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ABSTRACT

The authors propose a new solution to the Independent Component
Analysis (ICA) problem. In the two-dimensional case, we prove
that under the whiteness constraint some fourth-order contrasts
may be approximated by a sinusoid. Thus, the minimization of
the contrast reduces to computing its phase. The novel approach,
called SICA (Sinusoidal ICA), uses the *Jacobi optimization’ to
cope with higher dimensions. The method presented has a good
performance along with a low computational cost. Some experi-
ments with blind separation of audio and synthetic sources are in-
cluded to compare the algorithm to other well-known approaches.

1. INTRODUCTION

Consider an m x 1 vector x; projected into a space of n compo-
nents y, as statistically independent as possible. The ICA problem
consists in finding the change of basis represented by an n x m ma-
trix B. Let s;(t) withi = 1,...,n be n zero-mean independent
unknown sources, where only one of them may be Gaussian. An
instantaneous mixture of them may be written as:

a}'t:ASt t=1,2, (1)
where A is the mixing matrix. Blind Source Separation (BSS)
computes matrix B so that

’yt:B(BtZBAStICSt t=1,2, (2)

where C is ideally the identity matrix. However, the BSS problem
can be solved up to permutations and/or scaling of the outputs [1].
In this sense C' is a non mixing matrix if it has one and only one
non-zero entry in each column and each row. It can be observed
that BSS provides the model (2) to solve the ICA problem.

Matrix B can be decomposed into the product of a whitening
W and a rotation V matrix. If m > n, the whitening process
allows reducing the number of dimensions (we do not consider
here the case n > m). This sphering stage gives us signals z;(t):

Yy, =Bxi=VWAs; =Vz t=12,... 3)

Most of the off-line solutions to ICA [1] [2] are based on the
minimization of one criterion, contrast function, or cancellation of
multiple criteria. For instantaneous mixtures of two sources, direct
methods, which consist of directly estimating the mixing matrix
from the mixtures, are also possible. Direct methods suggested in
[3] [4] [5] solve polynomial equations based on cumulants up to
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fourth-order. The solutions of the equations provide the entries of
the mixing matrix. In this paper we propose to face the problem
under the whiteness constraint using the *Jacobi optimization’ [3]
[2]. The independent components y;(¢) and y;(t) in the orthogo-
nal two-dimensional approach may be written as:

v 19 ]- [ @] [0 @

where z;(t) and z;(t) are a rotation « of the normalized sources
3;(t) and 5, (t).

When the kurtosis of the sources have identical signs, simple
orthogonal contrasts may be exhibited [6] [7] [2] (MaxKurt algo-
rithm). In this sense, if all the kurtosis are negative, it is easily
proved that minimizing

bxur(9) = E[y;] + E[yj] )

subject to E[yy'] = I is achieved only when 8 is a demixing
angle. If we have no knowledge on the kurtosis, we may use the
contrast in [1]:

$rcaly] = —Cumiy;[y] — Cum3;j; [y] ®)
where Cum;;;;[y] = E[y;] — 3E2[y?] are the autocumulants of the
outputs. Simple algebra shows that the orthogonal version of this
contrast, up to a constant, yields

$104(8) = —£(6) + 66 xur(9) 0]

where £(6) = E*[y1] + E>[y3].

A similar orthonormal contrast based on fourth-order cross-
cumulants, ¢sap=[y], was introduced and solved by Cardoso et
al. [8] using joint diagonalization. We will return to it in Section
5.

We first model contrasts ¢~ (6) and f(6), then we will com-
pute ¢rca(6) as a linear combination of them.

2. SINUSOIDAL APPROXIMATIONS

The solution to ¢ ., was first given in [7]. In [2] the contrast
was modeled as a sinusoid whose phase was given as a function of
the cumulant matrices. Modelling the contrast as a function of the
moments in polar co-ordinates is immediate. The vector y(¢) in
polar co-ordinates yields

Tyt ] r(t)cos(8+ B(t)
Ye = [ yi (1) ] = [ r(t)sin(8 + B(t)) ®)



By ignoring the terms of the contrast function that do not de-
pend on the angle 6, the contrast function yields

Bicur (6) £ TEIr* cos(4(6+8))] = 01 cos(46)—gs sin(46) ()
where

@ = Elrtcos(4)

@ = GElrsin(49)] (10)

Equation (9) is a sinusoid with phase
—40kyr = 4o = arctan(qz, q1) (11)

where arctan(a, b) is the four quadrant inverse tangent of a/b. It
can be stated that under whiteness constraint, E[yy'] = I, the
contrast function ¢ - (6) is a sinusoid whose phase is four times
the angle a involved in (4).

