RECURSIVE ZAK TRANSFORMS AND WEYL-HEISENBERG EXPANSIONS

Andrzej K. Brodzik

Scientific Software, 50-113 Cambridge Rd., Woburn, MA 01801

ABSTRACT

We develop algorithms for computing block-recursive Zak
transforms and Weyl-Heisenberg expansions, which achieve
p/logL and (logM +p)/(logN+logL+1) multiplicative com-
plexity reduction, respectively, over direct computations,
where p’ = pM, and N — p' is the number of overlapping
samples in subsequent signal segments. For each transform
we offer a choice of two algorithms that is based on two
different implementations of the Zak transform of the time-
evolving signal. These two algorithm classes exhibit typical
trade-offs between computational complexity and memory
requirements.

1. INTRODUCTION

Many applications require repetitive evaluation of frequency
content of a time-evolving signal [1,9,12]. Since the evalu-
ation is typically performed over a sequence of overlapping
signal segments, one can improve efficiency of the compu-
tation by taking advantage of the fact that the frequency
description of the (i 4 1)-th segment f**' can be expressed
in terms of the frequency description of the i-th segment f*
plus a correction term that carries information about the
new samples. For example, take f* to be a DFT of f*, i.e.

N-1
fz(b) — Z fi(a)e27riab/N’
a=0

fi™! to be a DFT of the subsequent signal segment f*** and
to be delaye p = ata samples with respect to
“+1 to be delayed by p' =1 d les with
. en can be computed recursive the formula
‘. Th i+l b d ively by the f 1

£ 0) = [F0) + (T (V= 1) - F)T,

where fi(0) is the first sample of f?, and fi*1(N —1) is the
last sample of f*'. The algorithm can be easily extended
to the case when p’ > 1, and to other transforms, such as
the Hartley transform or the DCT [8].

Here, we are interested in recursive algorithms for com-
puting time-frequency transforms, particularly the finite
Zak transform and the Weyl-Heisenberg expansion. Since a
time-frequency space signal is generally known by its values
on a M x L lattice, where N = LM, it is natural to con-
sider a recursive algorithm, that computes time-frequency
transforms of signal segments overlapping by one or more
blocks of p’ = M samples. Such an algorithm for the case
of a single block overlap was recently proposed by Lou et
al [10]. In this work, we remove the single block overlap re-
striction, and develop a collection of general multi-block al-
gorithms, that allow to compute Zak transforms and Weyl-
Heisenberg expansions for the entire range of p values, i.e.
for 1 < p < L. Moreover, we propose an approach alterna-
tive to the one presented in [10] that yields a parallel set

of algorithms that are more efficient under the conditions
described in sections 3 and 4.

Denote by CV the N-dimensional space of N-tuples of
complex numbers, and set N = LM, where L and M are
integers. Take f° € CV to be the i-th segment of f, and
7" € ¢V to be the (7 + 1)-th segment of f, delayed with
respect to f° by p’ samples.

Take

p=pM, 1<p<L, (1)

so that M < p' < LM, and write f° and fpl as column
vectors

1o

=1 , flec”, 0<r<lL, (2)
| Sl
[£y

= , ffec”, o<r<1I, (3)
L fi o,

such that

=1, 0<r<L—p. (4)

We will call 7' the r-th block of f7, and f° the r-th block
of f°. Given conditions (1) and (4), we will call f? the

p-block update of fO°.
To compute the Zak transform and the Weyl-Heisenberg

expansion of f? given by (1-4) we will develop the Block
Recursive Zak Transform (BRZT) algorithms and the
Block Recursive Weyl-Heisenberg Expansion (BRWHE) al-
gorithms. The algorithms will be given in two flavors, based
on a different order of the recursive Zak transform algo-
rithm constituent operations: the block replacement and
the block shift. We will show that the two approaches lead
to different trade-offs in terms of computational complexity
and memory requirements. In effect, a complete framework
for computing recursive time-frequency transforms will be
developed, allowing user to select the optimal algorithm for
a given application (segment length N and number of over-
lapping samples N — p’) and processing environment (clock
speed and memory size).

2. BASIC FORMULAS

Zak transform is a fundamental tool in time-frequency anal-
ysis. It is essential in developing algorithms for comput-
ing Weyl-Heisenberg expansions, ambiguity functions, and

Wigner distributions [11]. It also plays an important role in
signal extrapolation and filtering [5]. It is intimately related
to the Fourier transform and, via the real Zak transform,
to the Hartley transform [3].

