n) - 0<n<L-1

n
d

0:L-1;
cumprod([1, (L-n).*(L-n-t)./(n+1)./(n+1+t)]);

To obtain wavelet bases with K zero moments, we let
F(z)=Q(2) (1 + 2 H".
Then
Ho(2) = Q(2) (1+2 )" D(2), (3)
Go(2) =Q(2) 1+ 2" )" 27" D(1/2). 4

We now have the following design problem. Given D(z) and K,
find Q(z) of minimal degree such that ho(n) and go (n) satisfy the
CQF conditions (1). Note that with (3, 4) ho(n) and go(n) have
the same autocorrelation function:

P(z) := Py(2) = Py(2)
=Q(2)Q(1/z) (z+2+ 2z H¥ D(2) D(1/z).

Similar to the way Daubechies wavelet filters are obtained, we can
obtain Q(z) using a spectral factorization approach asin [7]. The
procedure consists of two steps.



1. Find r(n) of minimal length such that

@ r(n) =r(-n)
() R(z)(z+2+2~")% D(z) D(1/z) ishalfband.

Note that »(n) of minimal length will be supported on the
range(1- K —-L)<n<(K+L-1).

2. Set Q(z) to be aspectral factor of R(z),
R(z) = Q(2) Q(1/z). ©)

To carry out the first step, we need only solve a system of linear
equations. Defining

S(z) = (24242 H*D(z) D(1/2)
we can write the halfband condition as
8(n) = [12] (s * ) (n)
=> " s(2n—k)r(k).
k

When written in matrix form, this calls for a square matrix of di-
mension 2( K+ L)—1 which hastheform of aconvolution (Toeplitz)
matrix with every second row deleted.

The second step assumes R(z) permits spectral factorization,
which we have found to be true in al our examples. With Q(z)
obtained in this way, thefilters Ho(z) and Go(z) defined in (3, 4)
satisfy the CQF conditions and have the desired half-sample delay.
Note that Q(z) isnot unique.

This design procedure yields filters ho (n) and go(n) of (min-
imal) length 2L + 2K. A Matlab program to implement this de-
sign procedureisgiven Table 1. Thecommandsbinom and sfact
for computing binomial coefficients and performing spectral fac-
torization are not currently standard Matlab commands. They are
available from the author.

2.1. Examples

Examplel: With K = 4and L = 2 thefiltersho(n) and go(n) are
of length 12. Fig. 1 illustratesasolution obtained from amid-phase
spectral factorization. | Ho(w)| and |Go (w)| areidentical. Theplot
of the phase of G (w)/Ho(w), denoted by 6(w), shows its agree-
ment with w/2 near w = 0. The plot of the function | ¥, (w) +
Jj ¥4 (w)| showsthat it approximates zero for w < 0 as expected if
1 and ¢, make aHilbert transform pair.

Example2: With K = 3 and L = 3 thefiltersho(n) and go(n) are
again of length 12. Fig. 2 illustrates a solution using a mid-phase
spectral factor. It can be seen that | ¥y, (w) + j ¥4(w)| iscloser to
zerofor negativefrequencies. Thisisto be expected, aswehavere-
duced the number of zero moments and at the same time increased
the degree of approximation for the half-sample delay.

3. CONCLUSION

This paper describes a simple procedure, based on spectral factor-
ization, for the design of apair of orthonormal wavelet baseswhere
thetwo waveletsform aHilbert transform pair. Giventheflat delay
all-pass filter and a specified number of zero wavelet derivatives,
the procedure as outlined in this paper yiel dsthe CQFfiltersof min-
imal length. (However, any other all-pass filter that approximates
adelay of ahalf sample could also beused.) A Matlab program for
the procedure isgiven, and examples arealso given toillustrate the
results.

Table 1. Matlab program.

function [h,g] = hwlet(K,L)

% Hilbert transform pair of orthogonal wavelet bases
% h, g - scaling filters of length 2%(K+L)

% K - number of zeros at z=-1

% L - degree of fractional delay

0:L-1;

1/2;

cumprod([1, (L-n).*(L-n-t)./(n+1)./(n+1+t)]);
binom(2*K,0:2%K) ;
conv(d,d(end:-1:1));
conv(sl,s2);
K+L;
convmtx(s’,2%M-1);
C(2:2:end,:);
zeros (2*M-1,1);

= 1;

(C\b)*;

sfact(r);
conv(q,binom(X,0:K));
conv(f,d);
conv(f,d(end:-1:1));
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Fig. 1. Example of near Hilbert transform pair of orthonormal wavelet bases, with N =12, K =4, L = 2.
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Fig. 2. Example of near Hilbert transform pair of orthonormal wavelet bases, with N = 12, K = 3, L = 3.



