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ABSTRACT

Kautz series allow orthogonal series expansion of finite-
energy signalsdefined on asemi-infiniteaxis. TheKautz se-
ries consists of orthogonalized exponential functions or se-
guences. Thisserieshas as free parameters an ordered set of
poles, each pole associated with an exponential function or
sequence. For reasons of approximation and compact rep-
resentation (coding), an appropriate set of ordered polesis
therefore convenient. Aniterative procedureto establish the
optimal parameters according to an enforced convergence
criterion isintroduced.

1. INTRODUCTION

In the time-domain, processes are linked to causal opera-
tors. For practical purposes, causal operators characterized
by linearity, stability and finite number of states form the
most prominent class of systems. These are associated with
rational transfer functions and, in the time domain, with
damped exponential functions or sequences.

Infinite series of (generalized) exponentia functions or
seguences constitute under some conditions a complete ba-
sisin Lx(0, 00) or £2(Ny) (next section). From this, an or-
thonormal basis can be constructed which is usualy called
a Kautz basis [1, 2]. For approximation and compact rep-
resentation, fast converging series are of interest. The poles
in the series can be adapted to achieve this.

Thisline of work has been topic of recent research. Nec-
essary conditionsfor the optimal polesaccordingto asquared
error criterion in a truncated series expansions have been
derived for Laguerre series [3, 4, 5], Kautz series with two
repeated poles [6] and sets of repeated poles [7]. Asare-
sult, we have optimality conditions but a search procedure
is still necessary to find the poles [8]. More recently, these
optimality conditions have been extended to L? norms and
linearly constrained expansion coefficients [9].

Another approach has been to formulate an enforced
convergence which defines the optimal poles. Using an ap-
propriate criterion, optimal poles can be established based
on some signal measurements only and being independent
of the number of terms in the truncation. We mention the
work on optimal parametersin a Laguerre series expansion
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[10, 5] and harmonically modulated Laguerre series [11].
The basis for these results is their connection to orthogonal
polynomialsand the propertiesthereof, in particular the dif-
ferential or difference equation [12]. In this paper, asimilar
procedure as for the Laguerre series is used but now itera-
tively to select one-by-one the different poles in a general
Kautz series.

The outline of this paper is asfollows. We start with the
definition of the Kautz system. For convenience, we con-
sider discrete-time functions only, though the results carry
over to the continuous time. Next, a difference equation is
derived and an enforced convergence criterionis formulated
for a specific Kautz system, i.e., governed by a fixed set of
poles and an extra free pole determining the basis in the re-
maining subspace. This pole can be optimized according to
the criterion. As a conseguence we can formulate an itera
tive solution. An example and a discussion ends the paper.

2. KAUTZ SERIES

We denote the n-th Kautz functions by ¢, (¢, 6) wheret €
Ny and 6 is a parameter set which will be explained later.
As ashorthand notation we use ¢,,[6] aswell. We introduce
these function by their z-transforms.

The z-transform &, [6] of the n-th Kautz function ¢,,[6]
is given by:
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with |kp| = 1,60 = (po, p1, P2, --- ), |pn| < 1. If Al poles
areidentical, p,, = p, andreal-valued, we havethe Laguerre
basis, inthiscaseweused = p(1,1,...):
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The functions ¢,,[6] are now real-valued. If all poles are

identical p, = p with S{p} # 0, we will call the corre-
sponding orthonormal system the complex Laguerre basis:
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Thesystem {¢,,[0]|n € Np } isacomplete orthonormal sys-
temin £,(Ny) if andonly if > (1 — |p,|) diverges[13].

We introduce the [-fixed pole Kautz series as Kautz se-
ries where the first | poles are fixed and p,, = p forn > [;
with p afree parameter. Intermsof 6 = 6;(p):

el(p) = (p07p17p27 s Pl—1,P5Ps - - )

The [-fixed pole Kautz series adheresto a single difference

equation. Thisdifferenceequationformulatedinthe z-domain

readsasfollows. Forn > | then-th Kautz function satisfies:
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The admissible space D for the Kautz series expansionsis
defined by

D = {z|z,Vtr € l,(Ny)}.

The space D is a Hilbert subspace of /5(Ny) of sequences
having finite energy and finite first-order moment (center of
the energy). For all practical purposes, the restrictions on z
are very mild. For convenience, we restrict ourselvesin the
next sections to real-valued poles. For an extension to the
genera case of complex poles, we refer to [14].

