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ABSTRACT

An analysisof predictabilityof a nonlinearandnonsta-
tionaryozonetime seriesis provided. For rigour, theDVS
analysisis first undertaken to detectandmeasureinherent
nonlinearityof the data. Basedupon this, neuraland lin-
earadaptivepredictorsarecomparedon this time seriesfor
variousfilter orders,henceindicatingtheembeddingdimen-
sion. Simulationresultsconfirmtheanalysisandshow that
for this classof air pollution data,neural,especiallyrecur-
rentneuralpredictors,performbest.

1. INTRODUCTION

Air pollutantssuchassurfaceozone(O� ) (shown in Figure
1) arethesubjectof anongoinganalysis.A rigorousanaly-
sisof suchdatarequiresconsiderationof anumberof mete-
orologicalvariables(e.g.windspeed)andnon-meteorological
variables(e.g. traffic density).To obtainaninsight into the
underlyingstructure,however, it is worthwhile to look ini-
tially ateachpollutanttimeseriesindividuallywith thestan-
dardlinearmethods,andto do nonlinearityanalysisonly if
it appearsthata linearmodelis inadequate.Thefirst stage
in modelling a complex processsuspectedof being non-
linear is detectionof the nonlinearity, otherwiseit cannot
be known that a linear modelwould not suffice. Oncethe
nonlinearityis demonstrated,thenext stageis to chosethe
“best” nonlinearmodel,which is chosenfrom a finite class
of nonlinearmodels.

Here, the methodof DeterministicVersusStochastic
(DVS) plots is usedto investigatethe nonlinearity of an
ozonepollutant time series,and thenbasedupon this lin-
earandneuraladaptivemodelsarecomparedon this ozone
series.
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Fig. 1. O� time seriesplot. Time is measuredin hours.

2. LINEAR ANALYSIS OF TIME SERIES

An initial analysisof stationarylinear time seriesoften in-
volvesfitting anARMA( ���
	 ) model[1]:
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with � beingthe time series,� and # theparametersof the
modelto befitted,and

$
therandomnoise.For thestationar-

ity requirementof anARMA modelit is sometimesuseful
to deseasonalisea time series.For the '(� time seriesthere
is evidenceof two seasonalcomponentswith periodsone
dayandoneyearrespectively.

Theobviousextensionof theARMA modelto anonlin-
earmodel(theNARMA model)is�������)� *����
���+�-,.� �0/1/0/2� ������� � � �$ ���3�-,.� �0/1/0/2� $ ���3� 	 �4�
 $ ����� / (2)



The function * is assumedto be nonlinearand differen-
tiable.

3. THE METHOD OF DVS PLOTS

ThegeneralDVS algorithmpresentedin [2] fits themodel�������5� *�6%�
�����7,8� � �����+�7,9��:;� �/0/0/2� �
���+�-,9�<��=>�-,.��:;�4?@ $ ����� (3)

i.e. theNAR partof equation(2) when :3�A, . Thevariable= is theembeddingdimension,: is thelag time. Following
the argumentsin [2], for which * is a linear function, we
have chosen:B�C, sincehourly measurementsrepresent
coarsesamplingfor pollution time series.

The structureof the DVS algorithmis as follows: the
time seriesis firstly dividedup into a training setanda test
set.For a given = , from thetrainingsetconstructthedelay
vectorsD �������FE �������7,8� � �
�����HGI� �0/0/1/2� �������&=J�LK /
For eachdelayvectorcalculateits Euclideandistancefrom
all theotherdelayvectors,thenchoosethe M nearestneigh-
boursto fit the bestlinear model from equation(3). This
fitted modelis usedfor predictionpurposeson the testset,
andthe predictionerror calculated.Finally, the numberof
nearestneighboursM is variedover representativevaluesup
to thenumberof delayvectorsin thetrainingset.TheDVS
plot givesthepredictionerror for thetestsetversusM . The
valueof M whichgivestheoptimalpredictionerrorindicates
thenonlinearityof the time series.If theoptimal M is at or
closeto thetotalnumberof delayvectorsin thetrainingset,
thenglobally linearmodelsperformbestandthereis no in-
dicationof nonlinearity. In thiscasethemodelis equivalent
to an AR model of order = when :N�O, . Small or in-
termediateoptimal M suggestslocal linear modelsperform
best,indicatingnonlinearityand/orchaoticbehaviour. For
rigour, a high-orderAR modelwasfitted to the ' � series
andusedto simulatea linear serieswith similar properties
[3]. This wasdonefor boththeraw andthedeseasonalised
series,giving four DVS plots in total. For eachplot, the
final PRQIQ elementsof the serieswereusedto constructthe
testset. In Figure2 the DVS plot for =S�UTVG �XW;�XY;�XZ;� , Q\[
is shown. For eachvalueof = , the optimal M is lessthan
the maximum,but the differencein the predictionerror is
minimal. Figure3 displaysthe equivalentDVS plot for a
surrogatedatasetsimulatedfrom an ](^ � W_P � model fit to
the series. The behaviour for the surrogatedatais similar
to the original data,but clearly hasthe optimal M at M max