We operate as before to model £(8) in (5) . By using elemen-
tary trigonometrics, function f(6) yields

3
6
3Bl cos(2(6 + 9))
1
5

FfO) = —E[r"E[" cos(4(8 + B))]

+ 25 E?[r* cos(4(8 + B))] (12)
We will show in the next section how the last term in (12) may
be suppressed and how function f(6) reduces to a sinusoid.

3. THE SINUSOIDAL CONTRAST

The aim of this section is to provide a sinusoidal function whose
solution (phase) is the same to that of contrast ¢rca in (7). That
is, to model ¢;c 4 by a sinusoid.

Lemma 1: Under whiteness constraint, the contrast function
é1ca(f) may be modeled by a sinusoid

(}510,4(9) = ¢SICA(0) = (—l1+6(11) COS(4(9)+(l2—6q2) sin(49)

(13)
its phase being minus four times the rotation angle ;¢ a

1
Orca =0sin = ~1 arctan(—l2 + 6g2, —l1 + 6¢1)  (14)

with g1 ,2 as given in (13) and 1,2 by

3 1 1
h = Elll + Zlfz - Zlfs
3 1
lo = EZZI + 5122123 (15)
where
i = E[1“4]E[7"4 cos(40)]
ls. = E[r*]E[r*sin(48)]
lio=1lp = E[T4 cos(23)]
l13 = 123 = E[T4 sin(2/3’)] (16)

Proof: See the Appendix.

The proposed lemma states that the solution of the new si-
nusoidal contrast, SICA, is the same one as for ¢;ca. But the
benefits of this contrast stems from its simplicity: it requires less
operations and its solution is more accurate.

Computational considerations: by considering Lemma 1 we
reduce the computational burden in the minimization of ¢;c4(6).
First, we avoid computing the whole set of terms involved in the
contrast. And secondly, the minimization of ¢srca(8) is imme-
diate as the solution is minus four times the phase of the result-
ing function, a sinusoid. Recall that SICA does not include the
term by 1/32 in (12) and needed in (7). In [1] a root of a fourth-
order polynomial provides the solution to the orthogonal contrast.
Solving this polynomial takes in the MATLAB version of the ICA
algorithm by Comon in [9] about 1400 floating point operations.
The approach presented in this paper takes only 1 floating point
operation in computing the function atan2. Notice that solving
¢srca(f) takes approximately 10 more floating point operations
than in the case of contrast ¢« (), the contrast solved by the
MaxKurt algorithm in [2].

Accuracy: In polynomial based approaches [1], [4], [5], the
estimating error in a given coefficient ¢, affects all the zeros. Sup-
pose the roots are located at ¢ = o; fori = 1,2,...,N. Fur-
thermore, let us define the roots as o; + Ao;. The error in the
location of the 4th zero can be expressed in terms of the errors in
the coefficients as

N
do; .
A0i=ZOCkAcka|=1527"'aN (17)
k=1
where .
% SN S— (18)
&k Iljzijzi(oi —05)

That is, as o /o; tends to one the results are more sensitive to er-
rors in the estimation of the coefficients of the polynomial. Hence-
forth, the performance of the polynomial based methods deterio-
rates significantly. On the other hand, if one root o; >> o; for
i =1,2,...,N 1 # [, from (17) it follows that the sensibility
of o to errors in the estimation of the coefficient cy_1 and en
becomes close to one and o itself respectively. In [1] the larger
real root ¢ of a fourth-order polynomial is the coefficient of the
second-order polynomial P(¢o) = o> — €0 — 1. The zero o of this
polynomial in the interval [—1, 1) provides the tangent of the ro-
tation angle o = tan(frca). If € >> 1 and ¢ is much larger than
the rest of the roots, the sensitivity to the estimation of the upper
coefficients is high. In addition, this error propagates to the final
solution o as the sensitivity of o to changes in £ is close to one:

No =~ A§ ~ Aen_1 + §ACN (19)

As a conclusion, the methods based on polynomials are ill-
conditioned and the performance may deteriorate significantly. On
the contrary, although we do not analyze the sensivity of SICA,
methods based on the estimation of the rotation by computing the
inverse tangent of a function of the moments usually show a better
sensitivity.