3. OPTIMALITY CRITERION

In the time-domain the [-fixed pole Kautz differential equa-
tion correspondsto afinite-order difference equation. Since
the z-transformation Z maps unitarily ¢5(Ny ) onto Hz (E),
and since the expressions in terms of the differential equa-
tion (2) aresimpler inthe z-domain than in thetime-domain,
we define the enforced convergence criterion Q in the z-
domain. With X = Zz, we define

oo

Qz;6:(p)) := Y nl(X, Bulbi (P)])[-
n=0
To determine the optimal pole in al-fixed Kautz series
we come to the following problem.
Minimization Problem: Given X = Zz, determinep min-
imizing

Qz;6:(p)) = Y nl{X, @alfi(p)))I-

n=0

Using the properties of the [-fixed pole Kautz difference
equation (2), it can be proved that there exist functionals
e (X)), ¢2(X) and ¢3(X) such that [14]

Q(x:6;) :cll(X)_Lp2 + en(X)

7 +a3(X). (3)

1
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In the next section we give the explicit expression of the
functionals ¢;1 (X), ¢2(X) and ¢;3(X). The optima pa
rameter in (—1, 1) can now be calculated. To avoid prob-
lems for the trivial function = 0, the space D* is defined
as the space D with the exclusion of the function 2 = 0.

Lemma: [14] In the Kautz series expansions, the optimum
parameter for the enforced convergence criterion Q(x; 6;),
wherethefirst [ p,’s are taken fixed, is given by

. p(X) _c%l(X) B
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where z € D*. The minimum enforced convergence crite-
rionis
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It can be shown that with each new pole calculated accord-
ing to the previous procedure, the optimality criterion re-
duces. More formally [14], we have:

Theorem: [14] Let z be a function in the admissible space
D whichis not equal to zero, and

el(p) = (p07p17 sy Pl-1,P,P,s - - ')7

wherep, p, € (—1,1),k=0,1,...,1— 1,1 € N, and p;'s
are fixed. Further, Iet 6,11 (p) = (po,p1,---, 01,0, P, ---),
where p; = p isthe optimal solution of

min Q(;6;(p))-
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4. ALGORITHM

We recall the enforced convergence criterion:

Q(x;6) = e (X)—L— + e (X)

1_p2 +CZB(X)7
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where ¢i1 (X), e1s(X) and i3 (X)) areindependent of p and
defined [14] by
11 (X) =buy (X, X) - liooa B, [61])bus (B,161], ),
12 (X) =bia (X, X) - lzj)(x, B, 61]) s (8,101, X),
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For the recursive solution of the real Kautz system we have
the following algorithm:
Algorithm: For z € D*:

1. NeN

2.do 1=0:N-1,
§i= 2
m=8(/1-%-1);
od;

5. EXAMPLE

As an example, we took the function z defined by arational
z-transform:

[T}, (z — q(i)

X(z) =
) ITi. (2 - p(i))

with

q= (_17 17 1)7
p=(0.3,-0.3,0.4, —0.4).
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Fig. 1. Amplitude spectrum of the function z

The function z is real-valued. In Fig. 1 the amplitude spec-
trum is given. We observe a band-pass filter. The optimal
Laguerre solution [10, 5] isgiven by p = —0.1833. Apply-
ing the algorithm described in the previous section to this
functionfor N = 6 we obtain for the optimal first 6 param-
eters:

6'—% = (—0.1833, —0.1567, —0.2728,0.4526,0.1091,
—0.262).
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Fig. 2. Enforced convergence criterion as function of the iteration

InFig. 2, therelativevaueof Q(z; 0) (= Q(x;0)/||x]|?)
is shown as a function of the number of iterations. The
relative enforced criterion is decreasing as function of the
number of iterations. We see that Q(x;6) becomes quite
constant after 6 iterations.

We now compare the results of the proposed procedure
to that of using a Laguerre series with optimized poles. As
a measure we consider the relative loss in energy using a
truncated series expansion. The relative loss is defined as
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Fig. 3. Relative energy loss in the Kautz series with one optimal
pole (dashed line) and recursively with different poles (solid line)

(E — En)/E where E is the energy in the original func-
tionz and and E y the energy in the approximation obtai ned
by truncating the series expansion at the N-th term.

InFig. 3, therelativeenergy loss of 2 isshown asafunc-
tion of the number of sections in a truncated Kautz series
(solid line) where the pol es were optimized by the proposed
algorithm. We also calculated the relative loss of energy for
a truncated Laguerre series where the pole was optimized
(» = —0.1833) according to the enforced convergence cri-
terion for the discrete Laguerre case (dashed line). We see
that the Kautz seriesis better than the Laguerre seriesin this
case. We note that this example is representative for func-
tionstakenin span{\i, \¢, ... AL ).

6. DISCUSSION

We have considered the case of Kautz series and the se-
lection of the optimal poles according to an enforced con-
vergence criterion. The work is related to earlier work on
optimal poles for Laguerre series and can be viewed as an
adapted, repeated application of calculating the optimal poles
in a Laguerre series. By an algorithm, we have shown how
to determinethe optimal parametersintherecursive scheme.
By an example, we have illustrated the behaviour of the al-
gorithm and compared the result to those using a Laguerre
series.

The proposed agorithm can be extended to the case of
complex poles by appropriate adaptation of the definition of
Q, theb’sand ¢’s, see [14]. The optimality criterion can be
adapted to yield faster convergence but, in general, only at
the cost of more elaborate algorithms [14].
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