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ABSTRACT

We develop methods for Monte Carlo filtering and smooth-
ing for estimating an unobserved state given a non-linearly
distorted signal. Due to the lengthy nature of real signals,
we suggest processing the data in blocks and a block-based
smoother algorithm is developed for this purpose. In par-
ticular, we describe algorithms for de-quantisation and de-
clipping in detail. Both algorithms are tested with real audio
data which is either heavily quantised or clipped and the re-
sults are shown.

1. INTRODUCTION

In this paper we apply Monte Carlo smoothing to non-linearly
distorted signals. To fix the notation, consider the standard
Markovian state-space model.

State evolution density
Observation density
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where {z;} are unobserved states of the system and {y; }

Tt41
Y1~

are observations made over some time interval t € {1,...,7T'}.

f(.].) and g(.|.) are pre-specified state evolution and obser-
vation densities which may be non-Gaussian and involve
non-linearity.

1.1. Particle Filter

A primary concern in many state-space inference problems
is sequential estimation of the filtering distribution p(z¢|y1.¢)-
Updating of the filtering distribution can be achieved in prin-
ciple using the standard filtering recursions

P($t+1|y1:t) = /p($t|y1:t)f($t+1|$t)d$t

9We1]Te1)p(@e41]y1:0)
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Similarly, smoothing can be performed recursively back-
wards in time using the smoothing formula

p(xe|y1:r) = /p($t+1|y1:T)

P(Teg1|yriee1) =

P($t|y1:t)f($t+1 |$t)
p($t+1|y1:t)

d$t+1 .

In practice these filtering and smoothing computations can
only be performed in closed form for linear Gaussian mod-
els using the Kalman filter-smoother and for finite state-
space hidden Markov models. Here we focus on Monte
Carlo particle filters [1, 2], in which the filtering distribu-
tion is approximated with an empirical distribution formed
from point masses, or particles,
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where §(.) is the Dirac delta function and fwt(i)

attached to particle xé ) Particles at time ¢ can be updated

efficiently to particles at time ¢ + 1 using importance sam-
pling and selection methods. In this paper, we assume that a
forward sweep of particle filtering using an appropriate pro-
posal distribution for the state has already been performed

is a weight

on the entire dataset, generating weighted particles {xii),
wsi=1,...,N,t=1,...,T} (see[1, 2] for details).

1.2. Particle Smoother

A simple and efficient method for generating realisations
from the entire smoothing density p(z1.7|y;.7) using par-
ticulate approximation has been developed [3]. Sample re-
alisations are obtained using the following factorisation

T-1
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p(xlzT|y1:T) =

where, given the particulate approximation to p(z|y;.:) and
using the Markovian assumptions of the model, we can write,
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with the modified weights
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This revised particulate distribution can now be used to gen-
erate states successively in the reverse-time direction, con-
ditioning upon future states. The algorithm proceeds as fol-
lows,

Algorithm 1 — Sample realisations

(@)

e Choose Z1 = z (&)

with probability w’ .

e Fort=T—-1to1:

— Calculate wi‘t)H x wt(i)f(ﬁtﬂngi)) for each
1=1,.
— Choose 1; = xE ) with probability wt(|2 41

e Xi.7 = (T1, T2, ..., Tr) is an approximate realisation
ffomp($1:T|y1:T)-

Further independent realisations are obtained by repeating
this procedure as many times as required.

2. BLOCK-BASED PARTICLE SMOOTHER

For smoothing, it is necessary to store the particle histories
which is not appropriate for audio signals due to the storage
capacity required. We modify the general smoothing algo-
rithm to process a lengthy dataset in blocks, which reduces
the amount of stored information significantly.

A lengthy time series is divided into two non-overlapping
blocks, with T3, T5 marking the end of each block. A filter-
ing and smoothing analysis is performed for each block of
data independently and M realisations are generated from
the smoothing density
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with i,5 € {1,...,M}. We are interested in generating
realisations from the entire smoothing density, which can
be factorised as follows

p(wl:TQ |Z/1:T2) = p(fEl:Tl |$T1+1:T2 9 yI:T2 )p(le—i-l:TQ |Z/1:T2)

where, using the Markovian assumption, we can write,
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For each realisation from block 2, 52(131) +1.7,» We can gen-
erate a realisation from the entire smoothing sequence by

regarding i@Tl as particles
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with
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x§ )T is then joined to x(T)H .1, With probability U’(TH])T +1°

Algorithm 2 — Block-based smoother

e Divide the lengthy times series into non-overlapping
blocks, with T, . . ., T'r marking the end of each block.

e Perform particle filtering and smoothing analysis on

the first block, and generate ac( ) L fori=1,..., M.

e Forr =2to R:

— Using algorithm 1, generate M realisations of
I, y+11, ~ PETT, 41T YT,

— Foreach :Egz ) L +1.7,» calculate the transition prob-
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— Choose Z;
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with probability
1 and setd]., = 7

In order to avoid degeneracy, we suggest a moderately large
value of M. After processing each frame, all information
regarding the weighted particles can be discarded and thus
the storage capacity required is reduced significantly when
M < N.

3. AUDIO MODELS

Speech signals are inherently time-varying in nature, and
any realistic representation should thus involve a model whose
parameters evolve over time. One such model is the time-
varying autoregression (TVAR)

P
2= anizii+ e “)
i—1

Here a; = [az1,...,a:,) is the pt" order AR coefficient
vector and e; is the Gaussian excitation at time ¢. For our
simulations, a Gaussian random walk model is assumed for
the log-variances ¢., = log(c?Z,)

f(¢€t |¢€t—1 s Uie) = N(/"L¢t 3 Uie) ®)
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where p1y, = log(ao?,_ ) and a is a coefficient just less
than 1.

