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ABSTRACT

Kautz series allow orthogonal series expansion of finite-
energy signals defined on a semi-infinite axis. The Kautz se-
ries consists of orthogonalized exponential functions or se-
quences. This series has as free parameters an ordered set of
poles, each pole associated with an exponential function or
sequence. For reasons of approximation and compact rep-
resentation (coding), an appropriate set of ordered poles is
therefore convenient. An iterative procedure to establish the
optimal parameters according to an enforced convergence
criterion is introduced.

1. INTRODUCTION

In the time-domain, processes are linked to causal opera-
tors. For practical purposes, causal operators characterized
by linearity, stability and finite number of states form the
most prominent class of systems. These are associated with
rational transfer functions and, in the time domain, with
damped exponential functions or sequences.

Infinite series of (generalized) exponential functions or
sequences constitute under some conditions a complete ba-
sis in L2(0;1) or `2(N0 ) (next section). From this, an or-
thonormal basis can be constructed which is usually called
a Kautz basis [1, 2]. For approximation and compact rep-
resentation, fast converging series are of interest. The poles
in the series can be adapted to achieve this.

This line of work has been topic of recent research. Nec-
essary conditions for the optimal poles according to a squared
error criterion in a truncated series expansions have been
derived for Laguerre series [3, 4, 5], Kautz series with two
repeated poles [6] and sets of repeated poles [7]. As a re-
sult, we have optimality conditions but a search procedure
is still necessary to find the poles [8]. More recently, these
optimality conditions have been extended to Lp norms and
linearly constrained expansion coefficients [9].

Another approach has been to formulate an enforced
convergence which defines the optimal poles. Using an ap-
propriate criterion, optimal poles can be established based
on some signal measurements only and being independent
of the number of terms in the truncation. We mention the
work on optimal parameters in a Laguerre series expansion

[10, 5] and harmonically modulated Laguerre series [11].
The basis for these results is their connection to orthogonal
polynomials and the properties thereof, in particular the dif-
ferential or difference equation [12]. In this paper, a similar
procedure as for the Laguerre series is used but now itera-
tively to select one-by-one the different poles in a general
Kautz series.

The outline of this paper is as follows. We start with the
definition of the Kautz system. For convenience, we con-
sider discrete-time functions only, though the results carry
over to the continuous time. Next, a difference equation is
derived and an enforced convergence criterion is formulated
for a specific Kautz system, i.e., governed by a fixed set of
poles and an extra free pole determining the basis in the re-
maining subspace. This pole can be optimized according to
the criterion. As a consequence we can formulate an itera-
tive solution. An example and a discussion ends the paper.

2. KAUTZ SERIES

We denote the n-th Kautz functions by �n(t; �) where t 2
N0 and � is a parameter set which will be explained later.
As a shorthand notation we use �n[�] as well. We introduce
these function by their z-transforms.

The z-transform �n[�] of the n-th Kautz function �n[�]
is given by:

�n(z; �) = �n
p
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with j�nj = 1, � = (p0; p1; p2; : : : ), jpnj < 1. If all poles
are identical, pn = �, and real-valued, we have the Laguerre
basis, in this case we use � = �(1; 1; : : : ):
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The functions �n[�] are now real-valued. If all poles are
identical pn = � with =f�g 6= 0, we will call the corre-
sponding orthonormal system the complex Laguerre basis:
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:



The system f�n[�]jn 2 N0g is a complete orthonormal sys-
tem in `2(N0 ) if and only if

P
n(1� jpnj) diverges [13].

We introduce the l-fixed pole Kautz series as Kautz se-
ries where the first l poles are fixed and pn = p for n � l;
with p a free parameter. In terms of � = �l(p):

�l(p) = (p0; p1; p2; : : : ; pl�1; p; p; : : : ):

The l-fixed pole Kautz series adheres to a single difference
equation. This difference equation formulated in the z-domain
reads as follows. Forn � l then-th Kautz function satisfies:h
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where
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The admissible space D for the Kautz series expansions is
defined by

D := fxjx;ptx 2 `2(N0 )g:

The space D is a Hilbert subspace of `2(N0 ) of sequences
having finite energy and finite first-order moment (center of
the energy). For all practical purposes, the restrictions on x
are very mild. For convenience, we restrict ourselves in the
next sections to real-valued poles. For an extension to the
general case of complex poles, we refer to [14].