suggestingat leastacertaindegreeof nonlinearity.
The deseasonalisedDVS plots, (omitted due to space

constraints),corroboratewith the seasonalDVS plots, al-
thoughahigherembeddingdimensionis indicated.Wenow
investigatethequality of predictionof this time seriesem-
ploying neuralalgorithms.
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Fig. 2. DVSplot for theO� timeserieswith lagdelay:`�A, .
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Fig. 3. DVS plot for thesimulatedO� time serieswith lag
delay :`�a, .

4. NEURAL ADAPTIVE FILTERS IN THE AIR
POLLUTION TIME SERIES PREDICTION

The DVS plots indicatea certaindegreeof nonlinearityof
the air pollution time series.Thus,in orderto obtaingood
predictionof the future value of the time seriesat hand,
basedonthepastmeasurements,anefficientalgorithmshould
be employed, i.e. analgorithmthat is inherentlynonlinear
and/oradaptive. Gradient-descent(GD) basedneuraladap-
tive filters, due to their simplicity andnonlinearityarean
adequatechoicefor thepredictionof time seriesthatrepre-
sentsatmosphericpollutiondata.Furthermore,thestructure
of neuraladaptive filters could bechosento reflectthe na-
tureof theunderlyingprocess,i.e. it couldbefeedforward
or recurrent.



The operationof a single-neuronneuraladaptive filter
canbedescribedasb � M �)� cd��ef� M �X�ef� M �5� gihj� M ��k@� M � (4)

where M denotesa discretetime instant,

b � M � is the output
of thefilter, el� M � is theneuronactivationfunction, gm� M �@�E n � � M � �0/o/p/o� n9qr� M �LK h is the weight vector, ��st� h denotesthe
vectortransposeand cd��st� representsa nonlinearactivation
functionof aneuron.Definitionof thevector k@� M � depends
on thestructureof a neuraladaptivefilter. In thecaseof the
feedforwardfilter kj� M � containsonly samplesof the input
signal ��� M � , andis definedas k@� M �u�>E �
� M �v,.� �0/o/p/o� ��� M �w �LK h , where

w
denotestheorderof thefilter. Sucha neu-

ral adaptive filter is of the finite impulse response(FIR)
type. On the other hand, in the caseof the recurrentfil-
ter, it containssamplesof the input signal �
� M � , aswell as
samplesof the delayedoutputof the filter

b � M � , i.e. input
vectorsdefinedas k@� M �x�FE b � M ��,.� �1/0/1/2� b � M � 	 � � , � �
� M �,.� �0/o/p/o� ��� M � � �yK h , whereunity standsfor biasterm.Thisre-
currentfilter is known asanonlinearARMA � �
�X	 � recurrent
perceptron,where� and 	 denoterespectively the orderof
autoregressive (AR) andmoving average(MA) part of the
filter.

Theadaptationof a GD basedneuraladaptivefilter can
bedescribedby thefollowing setof equationsz{� M �)� |l� M �}�~cd��ef� M �4� (5)gm� M  v,8��� gm� M �}�&�\���u�i�%z_� M �4� (6)

where |�� M � is sometraining(desired)signal, z{� M � is thein-
stantaneouserrorat theoutputneuron,�i�4s � is thefilter cost
function, and � denotesthe learningrate parameter. The
mostcommonchoicefor thecostfunction �`��st� is�i�%z_� M �4�x� ,G z8�I� M � / (7)

Obviously, computationof thegradientof thecostfunction,
denotedby �����`��z{� M �X� , dependson thestructureof a neu-
ral adaptive filter. For the feedforwardtype of a filter, this
gradientis givenby���u�i�%z_� M �4�)� z{� M �4kj� M �� z{� M �0E ��� M �-,.� �0/o/p/o� ��� M � w �LK h / (8)

The algorithm describedby equations(4) - (8) is usually
referredto as the nonlineargradient-descent(NGD) algo-
rithm. The gradientof the cost function for a nonlinear
ARMA � ���
	 � recurrentperceptronis definedas�����`��z{� M �X����z_� M ����� M � (9)

where �H� M �����}�.�8�o����.�f���o��� �1/0/1/2� �1�V�o����.�l�x�o����� representsthe gra-
dient at the outputof the neuron. The procedureof gradi-
entcomputationaccordingto equation(9) is morecomplex

thanin thecaseof a feedforwardneuraladaptive filter, due
to functional dependencebetweenn � � �J��, �1/0/1/2� w and
b � M �-�{� � �B�O, � G �1/0/0/ . Hence,gradientcomputationis
basedupon the approximation[4] that for small learning
rate � , thefollowing relationshipholds� b � M �J�{�� n � � M ��� � b � M ���{�� n � � M �m�_� � ���a, � G �1/0/0/2�
	{/ (10)

