
ABSTRACT
The first evaluation for Speech in Noisy Environments

(SPINE1) was conducted by the Naval Research Labs (NRL) in
August, 2000. The purpose of the evaluation was to test existing
core speech recognition technologies for speech in the presence of
varying types and levels of noise. In this case the noises were
taken from military settings. Among the strategies used by
Carnegie Mellon University’s successful systems designed for this
task were session-adaptive segmentation, robust mel-scale filtering
for the computation of cepstra, the use of parallel front-end
features and noise-compensation algorithms, and parallel
hypotheses combination through word-graphs. This paper
describes the motivations behind the design decisions taken for
these components, supported by observations and experiments.

1. INTRODUCTION

The first “Speech in Noisy Environments” (SPINE1)
evaluation was conducted by the Naval Research Laboratories
(NRL) in August, 2000. The purpose of the evaluation was to
provide impetus to the design of algorithms and strategies which
improve the performance of speech recognition systems in the
presence of varied noises. The task consisted of recognizing
approximately nine hours of speech from battleship games with
realistic military noises playing in the background. Approximately
eight hours of speech recorded under similar conditions were
provided for training the systems. The training data had fewer
speakers and noise types than the evaluation data. The signal-to-
noise ratio (SNR) for both the training and test data varied from 5
dB to 20 dB.

The main feature of the evaluation was the variety of the
background noises occurring in the background, and the mode of
recording. The noises included aircraft and aircraft carrier sounds,
with additional tones, pings, and background speech. Continuous
recordings were made of signals from a communication line. The
line was activated at approximately the time at which an utterance

began, and was deactivated at the end of the utterance. The
recorded signal consisted of a continuous background signal of
noise produced by the recording equipment, with intermittent
recordings of the speech and noise communicated through the
channel. As a result, there were two distinct levels and types of
noise in each recording, the first consisting of the recording-
equipment noise, and the second consisting of the external military
noises being used to corrupt the signal. Additionally, some
segments of the recording exhibited dropouts, where short
segments of speech within an utterance are deleted. Figure 1
shows a segment of the SPINE1 data to illustrate some of these
features of the recording.

Carnegie Mellon University (CMU) based its approach to this
task on the hypothesis that for robust speech recognition it is
preferable to extract multiple cues directly from the speech signal,
rather than learn about the corrupting noises and compensate for
them. This paper describes the key elements of two systems that
were designed specifically to test this hypothesis.

In the CMU primary system, multiple feature representations
were extracted from the uncompensated noisy speech and used to
generate parallel recognition outputs. These outputs were then
combined to generate the final recognition hypothesis. In the CMU
secondary system, multiple compensation algorithms were applied
to a single feature stream to generate multiple recognition outputs,
which were then combined to obtain the final hypothesis. The
principle of focusing on speech, rather than on the noise, was also
central to the design of a session-adaptive segmentation strategy.

In the following section we describe the segmentation
strategy. In Section 3 we describe the features and compensation
algorithms used in the two systems, including specifically the use
of wide-bandwidth mel filters in the computation of MFCCs for
noise robustness. In Section 4 we describe the algorithm used to
combine parallel hypotheses. In Section 5 we present recognition
results obtained with the two systems. Finally, in Section 6, we
present our conclusions.

2. SEGMENTATION

As described in the previous section, multiple noise levels
were present in most SPINE1 recordings. In addition, the type and
level of these noises varied from recording to recording, and even
within a single recording. In this scenario, energy-based
segmentation may fail to separate noise events from speech events,
since a switch from one noise type to another is indistinguishable
from a switch from noise to speech, especially if the dynamic
ranges of noise and speech are variable. Under the circumstances,
it may be necessary to utilize the characteristics of speech, rather
than those of the noise, to segment the signal. We therefore used a
two-class classifier- based segmenter, where the two classes were
speech and not speech respectively. While the speech class
referred to all sections of the signal which corresponded to actual
speech, the not-speech class referred to all signal segments that
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Fig. 1 A typical segment of speech from the SPINE1 data. Note the
abrupt onset and termination of the signal, leading to two distinct
levels of background noise at the beginning and the end of the
utterance. The low-energy region in the middle of the utterance is a
dropout occurring in the middle of a word. Such recordings are
likely when the speakers are using a push-button recording setup.
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corresponded to all events other than speech. The latter class did
not distinguish between different kinds of noises, or even between
noise and silence. To train the speech class, speech segments were
chosen after Viterbi alignment of the data to obtain word
boundaries. All other data were used to train the non-speech class.

Although the class distributions are fixed for such a classifier
once it is trained, it is important to note that the optimal a priori
probability associated with each of the two classes, and therefore
the optimal decision boundary that minimizes the classification
error, varies with the utterance being segmented. It is dependent
on the amount of data present from each class and its closeness to
each class (which in turn is dependent on the type and level of
noise present in the data). For each utterance being segmented,
therefore, it is necessary to automatically determine the optimal
decision boundary for the segmenter.

