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ABSTRACT

An extension to adaptive signal subspace methods is pre-
sented, based on singular value decomposition (SVD) with
an online estimation of the noise variance. With this ap-
proach aiming at automatic speech recognition (ASR) in ad-
verse environmental conditions no speech detection has to
be performed. A comparison of different SVD approaches
and nonlinear spectral subtraction within ASR experiments
of different applicationsis conducted for weakly correlated
noise scenarios. Better performance in the case of signal
subspace speech enhancement with respect to both accuracy
aswell as robustness of parameter tuning are reported.

1. INTRODUCTION

The performance of commonly used speech recognizersis
affected by adverse environmental conditions. Suppression
of additive noise already during the feature extraction stage
is one important component in the development of robust
speech recognition systems. Conventional methods, work-
ing in the spectral domain, like Wiener filter and spectral
subtraction, encounter wide usage in speech processing and
recognition systems [1]. However, drawbacks are associ-
ated with such spectral subtraction type speech enhance-
ment approaches: (1) Spectral noise shape estimates haveto
be obtained during non-speech, noise-only, periods. There-
fore, reliable speech/non-speech detection isa crucia issue
for spectral subtraction, whilst mis-classification leads to
significant loss in performance. (2) “Musical tones’ due
to the subtraction process degrade the intelligibility as well
as the performance of automatic speech recognition (ASR).
(3) Parameters, like time-constants, over-subtraction-values
or target noise-floor usualy have to be tuned individually
for different environmental conditions. Thus, unique de-
fault settings for different applications always comprise a
trade-off.

Our study deals with an aternative approach located
in the time domain, subspace based speech enhancement,
which has been investigated and applied successfully re-
cently [2, 3]. The signa is embedded via delay coordi-
nates into an high-dimensional space and the goal isto find

aprojection of thesignal onto the clean signal subspace sup-
pressing additive noise components.

The paper isorganized asfollows: After ashort descrip-
tion of the general SVD approach, we present an agorith-
mic extension, allowing for an adaptive un-supervised es-
timation of SVD related parameters. Experimental results
under various additive noise conditions are presented for the
TIMIT mono-phonedecoding task, aswell asfor alargevo-
cabulary continuous dictation task.

2. SVD BASED SPEECH ENHANCEMENT

The observed signa y(t) is assumed to consist of a clean
speech signal z(t) and an additive noise part n(¢):

y(t) = =(t) + n(D). @

Toeplitz structured matrices A(t) of dimension (N + 1) x
(M + 1) are built from the signal amplitude a(¢) by intro-
ducing M delay coordinatesin an interval of length V:

a(t) . a(t — M)
At) = : : 2
a(t+ N) a(t+ N — M)

Therefore we can rewrite EQ. 1 in terms of Toeplitz matri-
ces:

Y(t) = X(t) + N() 3

In the case of Gaussian white noise, i.e. adiagonal correla-
tion matrix for N (t)

E{NT(#)N(t)} = o} 1, (4)

SV D based methods can be applied for signal enhancement.

WiththeSVD of Y (¢): Y = UXVT, ¥ = diag (0;),
different signal estimators X (t) depending on the cost func-
tion to be optimized have been proposed [3]:

X =vuGzvT, @ =diag(g;) (5)
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Thereby, the parametersy > 0 and 5; > 1/2 are associated
with constraints of the residual noise. The parameter %
represents the noise variance.

From the estimate X one obtains an estimate z(t) of the
signal by averaging over anti-diagonal elements of X [3].

3. ADAPTIVE ONLINE ESTIMATION OF THE
NOISE VARIANCE

The noise variance usualy is estimated during non-speech
periods, thus, reliable voice activity detection is required.
To avoid this, we propose the following adaptive procedure
to obtain an estimate for 0%, continuously:

The sqguared values of the singular values of the ob-
servation matrix Y are estimates of the eigenvalues of the
correlation matrix C'yy of the observation, o2 = \; with
Ai = EV of Cyy Sincethe correlation matrix is given as

Cyy =YTY =XTX + NTN = XTX + 021, (9

the corresponding eigenvaluesaregivenby A Y = AX + AN,
If we assume that the clean speech eigenvalues A X vanish
for indices large enough (i > C), the remaining part of
the eigenvalue spectrum can serve as the noise variance for
white noise (see Fig. 1 for a schematic sketch):

ok = AN =\ fori>C (10)

Thereforethe saturation val ue of the singular value spec-
trum represents an estimate of the noise variance o'%,. We
estimate the noise variance for each frame, by the following
iteration (starting with on = oar)

1 M

= i, with _ 9 - 11
oN M—C—f-l,zog oo—1>0-0on (11)

(2

smoothing by arecursivefilter,
on = (T -on+on)/(T+1) (12)

with athreshold # and atime constant 7'
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Fig. 1. Eigenvalue spectra A; of correlation matrices for
clean speech, white noise and noisy speech.

