NONLINEAR MODELLING OF AIRPOLLUTION TIME SERIES
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ABSTRACT

An analysisof predictabilityof a nonlinearandnonsta-
tionary ozonetime seriesis provided. For rigour, the DVS
analysisis first undertalento detectand measurdanherent
nonlinearityof the data. Basedupon this, neuralandlin-
earadaptve predictorsarecomparecn this time seriesfor
variousfilter orders hencendicatingtheembeddinglimen-
sion. Simulationresultsconfirmthe analysisandshaw that
for this classof air pollution data,neural,especiallyrecur
rentneuralpredictors performbest.

1. INTRODUCTION

Air pollutantssuchassurfaceozone(Os) (shavn in Figure
1) arethe subjectof anongoinganalysis.A rigorousanaly-
sisof suchdatarequiresconsideratiorof anumberof mete-
orologicalvariableqe.g.wind speedandnon-meteorological
variables(e.g. traffic density). To obtainaninsightinto the
underlyingstructure however, it is worthwhile to look ini-
tially ateachpollutanttime seriesndividually with thestan-
dardlinearmethodsandto do nonlinearityanalysisonly if
it appearghata linear modelis inadequateThefirst stage
in modelling a complex processsuspectedf being non-
linear is detectionof the nonlinearity otherwiseit cannot
be known that a linear modelwould not sufice. Oncethe
nonlinearityis demonstratedhe next stageis to chosethe
“best” nonlinearmodel,which is choserfrom afinite class
of nonlinearmodels.

Here, the methodof DeterministicVersusStochastic
(DVS) plots is usedto investigatethe nonlinearity of an
ozonepollutanttime series,and then basedupon this lin-
earandneuraladaptve modelsarecomparedn this ozone
series.
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Fig. 1. O5 time seriesplot. Time is measuredh hours.

2. LINEAR ANALYSISOF TIME SERIES

An initial analysisof stationarylineartime seriesoftenin-
volvesfitting an ARMA(p, ¢) model[1]:

P q

z(n) = Z a;z(n —1i) + Z bie(n —1) +€e(n) (1)

i=1 =1

with z beingthe time series,a andb the parametersf the
modelto befitted,ande therandomnoise.For thestationar
ity requiremenbf an ARMA modelit is sometimesuseful
to deseasonalisgtime series.For the O3 time seriesthere
is evidenceof two seasonatomponentswith periodsone
dayandoneyearrespectiely.

Theobviousextensionof the ARMA modelto anonlin-
earmodel(the NARMA model)is

z(n) = h(z(n-1),...,z(n—Dp),
en—1),...,e(n—q)) +e(n). (2)



The function h is assumedo be nonlinearand differen-
tiable.

3. THEMETHOD OF DVSPLOTS
ThegeneraDVS algorithmpresentedn [2] fits themodel

h(z(n —1),z(n—1-7),
Szn—1—(m-=1)7)) +€en) (3)

z(n) =

i.e. theNAR partof equation(2) whenr = 1. Thevariable
m is theembeddinglimension; is thelagtime. Following
the argumentsin [2], for which A is a linear function, we
have chosenr = 1 sincehourly measurementsepresent
coarsesamplingfor pollutiontime series.

The structureof the DVS algorithmis asfollows: the
time seriedis firstly dividedup into atraining setanda test
set.For agivenm, from thetraining setconstructhe delay
vectors

x(n) =[z(n —1),2(n —2),... ,2(n —m)].

For eachdelayvectorcalculateits Euclideandistancefrom
all the otherdelayvectorsthenchoosehe k nearesheigh-
boursto fit the bestlinear modelfrom equation(3). This
fitted modelis usedfor predictionpurposesn the testset,
andthe predictionerror calculated.Finally, the numberof
nearesheighbourg; is variedover representatie valuesup
to thenumberof delayvectorsin thetrainingset. TheDVS
plot givesthe predictionerrorfor thetestsetversusk. The
valueof k& whichgivestheoptimalpredictionerrorindicates
the nonlinearityof the time series.If the optimal & is at or
closeto thetotal numberof delayvectorsin thetrainingset,
thenglobally linearmodelsperformbestandthereis noin-
dicationof nonlinearity In this casethe modelis equivalent
to an AR model of orderm whenr = 1. Small or in-
termediateoptimal k suggestdocal linear modelsperform
best,indicating nonlinearityand/orchaoticbehaviour. For
rigour, a high-orderAR modelwasfitted to the O3 series
andusedto simulatea linear serieswith similar properties
[3]. Thiswasdonefor boththeraw andthe deseasonalised
series,giving four DVS plots in total. For eachplot, the
final 500 elementwf the serieswere usedto constructthe
testset. In Figure2 the DVS plot for m = {2,4,6,8,10}
is shawvn. For eachvalue of m, the optimal & is lessthan
the maximum, but the differencein the predictionerroris
minimal. Figure 3 displaysthe equivalentDVS plot for a
surrogatedatasetsimulatedfrom an AR(45) modelfit to
the series. The behaiour for the surrogatedatais similar
to the original data, but clearly hasthe optimal k& at kmax
suggestingat leasta certaindegreeof nonlinearity

