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ABSTRACT

We develop algorithms for computing block-recursive Zak
transforms and Weyl-Heisenberg expansions, which achieve
p=logL and (logM+p)=(logN+logL+1) multiplicative com-
plexity reduction, respectively, over direct computations,
where p0 = pM , and N � p

0 is the number of overlapping
samples in subsequent signal segments. For each transform
we o�er a choice of two algorithms that is based on two
di�erent implementations of the Zak transform of the time-
evolving signal. These two algorithm classes exhibit typical
trade-o�s between computational complexity and memory
requirements.

1. INTRODUCTION

Many applications require repetitive evaluation of frequency
content of a time-evolving signal [1,9,12]. Since the evalu-
ation is typically performed over a sequence of overlapping
signal segments, one can improve eÆciency of the compu-
tation by taking advantage of the fact that the frequency
description of the (i+1)-th segment f i+1 can be expressed

in terms of the frequency description of the i-th segment f i

plus a correction term that carries information about the
new samples. For example, take f i to be a DFT of f i, i.e.

f
i
(b) =

N�1X
a=0

f
i
(a)e

2�iab=N
;

f i+1 to be a DFT of the subsequent signal segment f i+1, and
f
i+1 to be delayed by p

0 = 1 data samples with respect to
f
i. Then f

i+1 can be computed recursively by the formula

f
i+1

(b) = [f
i
(b) + (f

i+1
(N � 1)� f

i
(0))]e

�2�ib=N
;

where f i(0) is the �rst sample of f i, and f i+1(N �1) is the

last sample of f i+1. The algorithm can be easily extended
to the case when p

0
> 1, and to other transforms, such as

the Hartley transform or the DCT [8].
Here, we are interested in recursive algorithms for com-

puting time-frequency transforms, particularly the �nite
Zak transform and the Weyl-Heisenberg expansion. Since a
time-frequency space signal is generally known by its values
on a M � L lattice, where N = LM , it is natural to con-
sider a recursive algorithm, that computes time-frequency
transforms of signal segments overlapping by one or more
blocks of p0 = M samples. Such an algorithm for the case
of a single block overlap was recently proposed by Lou et

al [10]. In this work, we remove the single block overlap re-
striction, and develop a collection of general multi-block al-
gorithms, that allow to compute Zak transforms and Weyl-
Heisenberg expansions for the entire range of p values, i.e.
for 1 � p < L. Moreover, we propose an approach alterna-
tive to the one presented in [10] that yields a parallel set

of algorithms that are more eÆcient under the conditions
described in sections 3 and 4.

Denote by CN the N -dimensional space of N -tuples of
complex numbers, and set N = LM , where L and M are
integers. Take f0 2 C

N to be the i-th segment of f , and

f
p0

2 C
N to be the (i + 1)-th segment of f , delayed with

respect to f0 by p0 samples.
Take

p
0

= pM; 1 � p < L; (1)

so that M � p
0
< LM , and write f

0 and f
p0

as column
vectors
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75; f

0
r 2 C

M
; 0 � r < L; (2)

f
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2
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f
p0

0

...

f
p0

L�1

3
75; f

p0

r 2 C
M
; 0 � r < L; (3)

such that

f
p0

r = f
0
r+p; 0 � r < L� p: (4)

We will call fp
0

r the r-th block of fp
0

, and f0r the r-th block

of f0. Given conditions (1) and (4), we will call fp
0

the

p-block update of f0.
To compute the Zak transform and the Weyl-Heisenberg

expansion of fp
0

given by (1-4) we will develop the Block
Recursive Zak Transform (BRZT) algorithms and the
Block Recursive Weyl-Heisenberg Expansion (BRWHE) al-
gorithms. The algorithms will be given in two 
avors, based
on a di�erent order of the recursive Zak transform algo-
rithm constituent operations: the block replacement and
the block shift. We will show that the two approaches lead
to di�erent trade-o�s in terms of computational complexity
and memory requirements. In e�ect, a complete framework
for computing recursive time-frequency transforms will be
developed, allowing user to select the optimal algorithm for
a given application (segment length N and number of over-
lapping samples N � p

0) and processing environment (clock
speed and memory size).

2. BASIC FORMULAS

Zak transform is a fundamental tool in time-frequency anal-
ysis. It is essential in developing algorithms for comput-
ing Weyl-Heisenberg expansions, ambiguity functions, and



Wigner distributions [11]. It also plays an important role in
signal extrapolation and �ltering [5]. It is intimately related
to the Fourier transform and, via the real Zak transform,
to the Hartley transform [3].