The finite Zak transform (ZT) F of a signal f is defined
as [13]

L—-1

F(a,b) = Zf(a—}—rM)eQ’T”b/L, 0<a< M, 0<b<[L,

r=0
(5)
where a and b are usually interpreted as the time and fre-
quency variables, respectively. A detailed treatment of
ZT is given in [7]. Here, we are interested mainly in the
shift /periodicity properties of ZT.
Take p' = pM, 1<p<L,andq =qL, 1<qg< M.
The Zak transform F'(a,b) satisfies the following relations

Fla+p',b) = """ F(a,b), (6)

F(a,b+4q') = F(a,b), a,beZ (6b)
The frequency shifted transform is identical with the origi-
nal transform, while the time shifted transform is obtained
by multiplying all values of the original transform by a con-
stant in time phase factor. It follows that F' is N-periodic
in each variable and is completely determined by its values
(a,b) € [0, M) x [0,L). The time shift relation (6a) is the
basis of the recursive algorithms developed in this paper.

3. BLOCK-RECURSIVE ZAK TRANSFORM

Consider f° and fpl as in (1-4). The finite Zak transforms
FO of f° and F*' of 7 are

L—1
Fo(a,0) =Y f7(a)e™™ "', (7)
r=0
and
L—1
F¥(a,b) =Y ¥ (a)e’™""/". (8)
=0

Here and throughout the rest of the paper (a,b) € [0, M) X
[0, L), unless otherwise indicated. Suppose we want to com-

pute Fpl, and F° is known. Since L—p terms of r.h.s. of (7)
and (8) involve same blocks, we can express F?' in terms of
F° and p blocks of ffl.

For example, we can write F? as

F (a,b) =
Zfz—é)—l fg+p(a)€2Wirb/L + Zf:—lll_p ff (a)e27rirb/L. (9)

Changing limits of both summations and separating their
common factor, we have

Fp’ (a7 b) — e—27ripb/L x
L—-1 i —1 pp’ Tir
x[SEZE f@)e?m 4 ST g (@)L (10)

Adding Zf;; 0(a)e?™ /L to the first term of (10) and
subtracting it from the second term of (10) yields

Fp’ (a, b) _ 6—27ripb/L x

X [FO(a,b) + P2 (2 (@) = f2(a))e®™ /B (11)

Denote by H 07" the Zak transform of the difference be-

tween the last p blocks of fpl and the first p blocks of f°,
ie.

p—1

HO (a,0) =Y (f7,4,(a) = f2(a)e>™ ™ P (12)

r=0

Then the Zak transform F? can be computed as the time
shift of K (a, b)

F” (a,b) = K” (a + p,b) = K¥ (a,b)e 2" E (13)
where
K" (a,b) = F°(a,b) + H*” (a, b). (14)

The algorithm to compute F? via (13-14) proceeds as fol-
lows

BRZT1 algorithm

e Compute H>" (a,b).
This operation requires (p—1)(IN — M) multiplications
and pM additions.

e Compute K” (a,b) = F°(a,b) + H*" (a,b).
This operation requires N additions.

e Compute K” (a + p',b).
This operation requires N — M multiplications.

The overall computational complexity of the BRZT1 algo-
rithm is p(N — M) multiplications and N + pM additions.

Alternatively, we can write F? as
F”(a,b) = F°(a+p,b) + H*" (a+p/,b), (15)
where
F’(a+p',b) = F’(a,b)e *"/* (16)
and

HO,p’ (G, + pl, b) _ HO,p’ (a7 b)6727ripb/L

p—1
= (@) = f(a))e”™ TP (a7)
r=0

The algorithm to compute F? via (15-17) proceeds as fol-
lows

BRZT?2 algorithm

e Compute F°(a +p',b).
This operation requires N — M multiplications.

e Compute H>" (a + p',b).
This operation requires p(IN — M) multiplications and
pM additions.

e Compute F” (a,b) = F(a +p',b) + H*" (a +p',b).
This operation requires N additions.

The overall computational complexity of the BRZT2 algo-
rithm is (p + 1)(N — M) multiplications, or N — M more
than the BRZT1 algorithm, and N + pM additions. In
terms of complex multiplications the BRZT2 algorithm is
more efficient than the direct approach, providing p + 1 <
NlogL/(N — M).

4. BLOCK-RECURSIVE WEYL-HEISENBERG
EXPANSION

Consider f° and f” as in (1-4). The Weyl-Heisenberg ex-
pansion (WHE) of f° is given by

M-1L-1

>

a=0 b=0

em n FO —2Tri(ma/M+nb/L). (18)

Suppose (18) is known, and we want to compute the WHE
of /7',
M-1L-1

p —2Tri(ma/M+nb/L)
Cmm(FP) ZZGab . (19)

a=0 b=0

Comment: The quotients F°(a,b)/G(a,b) in (18) and
F* (a,b)/G(a,b) and (19) require that either G(a,b) # 0
for all (a,b) € [0, M) x [0,L), or the zero sets of F°(a,b)
and F” (a,b) contain the zero set of G(a,b). When neither
of the above conditions is met, the critically-sampled WHE,
does not exist. A detailed treatment of the impact of zeros
of G(a,b) on existence and construction of WHE is given in
[2] and [6].