4. EXTENSION TO N SOURCES

The algorithm described above was designed for 2 dimensions.
Comon introduced in [1] the *Jacobi optimization’ to extend the
solution of contrast ¢rc(6) to the n-dimensional problem. We



have rewritten the algorithm using the proposed contrast. Such an
algorithm can be summarized as

1 Initialization. Compute a whitening matrix W and sety =
W

2 Onesweep. Forall n(n —1)/2 pairs, i.e., forl1 <i < j <
n, do

(a) Compute the Givens angle 6;; optimizing ¢srca(y)
when the pair (y;, y;) is rotated by using (14).

(b) if 6;; > Omin, do rotate the pair (y;,y;) by 6;; ac-
cording to (4).

3 End? If no pair has been rotated in previous sweeps, end.
Otherwise go to 2 for another sweep.

Thus, the Jacobi approach considers a sequence of 2-dimensional
ICA problems. In [2] the value 8, is selected in such a way that
rotations by a smaller angle are not ’statistically significant’. Typ-
ically 8, = 10*2/\/7 where T is the number of samples. In
[1] this number is 8,,;, = 1/T but if the algorithm goes through
step 2 more than k times with k¥ < 1 + /n it stops.

5. EXPERIMENTAL RESULTS

The performance index

N[N Ipil 1 ~ [y~ Ipijl 1
@ ; (; max, |pix| ) * J; (; maxy |pr;| )
(20)
where P = (pi;) = BA, is used as a measure of separation in
Fig. 1. Two audio signals were mixed. Each point corresponds to
the average of 1000 experiments. In which the mixing matrix is
randomly chosen: The matrix entries a;; are random numbers in
the range [-1,+1]. Fig.1.a shows that contrast functions ¢src 4 ()
in (13), ¢1ca () in (13), and ¢y ape[y] (this last one solved with
the JADE algorithm [8]) have similar performance. Regarding the
computational cost, the method SICA presented in this paper re-
duces the number of floating point operations (flops), in computing
V and W, in approximately a 52% and 19% with respect to the
ICA [9] and the JADE [10] algorithms. Fig.1.b shows the evo-
lution of this feature as the number of samples increases. Fig.1.c
includes the CPU time required along the number of samples. This
parameter becomes reduced in a 41% and a 67% at 5-10* samples.
The CPU time is required in this analysis as the algorithms must
be optimized taking into account both of the aspects. Notice that
an algorithm may require less CPU time using more flops and less
accesses to memory.
The experiment in Fig.2 consists in the separation of 10 sources:
5 sources with uniform probability density function (p.d.f.) dis-
tributed signals, 1 with gaussian p.d.f. and 4 generated as the cube
of the samples of a gaussian distribution. We averaged the results
of 100 experiments. Again, the mixing matrix is randomly cho-
sen as before. The sources were also randomly generated at each
iteration. Fig.2.a shows the performance index in (20). At low
numbers of samples ([0 1500]) ¢s:ca(6) clearly outperforms the
other methods. Besides, the ICA method is unable to perform as
accurately as SICA and JADE. Fig.2.d depicts the performance in-
dex in the case of a source with uniform p.d.f. and another with
the cube of a gaussian. The mixed data used in the figure makes
& =~ 10 while the rest of the roots are o; & 10~2. Thus, the high
sensibility of the method to the estimation of the moments given in

(19), makes the result inaccurate. Fig.2.b show how SICA requires
a lower number of flops. Finally, in Fig.2.c it can be observed how
the CPU time divides by 2.
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Fig. 1. Mixture of 2 audio signals with the JADE (o), ICA (o) and
SICA (0O): (a) Performance Index, (b) Flops, (c) CPU Time.