For the time variation in a;, we choose to work in the
time-varying partial correlation (PARCOR) coefficient do-
main [3, 4]. Here each reflection coefficient p; must be
constrained to the interval (-1,4+1) in order to ensure strict
stability. The constrained PARCOR random walk model is

N(pt-1,031)

if max i} <1
flpelpr-1,07) { 0 {Upel}

otherwise

(6)
4. APPLICATION

We adapt the general Monte Carlo particle filter and smoother
to enhance audio signal quality. We first develop a gen-
eral algorithm to estimate the unobserved true state given
a non-linearly distorted observation using the particle filter
and smoother.

Consider a general deterministic distortion process

y=F(2)

where {z} is the original signal, {y} is the distorted signal,
and F(.) is the distortion function. For audio signals, non-
linear distortion processes like quantisation [5] and clip-
ping, involve a many-to-one mapping, so its inverse process

F i y) ={z Flz) =y}
is a one-to-many mapping and provides range of possible

values that the input might have taken. In terms of proba-
bility distributions we have

pylz) = 6(y — F(2)) )
since the mapping is deterministic.

The following proposal distribution is used for generat-
ing state realisations in the Monte Carlo filter

q(2t, at|y1:t, Zt—pit—1;, ag—1)
= P(Zt|:111:t, Zt—p:it—1, at)p(at|at—1)
Expanding p(2¢|y1.¢, 2—p:t—1, at), we get
P(2t|yrt; 2t—pi—1, ar) < p(ye|ze)p(ze|2t—p—1,a)  (8)

As p(yt|z¢) is a delta function which is non-zero only for
2 € F~'(y) and since p(2¢|2t—pt—1,0a:) is a Gaussian
density function (equation 4), p(2z¢|y1.¢, 2¢—p:t—1,a¢) is a
truncated Gaussian distribution.

The importance weight associated with each particle is
then calculated as follows

W X P(yt|at, thp:tfl)

= /p(yt|2t)17(2t|at,thp:tq)dzt

= / p(zt|ag, zi—p:e—1)dz 9
2t EF~H(ye)

In this calculation, the current state z; is marginalised in
order to improve the statistical stability of our filter.

4.1. de-Quantisation

For digital signal processing, a signal is represented as dis-
crete in both time (due to sampling) and value (due to quan-
tisation). The quantisation process, Q, rounds the signal to
the nearest predefined step. The feasible region for the in-
verse process is thus

A< < +A
—_ < =
Yt ) t > Ut B

and hence equation 9 becomes

yt-i-%
Wy 0</ (2t at, ze—pie—1)dz:
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where ® is the Gaussian cumulative density function and

P
Mzt = Z Qi t2t—i-

i=1

The most obvious method for generating samples of z;

from the truncated Gaussian (equation 8) is to draw samples
from the full distribution and reject those lying outside the
bounds. The acceptance rate is unacceptably small if the
feasible region lies far in the tails of the distribution. In
this case, we suggest sampling the region using rejection
sampling with the proposal distribution being a trapezium.

4.2. de-Clipping

Clipping occurs when an input signal goes beyond the dy-
namic range of a system. Those parts of the signal which
exceed the limit will be clipped to the clipping threshold,
+7. The feasible region for the inverse clipping process is

Zt 2 T for Yt 2 T
ze =y for—7m7<y<T
ze < -1 fory; <-—1

In this case equation 9 becomes

1—(I)(T;/j,zt,0'gt) fory, > 7
we x & plzy = yelag, z—p—1) for—7 <y, <7
® (=75 pat,02) fory, < —t

p
where p.y = > @i 12—
i=1

5. RESULTS

A section of speech data representing the word “reward” is
used to test the de-quantisation and de-clipping algorithms.



In both cases, the suggested algorithms are found to be ef-
fective. Audible improvements in audio quality and notice-
able improvement in signal-to-noise ratio are observed.

The data specifications are as follows, the TV-PARCOR
model order is p = 6 and the fixed hyperparameters used are
02 =0.001, a =0.955 and aée =0.01.

5.1. de-Quantisation

The speech data is 4-bit quantised with no added noise. Due
to the lengthy nature of the audio signal, the quantised sig-
nal is analysed in blocks of size 500 using the block-based
particle smoother (algorithm 2). The number of particles,
N, used to approximate the posterior distribution is 500 and
prior boosting [1] is employed to improve particle quality.
After a forward sweep of the particle filter, smoothing anal-
ysis is performed to generate M = 50 smoothed realisations
of the signal.

A typical frame showing the original signal, quantised
signal and the reconstructed signal is presented in Figure 1.
The reconstructed signal is found by taking the average over
all the smoothed realisations. Comparing the quantised sig-
nal and reconstructed signal, there is audible improvement.
For the SNR, it improves from 13.7dB to 16.8dB.

5.2. de-Clipping

The clipping threshold &7 is chosen so that about 20% of
the data is clipped. A forward sweep of particle filter is ap-
plied to the entire dataset. N = 500 particles are used. Prior
boosting is applied, to reflect the high posterior uncertainty
in the clipped region. Finally, smoothing is applied to gen-
erate M = 10 realisations.

A typical frame showing the original signal, clipped sig-
nal and the reconstructed signal is presented in Figure 2.
Compared with the clipped signal, the SNR improves from
5.7dB to 13.8dB.

6. CONCLUSION

We develop the block-based particle smoother and adapt the
Monte Carlo filtering and smoothing algorithm to estimate
the unobserved state given a non-linearly distorted signal.
The algorithms are tested against real audio signals and en-
couraging results are obtained. Further tests will be con-
ducted and results will be published in due course.
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Figure 1: A typical frame showing the original, quantised
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