The �nite Zak transform (ZT) F of a signal f is de�ned
as [13]

F (a; b) =

L�1X
r=0

f (a+ rM)e
2�irb=L

; 0 � a < M; 0 � b < L;

(5)
where a and b are usually interpreted as the time and fre-
quency variables, respectively. A detailed treatment of
ZT is given in [7]. Here, we are interested mainly in the
shift/periodicity properties of ZT.

Take p0 = pM; 1 � p < L, and q
0 = qL; 1 � q < M .

The Zak transform F (a; b) satis�es the following relations

F (a+ p
0

; b) = e
�2�ipb=L

F (a; b); (6a)

F (a; b+ q
0

) = F (a; b); a; b 2 Z: (6b)

The frequency shifted transform is identical with the origi-
nal transform, while the time shifted transform is obtained
by multiplying all values of the original transform by a con-
stant in time phase factor. It follows that F is N -periodic
in each variable and is completely determined by its values
(a; b) 2 [0;M) � [0; L). The time shift relation (6a) is the
basis of the recursive algorithms developed in this paper.

3. BLOCK-RECURSIVE ZAK TRANSFORM

Consider f0 and f
p0

as in (1-4). The �nite Zak transforms

F
0 of f0 and F

p0

of fp
0

are

F
0
(a; b) =

L�1X
r=0

f
0
r (a)e

2�irb=L
; (7)

and

F
p0

(a; b) =

L�1X
r=0

f
p0

r (a)e
2�irb=L

: (8)

Here and throughout the rest of the paper (a; b) 2 [0;M)�
[0; L), unless otherwise indicated. Suppose we want to com-

pute F p0

, and F 0 is known. Since L�p terms of r.h.s. of (7)

and (8) involve same blocks, we can express F p0

in terms of

F
0 and p blocks of fp

0

r .

For example, we can write F p0

as

F
p0

(a; b) =PL�p�1

r=0
f
0
r+p(a)e

2�irb=L +
PL�1

r=L�p
f
p0

r (a)e2�irb=L: (9)

Changing limits of both summations and separating their
common factor, we have

F
p0

(a; b) = e
�2�ipb=L

�

�[
PL�1

r=p
f
0
r (a)e

2�irb=L +
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f
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Adding
Pp�1

r=0
f
0
r (a)e

2�irb=L to the �rst term of (10) and

subtracting it from the second term of (10) yields

F
p0

(a; b) = e
�2�ipb=L

�

�[F 0(a; b) +
Pp�1

r=0
(f
p0

L�p+r(a)� f
0
r (a))e

2�irb=L]: (11)

Denote by H0;p0

the Zak transform of the di�erence be-

tween the last p blocks of fp
0

and the �rst p blocks of f0,
i.e.

H
0;p0

(a; b) =

p�1X
r=0

(f
p0

L�p+r(a)� f
0
r (a))e

2�irb=L
: (12)

Then the Zak transform F
p0

can be computed as the time

shift of Kp0

(a; b)

F
p0

(a; b) = K
p0

(a+ p
0

; b) = K
p0

(a; b)e
�2�ipb=L

; (13)

where

K
p0

(a; b) = F
0
(a; b) +H

0;p0

(a; b): (14)

The algorithm to compute F p0

via (13-14) proceeds as fol-
lows

BRZT1 algorithm

� Compute H0;p0

(a; b).
This operation requires (p�1)(N�M) multiplications
and pM additions.

� Compute Kp0

(a; b) = F
0(a; b) +H

0;p0

(a; b).
This operation requires N additions.

� Compute Kp0

(a+ p
0
; b).

This operation requires N �M multiplications.

The overall computational complexity of the BRZT1 algo-
rithm is p(N �M) multiplications and N + pM additions.

Alternatively, we can write F p0

as

F
p0

(a; b) = F
0
(a+ p

0

; b) +H
0;p0

(a+ p
0

; b); (15)

where

F
0
(a+ p

0

; b) = F
0
(a; b)e

�2�ipb=L
(16)

and

H
0;p0

(a+ p
0

; b) = H
0;p0

(a; b)e�2�ipb=L

=

p�1X
r=0

(f
p0

L�p+r(a)� f
0
r (a))e

2�i(r�p)b=L
: (17)

The algorithm to compute F p0

via (15-17) proceeds as fol-
lows

BRZT2 algorithm

� Compute F 0(a+ p
0
; b).

This operation requires N �M multiplications.

� Compute H0;p0

(a+ p
0
; b).

This operation requires p(N�M) multiplications and
pM additions.

� Compute F p0

(a; b) = F
0(a+ p

0
; b) +H

0;p0

(a+ p
0
; b).

This operation requires N additions.