The direct algorithm to compute cm,n(Fp’) proceeds as
follows

WHE algorithm

e Compute F” (a,b).

This operation requires NlogL multiplications and ad-
ditions.

e Compute the quotient F?' (a,b)/G(a,b).

This operation requires N multiplications.

e Compute ¢,y (F”) by taking a 2D DFT of

F” (a,b)/G(a,b).

This operation requires NlogN multiplications and

additions.
The overall computational complexity of WHE algorithm
is N(logN + logL + 1) multiplications and N (logN + logL)
additions. ,

Consider f° and f? as in (1-4). A more efficient algo-
rithm to compute cm,n(F”I) is obtained by employing one
of the formulas for computing the BRZT.

For example, set

MlLl

a=0 b=0
where K7’ (a,b) is as in (14). Then

M—-1L—-1 P
Z Z K? (a +p b)e—QTri(ma/M+nb/L)

a=0 b=0
MlLl

— ZZ G b o —2mi(ma/M+(n+p)b/L)
a

a=0 b=0

Cmn(FY) =

= Cm,n+p(Kp) (21)
The algorithm to compute c,, , (Fp’) proceeds as follows

BRWHEL1 algorithm

e Compute F°(a,b) = K°a + p',b), where K°(a,b) is
given by the previous recursion.
This operation requires N — M multiplications.

e Compute K7 (a,b) via the BRZT1 algorithm.
This operation requires (p—1)(IN — M) multiplications
and N + pM additions.

e Compute the quotient K (a,b)/G(a,b).
This operation requires N multiplications.

e Compute ¢, (Kp’) by taking a 2D DFT of
K? (a,b)/G(a,b).
This operation requires NlogN multiplications and
additions.

e Compute cm,n(Fpl) by shifting cm,n (Kp’) in n by p.

The overall computational complexity of the BRWHE1 al-
gorithm is N(logN + p + 1) — pM multiplications and
N(logN+1)+pM additions. The algorithm requires storing
G, or N data points.

Alternatively, utilizing the second realization of F? | we
can obtain (19) by computing the WHE of each of the two
terms in (15) separately. First, we compute the WHE of

F°(a+p',b)
cm,n[FO(a +p',b))

_ Z Z F’(a+p,b) —2mi(ma/M+nb/L)
G(a,b)

_ Z Z M672wi(ma/M+(”+p)b/L)
> Gla,b)

= Cm,n+p(F0)' (22)

Next, we will compute the WHE of H%? (a,b)

M-1L-1

HOP (a,b) ;
O,P 727rz(ma/M+nb/L)
Cn(HOP) =Yy "2 Gt . (23)
a=0 b=0

Set

WY (@) = 7y, (@) = f(a), 0<T<p, (24)
so that

HOp a b ZhOp 27ri7'b/L. (25)

Then (23) can be expressed as

Cmn(HP)
M—1p—1 -1 1
— h?,p’()6727rima/M —2mi(n—r)b/L
)P 2 G
M-1 p—1
= D w (@) X (@))e M, (26)
a=0 r=0
where
L—-1 1
X0 — —2mi(n—r)b/L 27
@) =3 e 1)

is computed off-line. Since the WHE of H>? (a + p/,b),

!
Cm,n+p (Ho,p)

_ NM—1x~L-1 %P (a4p'b) _ami(ma/M+nb/L
= b=0 ~ Glab) © el B, 28)

is given by a shift of cm,n(HO’p’) in n by p, the WHE of
F? (a,b) can be obtained by adding (22) and (28)

Cmn(F”) = Cmnop (F*) + ey (). (29)
The algorithm to compute cm,n(F”’) proceeds as follows

BRWHE2 algorithm

e Pre-compute X, ,(a).
This operation requires pN(logL + 1) multiplications
and pNlogL additions.

e Compute W27 (a).

This operation requires pM additions.
e Compute Y, (a) =>7_, e (a)Xrn(a).
This operation requires pN multiplications and (p —
1)N additions.

e Compute cm,n(HO’pl) by taking a L M-point 1D
DFT’s of Y, (a), 0<n< L.
This operation requires NlogM multiplications and
additions.

e Compute cm,nﬂ,(HO’p’) by shifting cm,n(HO’p’) in n
by p.

e Compute c,, ,,+,(F°) by shifting ¢y, (F°) in n by p,
where c,,, , (F°) is given by the previous recursion.

o Compute ¢y, (F?) = oy iy (F®) + o iy (HP').
This operation requires N additions.

The overall computational complexity of the BRWHE2 al-
gorithm is N(logM + p) multiplications and N(logM +p) +
pM additions. The algorithm requires storing X, ,(a), or
pN data points. For p = 1 the BRWHE?2 algorithm is iden-
tical with the procedure given by Lou et al [10].