It is importantto note that the classof algorithmsde-
scribedby theequations(4) - (7), with fixedlearningrate � ,
might suffer from slow convergenceandlocal minima. A
constantlearningrateparameter� canbeconsideredasone
of the factorscontributing to theseproblems[4, 5]. Equa-
tion (7) givesaninstantaneousestimateof theensembleav-
erage� z � � M �X  , thusintroducingagradientnoisein theoper-
ation of an algorithm[6]. This gradientnoisewill helpan
algorithm to escapefrom local minima, but unfortunately
will alsoreduceconvergencerate. Further, a recentresult
[7] indicatesan inherentrelationshipbetweenthe learning
rateparameter� andslopeof thenonlinearactivationfunc-
tion of anoutputneuron¡ , whichalsohasanegativeimpact
on theconvergencepropertiesof thealgorithmwith fixed � .

A successfuldesignof an algorithm for adaptationof
GD based,single-neuronneuraladaptive filter is given in
[8]. The normalisednonlineargradient-descent(NNGD)
algorithm exhibits optimal behaviour in the sensethat it
minimisestheinstantaneouspredictionerror, thusproviding
adaptive learningrate � . In thecaseof thelinearactivation
functionof anoutputneuron,theNNGD algorithmreduces
to thenormalisedleastmeansquares(NLMS) algorithm.

5. EXPERIMENTAL RESULTS

To acquirethe truenatureof theozonetime serieswe per-
formed several experiments. Air pollution datarepresent
hourlymeasurementsof theconcentrationof ozone( ' � ), in
the period 1994 - 1997. Thesedatawereprovided to us,
courtesyof theLeedsmeteostation.

In the performedexperimentsthe logistic functionwas
chosenasthenonlinearactivationfunctionof anoutputneu-
ron. The quantitative performancemeasurewas the stan-
dard predictiongain, a logarithmic ratio betweenthe ex-
pectedsignalanderrorvarianceŝ � �B, Q£¢o¤I¥ �1¦§ �¨I© ¦§ �ª � . The
slopeof the nonlinearactivation function of the neuron ¡
was set to be ¡ � W , sincethis value makes c closeto
the linear function in the vicinity of the origin. Due to the
saturationtypeof the logistic nonlinearity, input datawere
prescaledto matchtherangeof anoutputneuronactivation
function.

In the first experimentwe comparedthe performance
of the NLMS, NGD, andNNGD algorithmsin the predic-
tion of the ' � time series. The learningrateparameter�
in theNGD algorithm,wassetto be �m� Q;/ « , andthecon-
stant ¬ in the NNGD algorithm,was set to be ¬ � Q;/ G .



The orderof the feedforward filter
w

varied in the rangew �C, � G �0/0/1/f�X«IQ . A summaryof the performedexperi-
ment is given in Figure 4. In the secondexperimentwe
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Fig. 4. Performanceof theNLMS, NGD, andNNGD algo-
rithmsin thepredictionof the ' � time series

investigatedthe performanceof the ARMA recurrentper-
ceptronin thepredictionof the ' � timeseries.Theorderof
the MA part 	 , andthe AR part � of the nonlinearARMA
recurrentperceptronvariesin therange���
	 �A, � G �0/1/0/2� , Q .
A summaryof resultsof theexperimentis shown in Figure
5.
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Fig. 5. Performanceof theNARMA recurrentperceptronin
thepredictionof the '(� timeseries

It is obviousthatnonlinearNGD andNNGD algorithms
for adaptationof a neuraladaptive filter have betterperfor-
mancecomparingto thelinearalgorithm(NLMS). A recur-
rentperceptronoutperformstheNLMS, NGD, andNNGD
algorithmsfor a wide rangeof � and 	 , suggestingthe re-
cursive natureof thegeneratingprocessof ozone[9]. This
alsocorroborateswith theDVS plotsshown before.

6. CONCLUSION

An analysisof predictability of the ozonetime serieshas
beenperformed. This hasbeendonerigorously, starting

from the detectionof nonlinearityandembeddingdimen-
sion throughto thebestNARMA � �
�X	 � recurrentpredictor.
Simulationresultsconfirmthat this classof time seriesex-
hibitsinherentnonlinearityandthatarecurrentNARMA � ���X	 �
perceptronis thebestmodelamongthesingle-neuronmod-
elsto describethis timeseries.
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