The deseasonaliseBVS plots, (omitted due to space
constraints) corroboratewith the seasonaDVS plots, al-
thoughahigherembeddinglimensionis indicated.We now
investigatethe quality of predictionof this time seriesem-
ploying neuralalgorithms.
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Fig. 3. DVS plot for the simulatedO; time serieswith lag
delayr = 1.

4. NEURAL ADAPTIVE FILTERSIN THE AIR
POLLUTION TIME SERIESPREDICTION

The DVS plotsindicatea certaindegreeof nonlinearity of
the air pollution time series.Thus,in orderto obtaingood
prediction of the future value of the time seriesat hand,
basednthepastmeasurementanefficientalgorithmshould
be employed,i.e. analgorithmthatis inherentlynonlinear
and/oradaptve. Gradient-descer{tGD) basecdheuraladap-
tive filters, dueto their simplicity and nonlinearityare an
adequatehoicefor the predictionof time seriesthatrepre-
sentsaatmospheripollutiondata.Furthermorethestructure
of neuraladaptve filters could be chosento reflectthe na-
ture of the underlyingprocessij.e. it could be feedforward
or recurrent.



The operationof a single-neuromeuraladaptve filter
canbedescribedas

y(k) =
v(k) =

o(v(k))
w (k)u(k) (4)

wherek denotesa discretetime instant,y (k) is the output
of thefilter, v(k) is the neuronactivationfunction,w (k) =
[wy (), .., wn (k)]T is the weight vector ()7 denoteshe
vectortransposeand ®(-) represents nonlinearactiation
functionof aneuron.Definition of thevectoru(k) depends
onthestructureof a neuraladaptvefilter. In thecaseof the
feedforwardfilter u(k) containsonly samplesof the input
signalz(k), andis definedasu(k) = [z(k — 1), ...,z(k —
N)]T, whereN denoteshe orderof thefilter. Suchaneu-
ral adaptve filter is of the finite impulse responsgFIR)
type. On the otherhand,in the caseof the recurrentfil-
ter, it containssamplesof theinput signalz(k), aswell as
samplesof the delayedoutputof thefilter y(k), i.e. input
vectorsdefinedasu(k) = [y(k—1),... ,y(k—q),1,z(k—
1), ...,z(k—p)]¥, whereunity standgor biasterm. Thisre-
currenffilter is known asanonlinearARMA (p, ¢) recurrent
perceptronwherep andq denoterespectiely the orderof
autorgressve (AR) andmoving average(MA) partof the
filter.

Theadaptatiorof a GD basedheuraladaptve filter can
bedescribedy thefollowing setof equations

e(k) = d(k)— @(v(k)) (5)
wk+1) = w(k)—nVwE(e(k)) (6)

whered(k) is sometraining (desired)signal,e(k) is thein-
stantaneousrrorattheoutputneuron,E(-) is thefilter cost
function, andn denotesthe learningrate parameter The
mostcommonchoicefor the costfunction E(-) is
1 2

E(e(k) = 5e*(k). (7)
Obviously, computatiorof thegradientof the costfunction,
denotedby Vw E(e(k)), dependn the structureof aneu-
ral adaptve filter. For the feedforwardtype of a filter, this
gradientis givenby

VwE(e(k)) = e(k)u(k)
= e(k)[z(k—1),..,z(k —N)T. (8)
The algorithm describedby equations(4) - (8) is usually
referredto asthe nonlineargradient-descentiNGD) algo-

rithm. The gradientof the cost function for a nonlinear
ARMA (p, q) recurrentperceptroris definedas