The overall computational complexity of the BRZT2 algo-
rithm is (p + 1)(N �M) multiplications, or N �M more
than the BRZT1 algorithm, and N + pM additions. In
terms of complex multiplications the BRZT2 algorithm is
more eÆcient than the direct approach, providing p + 1 <
NlogL=(N �M).



4. BLOCK-RECURSIVE WEYL-HEISENBERG
EXPANSION

Consider f0 and f
p0

as in (1-4). The Weyl-Heisenberg ex-

pansion (WHE) of f0 is given by

cm;n(F
0
) =

M�1X
a=0

L�1X
b=0

F
0(a; b)

G(a; b)
e
�2�i(ma=M+nb=L)

: (18)

Suppose (18) is known, and we want to compute the WHE

of fp
0

,

cm;n(F
p0

) =

M�1X
a=0

L�1X
b=0

F
p0

(a; b)

G(a; b)
e
�2�i(ma=M+nb=L)

: (19)

Comment: The quotients F
0(a; b)=G(a; b) in (18) and

F
p0

(a; b)=G(a; b) and (19) require that either G(a; b) 6= 0

for all (a; b) 2 [0;M) � [0; L), or the zero sets of F 0(a; b)

and F
p0

(a; b) contain the zero set of G(a; b). When neither
of the above conditions is met, the critically-sampled WHE,
does not exist. A detailed treatment of the impact of zeros
of G(a; b) on existence and construction of WHE is given in
[2] and [6].

The direct algorithm to compute cm;n(F
p0

) proceeds as
follows

WHE algorithm

� Compute F p0

(a; b).
This operation requires NlogLmultiplications and ad-
ditions.

� Compute the quotient F p0

(a; b)=G(a; b).
This operation requires N multiplications.

� Compute cm;n(F
p0

) by taking a 2D DFT of

F
p0

(a; b)=G(a; b).
This operation requires NlogN multiplications and
additions.

The overall computational complexity of WHE algorithm
is N(logN + logL+1) multiplications and N(logN + logL)
additions.

Consider f0 and f
p0

as in (1-4). A more eÆcient algo-

rithm to compute cm;n(F
p0

) is obtained by employing one
of the formulas for computing the BRZT.

For example, set

cm;n(K
p0

) =

M�1X
a=0

L�1X
b=0

K
p0

(a; b)

G(a; b)
e
�2�i(ma=M+nb=L)

; (20)

where Kp0

(a; b) is as in (14). Then

cm;n(F
p0

) =

M�1X
a=0

L�1X
b=0

K
p0

(a+ p
0
; b)

G(a; b)
e
�2�i(ma=M+nb=L)

=

M�1X
a=0

L�1X
b=0

K
p0

(a; b)

G(a; b)
e
�2�i(ma=M+(n+p)b=L)

= cm;n+p(K
p0

) (21)

The algorithm to compute cm;n(F
p0

) proceeds as follows

BRWHE1 algorithm

� Compute F 0(a; b) = K
0(a + p

0
; b), where K0(a; b) is

given by the previous recursion.
This operation requires N �M multiplications.

� Compute Kp0

(a; b) via the BRZT1 algorithm.
This operation requires (p�1)(N�M) multiplications
and N + pM additions.

� Compute the quotient Kp0

(a; b)=G(a; b).
This operation requires N multiplications.

� Compute cm;n(K
p0

) by taking a 2D DFT of

K
p0

(a; b)=G(a; b).
This operation requires NlogN multiplications and
additions.

� Compute cm;n(F
p0

) by shifting cm;n(K
p0

) in n by p.

The overall computational complexity of the BRWHE1 al-
gorithm is N(logN + p + 1) � pM multiplications and
N(logN+1)+pM additions. The algorithm requires storing
G, or N data points.

Alternatively, utilizing the second realization of F p0

, we
can obtain (19) by computing the WHE of each of the two
terms in (15) separately. First, we compute the WHE of

F
0(a+ p

0
; b)

cm;n[F
0
(a+ p

0

; b)]

=

M�1X
a=0

L�1X
b=0

F
0(a+ p

0
; b)

G(a; b)
e
�2�i(ma=M+nb=L)

=

M�1X
a=0

L�1X
b=0

F
0(a; b)

G(a; b)
e
�2�i(ma=M+(n+p)b=L)

= cm;n+p(F
0
): (22)

Next, we will compute the WHE of H0;p0

(a; b)

cm;n(H
0;p0

) =

M�1X
a=0

L�1X
b=0

H
0;p0

(a; b)

G(a; b)
e
�2�i(ma=M+nb=L)

: (23)