6. CONCLUSIONS

In this paper we present a new approach to independent compo-
nent analysis based in fourth-order moments under whitening con-
straint. The starting point is the ICA contrast given by Comon in
[1]. We rewrite the contrast in polar form to show how this con-
trast reduces to a sinusoidal function, the SICA contrast. Its phase
being the solution to the contrast. This strategy results in a sim-
ple method with accurate results at a low computational cost. The
experiments included show how this new method clearly outper-
forms the ICA and the JADE [2] methods for different number and
types of inputs.

The contrast function, ¢rc4(8) may be expressed using (7),
(9) and (12) as

broa(d) = i(8) + Ua(6) + Us(8) + T4(9) with
Ti(0) =~ El R cos(4(6 + )]

W) = 3Bl cos(2(6 + 0))

Us(0) = — B cos(4(8 + )

W0 = +gE[r4cos(4(6+,6’))] 21)

We now analyze these terms. The term ¥4(6) corresponds to 6
times contrast ¢k, (6) in (5) and (9). Since its frequency is 4- 2,
there is a minimum every 7 /2 radians. In clear concordance with
matrix C' in (2) performing a set of permutations and changes of
scales and signs of the outputs [1]. Being ¢ (#) a sinusoid, its
maximum points are at /4 from the minimum 6 x.,. This term
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Fig. 2. Mixture of 10 sources wit the JADE (o), ICA (o) and SICA
(0O): (a) Performance Index, (b) Flops, (c) CPU Time, (d) Perfor-
mance Index for the mixture of two of the sources

can be written as
U4(0) = 1pa cos(46 — 40ur) (22)

On the other hand, ¥(8) is a sinusoidal function with a 7 phase
shift respect to the term described above,

Wy (6) = 1p2 cos(40 — 40k yr + ) (23)

Next we compare W,(6) to W4 (). It is straight forward to con-
clude that both of the functions are, up to a constant, sinusoidal
functions with the same frequency 4-2x. The problem arises when
computing the phase shift between them. Elementary trigonomet-
rics show that

E[r* cos(4(6 + B))] = cos(48)E[r* cos(483)]

— sin(46) E[r* sin(48)] (24)
E*[r* cos(2(6 + 8))] =

cos(46) (%(Em4 cos(28)] — E?[r* sin(2,8)]>

— sin(46) E[r* cos(28)]E[r” sin(28)] (25)

If we prove the terms multiplying sin(46) in (25) and (25) to can-
cel at the same @, then ¥,(6) and W4(#) have a phase shift of
p2 = 0or po = . If we rewrite them as a function of the fourth-
order moments of the outputs it follows that

E[r* sin(4(a))]
E[r* sin(2(a))]

2E[y}y;] + 2E[yiy;]
6E[ysy;] — 2E[yiy;] (26)

As equations in (26) cancel at separation ¥»(8) yields
W(0) = 12 cos(46 — 40k ur + p2) (27)

where p» = 0, 7. Besides, the sum of the functions in (22), (27)
and (22) may be written as

Ui24(0) = W1+ P2+ Ty = 1124 co8(40 — 40k ur +p124) (28)

where p124 = 0, 7.
Finally, the ®'5(0) is a sinusoid with double the frequency that
@124(9), ie, 8 2m:

W3(0) = 13 cos(86 — 8 kur + ) (29)

Function ¥3(0) in (29) evaluated at the possible minimums of
(28) results in the same value. Consequently, ¥3(#) has the effect
of a bias at the candidate points. Thus, it can be removed from
(21). It follows that

o10c4(0) = psica() = V124(0) (30)

The solution to contrast ¢;ca(6) can also be computed as
minus four times the phase of ¢srca(6) in (30) where ¥y =
60 xwr (8) was developed in (9) and ¥4 (6) + ¥2(0), after ele-
mentary trigonometrics, yields

U1(0) + U2(6) = —11 cos(40) + 2 sin(46) (31)

where [; and > were given in (15).
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