3. OPTIMALITY CRITERION

In the time-domain the l-fixed pole Kautz differential equa-
tion corresponds to a finite-order difference equation. Since
the z-transformation Z maps unitarily `2(N0 ) onto H2(E),
and since the expressions in terms of the differential equa-
tion (2) are simpler in the z-domain than in the time-domain,
we define the enforced convergence criterion Q in the z-
domain. With X = Zx, we define

Q(x; �l(p)) :=
1X
n=0

njhX;�n[�l(p)]ij2:

To determine the optimal pole in a l-fixed Kautz series
we come to the following problem.
Minimization Problem: Given X = Zx, determine p min-
imizing

Q(x; �l(p)) =
1X
n=0

njhX;�n[�l(p)]ij2:

�

Using the properties of the l-fixed pole Kautz difference
equation (2), it can be proved that there exist functionals
cl1(X), cl2(X) and cl3(X) such that [14]

Q(x; �l) =cl1(X)
p

1� p2
+ cl2(X)

1

1� p2
+ cl3(X): (3)

In the next section we give the explicit expression of the
functionals cl1(X), cl2(X) and cl3(X). The optimal pa-
rameter in (�1; 1) can now be calculated. To avoid prob-
lems for the trivial function x = 0, the space D� is defined
as the space D with the exclusion of the function x = 0.

Lemma: [14] In the Kautz series expansions, the optimum
parameter for the enforced convergence criterion Q(x; �l),
where the first l pk’s are taken fixed, is given by
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where x 2 D�. The minimum enforced convergence crite-
rion is
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where �̂l = (p0; p1; : : : ; pl�1; p̂; p̂; : : : ). �

It can be shown that with each new pole calculated accord-
ing to the previous procedure, the optimality criterion re-
duces. More formally [14], we have:

Theorem: [14] Let x be a function in the admissible space
D which is not equal to zero, and

�l(p) = (p0; p1; : : : ; pl�1; p; p; : : : );

where p; pk 2 (�1; 1), k = 0; 1; : : : ; l � 1, l 2 N, and pk’s
are fixed. Further, let �l+1(p) = (p0; p1; : : : ; pl; p; p; : : : ),
where pl = p̂ is the optimal solution of
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4. ALGORITHM

We recall the enforced convergence criterion:

Q(x; �l) = cl1(X)
p
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1
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where cl1(X); cl2(X) and cl3(X) are independent of p and
defined [14] by
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For the recursive solution of the real Kautz system we have
the following algorithm:
Algorithm: For x 2 D�:

1. N 2 N;

2. do l = 0 : N � 1,
� := cl2(X)

cl1(X) ;

pl := �
�q

1� 1
�2
� 1
�

;

od;

�

5. EXAMPLE

As an example, we took the function x defined by a rational
z-transform:

X(z) =

Q3
i=1(z � q(i))Q4
i=1(z � p(i))

;

with

q = (�1; 1; 1);

p = (0:3;�0:3; 0:4;�0:4):
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Fig. 1. Amplitude spectrum of the function x

The function x is real-valued. In Fig. 1 the amplitude spec-
trum is given. We observe a band-pass filter. The optimal
Laguerre solution [10, 5] is given by �̂ = �0:1833. Apply-
ing the algorithm described in the previous section to this
function for N = 6 we obtain for the optimal first 6 param-
eters:

�̂1�6 = (� 0:1833;�0:1567;�0:2728; 0:4526; 0:1091;

� 0:262):
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Fig. 2. Enforced convergence criterion as function of the iteration

In Fig. 2, the relative value ofQ(x; �) (= Q(x; �)=kxk2)
is shown as a function of the number of iterations. The
relative enforced criterion is decreasing as function of the
number of iterations. We see that Q(x; �) becomes quite
constant after 6 iterations.

We now compare the results of the proposed procedure
to that of using a Laguerre series with optimized poles. As
a measure we consider the relative loss in energy using a
truncated series expansion. The relative loss is defined as
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Fig. 3. Relative energy loss in the Kautz series with one optimal
pole (dashed line) and recursively with different poles (solid line)

(E � EN )=E where E is the energy in the original func-
tion x and andEN the energy in the approximation obtained
by truncating the series expansion at the N -th term.

In Fig. 3, the relative energy loss of x is shown as a func-
tion of the number of sections in a truncated Kautz series
(solid line) where the poles were optimized by the proposed
algorithm. We also calculated the relative loss of energy for
a truncated Laguerre series where the pole was optimized
(p̂ = �0:1833) according to the enforced convergence cri-
terion for the discrete Laguerre case (dashed line). We see
that the Kautz series is better than the Laguerre series in this
case. We note that this example is representative for func-
tions taken in spanf�t0; �t1; : : : ; �tmg.

6. DISCUSSION

We have considered the case of Kautz series and the se-
lection of the optimal poles according to an enforced con-
vergence criterion. The work is related to earlier work on
optimal poles for Laguerre series and can be viewed as an
adapted, repeated application of calculating the optimal poles
in a Laguerre series. By an algorithm, we have shown how
to determine the optimal parameters in the recursive scheme.
By an example, we have illustrated the behaviour of the al-
gorithm and compared the result to those using a Laguerre
series.

The proposed algorithm can be extended to the case of
complex poles by appropriate adaptation of the definition of
Q, the b’s and c’s, see [14]. The optimality criterion can be
adapted to yield faster convergence but, in general, only at
the cost of more elaborate algorithms [14].
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