Set

h
0;p0

r (a) = f
p0

L�p+r(a)� f
0
r (a); 0 � r < p; (24)

so that

H
0;p0

(a; b) =

p�1X
r=0

h
0;p0

r (a)e
2�irb=L

: (25)

Then (23) can be expressed as

cm;n(H
0;p0

)

=

M�1X
a=0

p�1X
r=0

h
0;p0

r (a)e
�2�ima=M

L�1X
b=0

1

G(a; b)
e
�2�i(n�r)b=L

=

M�1X
a=0

[

p�1X
r=0

h
0;p0

r (a)Xr;n(a)]e
�2�ima=M

; (26)

where

Xr;n(a) =

L�1X
b=0

1

G(a; b)
e
�2�i(n�r)b=L

(27)



is computed o�-line. Since the WHE of H0;p0

(a+ p
0
; b),

cm;n+p(H
0;p0

)

=
PM�1

a=0

PL�1

b=0

H0;p
0

(a+p0;b)

G(a;b)
e
�2�i(ma=M+nb=L)

; (28)

is given by a shift of cm;n(H
0;p0

) in n by p, the WHE of

F
p0

(a; b) can be obtained by adding (22) and (28)

cm;n(F
p0

) = cm;n+p(F
0
) + cm;n+p(H

0;p0

): (29)

The algorithm to compute cm;n(F
p0

) proceeds as follows

BRWHE2 algorithm

� Pre-compute Xr;n(a).
This operation requires pN(logL + 1) multiplications
and pNlogL additions.

� Compute h0;p
0

r (a).
This operation requires pM additions.

� Compute Yn(a) =
Pp

r=1
h
0;p0

r (a)Xr;n(a).

This operation requires pN multiplications and (p �
1)N additions.

� Compute cm;n(H
0;p0

) by taking a L M -point 1D
DFT's of Yn(a); 0 � n < L.
This operation requires NlogM multiplications and
additions.

� Compute cm;n+p(H
0;p0

) by shifting cm;n(H
0;p0

) in n

by p.

� Compute cm;n+p(F
0) by shifting cm;n(F

0) in n by p,

where cm;n(F
0) is given by the previous recursion.

� Compute cm;n(F
p0

) = cm;n+p(F
0) + cm;n+p(H

0;p0

).
This operation requires N additions.

The overall computational complexity of the BRWHE2 al-
gorithm is N(logM+p) multiplications and N(logM+p)+
pM additions. The algorithm requires storing Xr;n(a), or
pN data points. For p = 1 the BRWHE2 algorithm is iden-
tical with the procedure given by Lou et al [10].

The BRWHE1 algorithm is more eÆcient than the WHE
algorithm for p < NlogL=(N � M). The BRWHE2 al-
gorithm is more eÆcient than the WHE algorithm for
p � logN , and it is always more eÆcient than the BR-
WHE1 algorithm. For example, for p = 1 and L = M ,
the BRWHE1 algorithm requires about 2=3 multiplications
required by the WHE algorithm, while the BRWHE2 al-
gorithm requires about 1=3 multiplications required by the
WHE algorithm, given thatN is suÆciently large. However,
the BRWHE2 algorithm requires more memory than the
BRWHE1 algorithm. For example, for p = 5 and N = 220,
the BRWHE1 algorithm requires N memory locations and
26N multiplications, while the BRWHE2 algorithm requires
5N memory locations and 15N multiplications. In e�ect,
the BRWHE1 algorithm is more eÆcient in terms of com-
putational complexity, while the BRWHE2 algorithm needs
less memory allocation, has a simpler data
ow, and does
not require pre-computations.

5. SUMMARY

In this work we have developed a collection of algorithms
for computing block recursive Zak transforms and Weyl-
Heisenberg expansions. The algorithms are based on two

fundamental implementations of the Zak transform of the
time-evolving signal. The �rst implementation is obtained
by application of block replacement followed by block shift
to the Zak transform of the initial sequence, and yields
BRZT1 and BRWHE1 algorithms. The second implemen-
tation is obtained by reversing the order of operations, and
yields BRZT2 and BRWHE2 algorithms.

In the case of the Weyl-Heisenberg expansion, the �rst
approach is advantageous in terms of memory requirements
and algorithm structure complexity, while the second block
recursive approach is more eÆcient in terms of multiplica-
tive and additive complexity. In the case of the Zak trans-
form, the two block recursive implementations have similar
computational complexity.

In future work we will explore the case of sample-
recursive time-frequency transforms, i.e., the case when
p
0 = pM; 1=M � p � 1, to obtain a complete framework
for computing recursive time-frequency transforms [4].
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