VwE(e(k)) = e(k)TI(k) (9)

whereII(k) = [8%1(53)"“ , 82915’89)] representshe gra-
dientat the outputof the neuron. The procedureof gradi-

entcomputatioraccordingto equation(9) is morecomplex

thanin the caseof a feedforwardneuraladaptve filter, due
to functional dependencdetweenw;,i = 1,...,N and
y(k — j),7 = 1,2,.... Hence,gradientcomputationis
basedupon the approximation[4] that for small learning
raten, thefollowing relationshipholds

dy(k—3)  dy(k=J)

i=1,2...,q.  (10)

It is importantto notethat the classof algorithmsde-
scribedby theequationg4) - (7), with fixedlearningraten,
might suffer from slow corvergenceandlocal minima. A
constantearningrateparametef) canbeconsideredsone
of the factorscontributing to theseproblems[4, 5]. Equa-
tion (7) givesaninstantaneousstimateof theensemblewv-
erage(e?(k)), thusintroducinga gradientnoisein theoper
ation of analgorithm[6]. This gradientnoisewill helpan
algorithmto escapgrom local minima, but unfortunately
will alsoreducecorvergencerate. Further a recentresult
[7] indicatesan inherentrelationshipbetweenthe learning
rate parameter; andslopeof the nonlinearactivationfunc-
tion of anoutputneurong, which alsohasanegativeimpact
onthecorvergencepropertieof thealgorithmwith fixedn.

A successfubesignof an algorithm for adaptationof
GD based,single-neuromeuraladaptve filter is givenin
[8]. The normalisednonlineargradient-descenfNNGD)
algorithm exhibits optimal behaiour in the sensethat it
minimisestheinstantaneoupredictionerror, thusproviding
adaptve learningraten. In the caseof thelinearactivation
functionof anoutputneuronthe NNGD algorithmreduces
to thenormalisedeastmeansquare¢NLMS) algorithm.

5. EXPERIMENTAL RESULTS

To acquirethe true natureof the ozonetime serieswe per
formed several experiments. Air pollution datarepresent
hourly measurementsf the concentratiorof ozone(Os), in
the period 1994 - 1997. Thesedatawere provided to us,
courtesyof the Leedsmeteostation.

In the performedexperimentshe logistic function was
choserasthenonlinearactivationfunctionof anoutputneu-
ron. The quantitatve performancemeasurewas the stan-
dard predictiongain, a logarithmic ratio betweenthe ex-
pectedsignalanderrorvariancesk, = 10log(62/62%). The
slope of the nonlinearactivation function of the neurong
was setto be § = 4, sincethis value makes ® closeto
thelinearfunctionin the vicinity of the origin. Dueto the
saturationtype of the logistic nonlinearity input datawere
prescaledo matchtherangeof anoutputneuronactivation
function.

In the first experimentwe comparedthe performance
of the NLMS, NGD, andNNGD algorithmsin the predic-
tion of the O3 time series. The learningrate parametem
in the NGD algorithm,wassetto ben = 0.3, andthe con-
stantC in the NNGD algorithm,was setto be C = 0.2.



The order of the feedforward filter N variedin the range
N = 1,2,...,30. A summaryof the performedexperi-
mentis givenin Figure4. In the secondexperimentwe
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Fig. 4. Performancef theNLMS, NGD, andNNGD algo-
rithmsin the predictionof the O; time series

investigatedhe performanceof the ARMA recurrentper
ceptronin the predictionof the O3 time series.Theorderof
the MA partq, andthe AR partp of the nonlinearARMA
recurrentperceptrorvariesin therangep,q = 1,2, ... , 10.
A summaryof resultsof the experimentis shavn in Figure
5.
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Fig. 5. Performancef theNARMA recurrenperceptronn
the predictionof the O3 time series

It is obviousthatnonlineaNGD andNNGD algorithms
for adaptatiorof a neuraladaptve filter have betterperfor
mancecomparingo thelinearalgorithm(NLMS). A recur
rent perceptroroutperformshe NLMS, NGD, andNNGD
algorithmsfor a wide rangeof p andgq, suggestinghe re-
cursive natureof the generatingorocesof ozone[9]. This
alsocorroboratesvith the DVS plots shown before.

6. CONCLUSION

An analysisof predictability of the ozonetime serieshas
beenperformed. This hasbeendonerigorously, starting

from the detectionof nonlinearityand embeddingdimen-
sionthroughto the bestNARMA (p, q) recurrentpredictor
Simulationresultsconfirmthatthis classof time seriesex-
hibitsinherentnonlinearityandthatarecurrenNARMA (p, q)
perceptrons thebestmodelamongthe single-neuromod-
elsto describehistime series.
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