For this two class case, a Bayesian classifier can be
represented as a discriminant function:

(1)

where represents feature vectors from the segment of speech
being classified, is the difference in log likelihoods speech
and not-speech distributions, and is a threshold, given by

(2)

Whenever is positive, the segment is identified as
speech and when is negative it is identified as a non-speech
segment. is a controllable threshold which can be used to
optimize classification on the given utterance to be segmented.

The distribution of usually exhibits two distinct modes,
one representing the values of when belongs to speech,
and the other mode representing the values of when
belongs to not-speech. The precise positions of these modes vary
from utterance to utterance, due to the fact that the distributions in
the classifier may not be truly representative of the utterance being
segmented. The bimodal characteristic of the distribution of ,
however, is ubiquitous.

Figure 2 shows the histograms of for two typical
recordings in the SPINE1 data, where was computed on sets
of feature vectors obtained from 0.5-second windows of speech. In
each case the distribution is bimodal where the flatter mode comes
from speech regions, and the sharper mode comes from non-
speech regions. The point of inflection between the two modes
identifies the point where changes from being predominantly

speech to predominantly noise (left to right). This point is
therefore the optimal value of in the absence of other
considerations.

In the SPINE1 data, however, the cost of identifying a noise
segment as speech and hypothesizing words in it was observed to
be typically higher than the cost of identifying parts of speech
segments as noise and clipping them. This was because the
number of insertions in the former case was greater than the
deletions enforced in the latter case. In such situations the optimal
value of must be adjusted to increase the probability of
identifying segments of the signal as noise, at the cost of
erroneously clipping speech. Figure 3 shows a schematic diagram
of the bimodal distributions observed in the histograms shown in
Figure 2. The inflection point is the point at which the two modes
cross over. For conservative segmentation of SPINE1 data, the
optimal threshold was shifted from this point to lie at the point
identified by the reflection of the rightmost point of the noise
mode across the position of the noise peak.

In the SPINE1 evaluation the CMU systems were observed to
have the lowest number of “gap” insertions among all systems.
Gap insertions are words that are hypothesized in non-speech
segments. The gap insertions in the CMU systems were also
observed to be relatively less sensitive to the noise type.

3. SIGNAL PROCESSING

3.1. CMU primary system

The CMU primary system used three parallel feature
representations:

1. Wide-filter mel frequency cepstral coefficients (WMFCC)
2. Perceptual Linear Prediction cepstra (PLP) [1]
3. WMFCCs of speech that is low-pass filtered to 5 kHz.

Wide-filter mel frequency cepstral coefficients are a variant of
conventional mel frequency cepstral coefficients (MFCC), and
were designed to improve the noise robustness of the feature. In
the computation of standard mel-frequency cepstra for speech, the
speech signal is filtered using a fixed number of triangular filters.
The filter index of each of the filters is related to its peak
frequency by the mel curve. The filters are designed to have a 50%
overlap, such that the peak of any filter coincides with the trailing
edge of the earlier filter and the leading edge of the subsequent
filters. Figure 4a shows a conventional band of mel filters with the
50% overlap. In the case of wide-filter mel frequency cepstra
(WMFCC) the filter overlap is increased to 75%, instead of the
conventional 50%. The peak frequencies of the filters do not
change. Figure 4b shows a band of wide mel filters.
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Fig. 2 Histogram of the difference in log-likelihoods of speech
and not speech for two typical recordings in the SPINE1 data. In
each case the distribution is bimodal where the flatter mode rep-
resents speech regions, and the sharper mode represents non-
speech regions.
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Fig. 3 Schematic representation of the bimodal distribution of
. The optimal threshold, represented by the dotted line, is

shifted toward the left to give a more conservative estimate of the
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Figure 5 shows the average distortion introduced by noise in
the filter outputs for standard and wide mel filters. The distortion
at the output of any filter is the energy in the error between the
output of the filter when the input is clean speech, and the output
when the input is noisy speech. We see from this figure that at any
noise level (SNR) the average distortion is lower for the wide mel
filters than for standard mel filters. As a result, WMFCCs show
less variation with increasing noise than regular MFCCs.
WMFCCs were also observed to improve WERs by a relative 5-
7% compared to MFCCs for pilot experiments using SPINE1
training data.

3.2. CMU secondary system

In the CMU secondary system only a single feature
representation (WMFCC) was used. The noisy signal was
processed with four compensation algorithms: CDCN [2], VTS
[3], KLT-based noise compensation [4], and SVD based noise
compensation [5]. Of these, CDCN was performed on the noisy
WMFCCs, VTS was performed on the (wide filter) log mel
spectra of the noisy signal, and KLT and SVD were performed
directly on the signal.

4. COMBINATION OF PARALLEL
HYPOTHESES

The word hypotheses obtained from parallel systems were
combined into a word graph. Initially each word in each of the
hypotheses was represented by a node in the graph. The acoustic
score of that word (from that hypothesis), was associated with the

node. In the next step all nodes representing identical words
hypothesized between the same time instants were collapsed into a
single node. Finally, links were formed between all node pairs
where the word-end time of one node and the word-begin time of
the next node were within 30 ms of each other. Figure 6 illustrates
the formation of a word graph.