The BRWHELI algorithm is more efficient than the WHE
algorithm for p < NlogL/(N — M). The BRWHE2 al-
gorithm is more efficient than the WHE algorithm for
p < logN, and it is always more efficient than the BR-
WHEL1 algorithm. For example for p =1and L = M,
the BRWHE]1 algorithm requires about 2/3 multlphcatlons
required by the WHE algorithm, while the BRWHE2 al-
gorithm requires about 1/3 multiplications required by the
WHE algorithm, given that N is sufficiently large. However,
the BRWHE2 algorithm requires more memory than the
BRWHEI! algorithm. For example, for p = 5 and N = 2%°,
the BRWHEL algorithm requires N memory locations and
26 N multiplications, while the BRWHE2 algorithm requires
5N memory locations and 15N multiplications. In effect,
the BRWHEL algorithm is more efficient in terms of com-
putational complexity, while the BRWHE2 algorithm needs
less memory allocation, has a simpler dataflow, and does
not require pre-computations.

5. SUMMARY

In this work we have developed a collection of algorithms
for computing block recursive Zak transforms and Weyl-
Heisenberg expansions. The algorithms are based on two

fundamental implementations of the Zak transform of the
time-evolving signal. The first implementation is obtained
by application of block replacement followed by block shift
to the Zak transform of the initial sequence, and yields
BRZT1 and BRWHEL algorithms. The second implemen-
tation is obtained by reversing the order of operations, and
yields BRZT2 and BRWHE?2? algorithms.

In the case of the Weyl-Heisenberg expansion, the first
approach is advantageous in terms of memory requirements
and algorithm structure complexity, while the second block
recursive approach is more efficient in terms of multiplica-
tive and additive complexity. In the case of the Zak trans-
form, the two block recursive implementations have similar
computational complexity.

In future work we will explore the case of sample-
recursive time-frequency transforms, i.e., the case when
p' = pM, 1/M < p < 1, to obtain a complete framework
for computing recursive time-frequency transforms [4].

6. REFERENCES

[1] S. Albrecht and I. Cumming, ”Application of the
Momentary Fourier Transform to SIFFT SAR Pro-
cessing”, Proceedings IEEE-SP Symposium on Time-
Frequency and Time-Scale Analysis, Philadelphia, pp
517-520, 1998.

[2] M. An, AK. Brodzik, I. Gertner and R. Tolimieri,
”Weyl-Heisenberg Systems and the Finite Zak Trans-
form”, in Signal and Image Representation in Com-
bined Spaces, eds Y. Zeevi and R. Coifman, pp 3-22,
Academic Press, San Diego, 1998.

[3] A.K. Brodzik, ”Signal extrapolation in the real Zak
space”, submitted.

[4] A.K. Brodzik, ”"Recursive time-frequency transforms”,
submitted.

[6] A.K. Brodzik and R. Tolimieri, ”Extrapolation of
band-limited signals and the finite Zak transform”,
Signal Processing, Vol. 80, No. 3, pp 413-423, March
2000.

[6] A.K. Brodzik and R. Tolimieri, ”The Computation
of Weyl-Heisenberg Coefficients for Critically Sam-
pled and Oversampled Signals”, Proceedings IEEE-SP
Symposium on Time-Frequency and Time-Scale Anal-
ysis, Philadelphia, pp 272-275, 1994.

[7] A.JE.M. Janssen, "The Zak Transform: A Signal
Transform for Sampled Time-Continuous Signals”,
Philips J. Res., Vol. 43, pp 23-69, 1988.

[8] K. J. Ray Liu and C-T Chiu, ”Unified Parallel
Lattice Structure for Time-Recursive Discrete Co-
sine/Sine/Hartley Transforms”, IEEE Trans. Signal
Processing, Vol. 41, No. 3, pp 1357-1377, March 1993.

[9] P.-C.Loand Y.-Y. Lee, ”Real-time implementation of
the moving FFT algorithm”, Signal Processing, Vol.
79, No. 3, pp 251-259, 1999.

[10] C. Lou, S. Joshi and J.M. Morris, ”Parallel lattice
structure of block time-recursive generalized Gabor
transforms”, Signal Processing, Vol. 57, No. 2, pp
195-203, 1997.

[11] R. Tolimieri and M. An, ”Time-Frequency Represen-
tations”, Birkhauser, Boston, 1998.

[12] M. Unser, "Recursion in short-time signal analysis”,
Signal Processing, Vol. 5, No. 3, pp 229-240, 1983.

[13] J. Zak, ”Finite Translations in Solid State Physics”,
Phys. Rev. Lett., Vol. 19, pp 1385-1397, 1967.