After the word graph was constructed in this manner, a
standard language model was used to score the paths through the
graph and the best path was obtained as the final hypothesis. Note
that combining lattices generated during recognition in this
manner would have provided much better resulting paths.
However, this was not implemented for the current evaluation.

5. RECOGNITON RESULTS

The CMU Sphinx-3 speech recognition system was used in
both systems. All acoustic models were continuous density 3-state
context-dependent triphone HMMs with 2600 tied states, each
modeled by a mixture of 8 Gaussians. In the primary system
hypotheses generation was done in a series of steps. Recognition
was performed with each of the three features and their hypotheses
were combined. The combined hypothesis was used to perform
two passes of MLLR adaptation of the acoustic models for each of
the three parallel features. The recognition hypotheses of the
adapted systems were combined and used to retrain the three
parallel feature systems in an unsupervised manner. The retraining
was aimed at shifting the systems out of any local optimum that
the MLLR adaptation might have induced. The combined output
of the retrained system was then used to perform a final pass of
MLLR adaptation of the acoustic models, and their hypotheses
were combined to give the final hypothesis for the primary system.
Hypothesis combination at any stage was cumulative over all
existing hypotheses till that stage. Table 1 shows the word error
rates obtained with each of the parallel features at various stages
of the hypothesis generation, as well as the combined hypothesis
at each stage.

In the CMU secondary system the test data were compensated
using each of four compensation schemes (CDCN [2], VTS [3],
KLT[4], and SVD[5]), and WMFCCs were derived from each of
them. The four hypotheses obtained from these four sets of
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Fig. 4 a) A bank of 40 regular mel filters from with peak frequen-
cies ranging from 130 Hz to 6800 Hz. Adjacent filters overlap by
50%. b) A bank of 40 wide mel filters with identical peak frequen-
cies. Adjacent filters overlap by 75%.
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Fig. 5 Average distortion in mel filter output as a function of SNR
for regular and wide bandwidth mel filters. The average distortion
is seen to be lower for the wide mel filters.
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Fig. 6 Example of word graph construction from two parallel
hypotheses. The upper portion of the figure shows two parallel
hypotheses. The acoustic likelihoods of words are shown above
and below the words. The italicized numbers identify the transi-
tion frames. Additional transitions are permitted across the
hypotheses when both hypotheses have word transitions at the
same instant. Since the final words in both hypotheses are identi-
cal and hypothesized between identical time instants, they are
merged into a single node whose acoustic likelihood is a combina-
tion of the likelihoods of the original words.



WMFCCs were combined to obtain the final hypothesis. Table 2
shows the word error rates obtained with each of the compensation
systems, as well as the final combined hypothesis. Additional
passes of MLLR were not observed to result in any improvement
of WER in the secondary system in pilot experiments performed
on the training data. They were therefore not performed in this
system.

6. DISCUSSION AND CONCLUSIONS

When noise types and conditions vary significantly within the
environment in which recognition is to be performed, and the
environment is open to new and unknown noise conditions, no
single noise compensation algorithm can be expected to always
perform effectively. This is especially true if the compensation
algorithm has been designed for a specific set of noise conditions
or with a specific underlying noise model assumption such as
linearity of the corrupting channel and/or stationarity of additive
noise.

It is known that as the environment becomes more and more
noisy, humans rely on more and more cues from the speech signal
[6], sometimes even relying on other cues like lip movement and
facial expression. Similarly, to perform speech recognition in
unknown environmental noise conditions, we believe it is better to
analyze the speech signal from many different perspectives in
order to extract a greater number of informative cues about the
speech itself. This differs from conventional noise compensation
techniques which concentrate on extracting information about the
noise in the environment. The value of utilizing parallel
representations of information at various levels of a classification
task is well known. Parallel representations of information have
been successfully used in various fields, including machine
learning [7] and speech recognition (e.g. [8,9,10]).

We designed two different speech recognition systems to
verify this approach to noise robustness and compare it with the
conventional approach. The CMU primary system was designed to
extract more cues directly from the noisy speech signal, attempting
to get information from multiple perspectives. The “perspectives”
were equated to different parametrizations of the speech signal. In
contrast, the CMU secondary system was designed to improve
robustness through many parallel noise compensation algorithms.

In this system, several noise compensation algorithms were
applied in parallel to a single feature set or “perspective” of the
speech signal. A comparison of the final WERs of the two systems
showed that the parallel feature combination strategy was more
robust to noise than the parallel compensation strategy.
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Table 1: WERs at various stages of hypothesis generation in the
CMU primary system. LMFC refers to low-pass fi ltered
WMFCCs, and Comb. refers to the combined hypothesis.

First
Pass

MLLR
Adapt1

MLLR
Adapt2

Retrain MLLR

WMFC 35.1 33.3 32.9 30.6 29.9

PLP 38.0 34.8 34.7 31.6 32.1

LMFC 47.4 40.1 38.7 35.4 35.0

Comb. 32.8 30.2 28.4 27.3 26.5

Table 2: WERs from the various compensation methods used in
the CMU secondary system, and from the final combined hypothe-
sis.

CDCN VTS KLT SVD Comb

31.1 32.2 33.8 33.4 29.3