4. SPEECH RECOGNITION EXPERIMENTS
41. TIMIT

To evaluate the potential of the MV-SVD method experi-
ments have been performed on the context independent pho-
neme classification task TIMIT and comparisons to stan-
dard non-linear spectral subtraction (NSS) are drawn. The
baseline system contains a standard MFCC frontend work-
ing on 8kHz down-sampled data, delivering 24 component
feature vectors, including 12 delta features, on a 16msec
frame spacing. Recursive cepstral mean subtraction is en-
abled. Context independent phonemes are modeled by 5-
state left-to-right HMMs [4] with Laplacian mixture dis-
tributions, whilst the phone insertion penalty has been ad-
justed per experiment to obtain insertion rates around 10%
for sake of comparability with results published before. The
baseline performance of 63.7% accuracy for the clean 8kHz
case compares well to state-of-the-art publications dealing
with this task [5]. For the standard MV-SVD approach as
well as for the NSS tests an optimization of the enhance-
ment parametersindividually for each noise conditionsturned
out to be crucial in order to achieve best performance, while
for the adaptive MV-SVD agorithm a common parameter
set could be used.

In Table 1 results are summarized showing phone-accu-
racies achieved for various Gaussian white noise conditions.
Enhancement methods are applied during recognition only,
i.e. modelstrained under clean conditions are used through-
out the tests.

The results show the competitive behavior of the sub-
space methods compared to NSS. Whilethe plain MV-SVD



Condition Phone Accuracy (%)

no Enh. | NSS | SVD | SVD adapt.
SNR 6dB 21.70 | 24.89 | 23.67 35.45
SNR 12dB | 31.69 | 34.93 | 33.90 42.67

SNR18dB | 4290 | 46.86 | 44.40 45.09

Table 1. Experimental resultson TIMIT databases for arti-
ficially added Gaussian noise

cannot reach the NSS performance, the adaptive MV-SVD
outperformsthe spectral subtraction at low SNR conditions
significantly.

Still there remains a big performance gap to the clean
scenario and also to matched training/test scenarios, where
the three enhancement methods performed with no signifi-
cant performance difference.

4.2. LargeVocabulary

To further validate these findings comparisons of NSS, M V-
SVD, adaptiveMV-SVD and thevariants TDC/SDC of SVD
are investigated in a completely different ASR application.

4.2.1. Task

The task consists of a large vocabulary continuous speech
recognition task for English dictation with context depen-
dent phonemes, generalized by CART. Our test-set consists
of each five randomly chosen dictations from eight speakers
(6597 words) with resulting word error rates (WERS) vary-
ing (for 95% confidence) with &+ 1.2%. The sound fileswere
degraded by adding artificially white noise with a resulting
signal to noise ratio of approx. 8dB. The recognition exper-
iments are conducted with speaker-independent references
trained on clean data.

4.2.2. Comparison NSSand MV-SVD

With this setup the clean speech WER is given by 16.5%
and dropsfor the degraded signal (8dB SNR) to 73.5%. Ap-
plying NSS with parameter optimization for each speaker
49.7% WER were obtained.

Fig. 2 shows the WER in dependence of the assumed
noise variance oy obtained by applying the MV variant of
the SVD subspace method. The number of delay coordi-
nates was chosen as M = 28, the framewidth as N = 200.
A distinct minimum can be observed with a minimal WER
of 39.9%, well below the WER obtained by NSS.

For a fixed choice of the noise variance o n and vary-
ing the number of delay coordinates M, the corresponding
WERSs are plotted in Fig. 3. The WER decreases with in-
creasing number of delay coordinates. For dimensionslarge
enough, the WER saturates, i.e. further enlargement of the
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Fig. 2. WER as afunction of adjusted noise variance o .

subspace does not further improve the recognition perfor-
mance. Enlargement of the width of the frames did not
considerably alter the performance of the enhancement, i.e.
with N = 200 the saturation is already reached.
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Fig. 3. WER varying the number of delay coordinates M .

4.2.3. Adaptive SVD variants

The only free parameter remaining in the MV-SVD ago-
rithm, the noise variance o, can be estimated online, as
described in Sect. 3. Table 2 shows the resulting WERS in
dependence of the time constant of the recursive filter for
smoothing the noise variance estimation in the case of MV-



SVD speech enhancement.

T (frames) 0 10 20 50 | 100 | 200
WER (%) || 45.4 | 42.7 | 42.3 | 42.3 | 419 | 41.8

Table 2. Online estimation of o, variation of the time
constant of the recursivefilter, MV-SVD approach

For aconstant T' chosen large enough the WER is below
42%, still better than the spectral subtraction approach, and
only dlightly worse than the o x -optimized approach.

Finally, Figure 4 shows WERs for the more general vari-
ants of the adaptive SVD subspace approach depending on
one parameter each: the TDC approach with variations of
and the SDC approaches with variations of 3, and 5>. The
noise variance was estimated online with a time constant
of the recursive filter T = 100. Improvementsto the MV
variant can be observed, with the best performance (39.3%
WER) by the SDC1 variant and 5, = 3.
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Fig. 4. Variation of v for the TDC approach and varia-
tions of 3 for the SDC approaches, both with adaptive o n-
estimation

4.3. Dictation via Telephone

The MV-SVD subspace method was aso applied to real
world data: dictationsviatelephonewith arecognition based
on clean speech trained references with the same setup as
in Sect. 4.2 for 14 test speakers. The enhancement was per-

formed by the adaptive approach with time constant 7' = 100.

Tab. 3 shows some results with and without MV-SVD based
speech enhancement.

An improvement up to 17.2% relative is observed, in
cases of ho improvement the enhancement does not (or only

WER (%)
Spesker [ A[ B[] C | D | ... ] ar
noenhanc. || 85|97 | 219|282 | ... | 190
MVSVD || 8692|196 |234 | ... | 182

Table 3. WERSs for dictations via telephone with and with-
out adaptive MV SV D speech enhancement

insignificantly) degrade the performance. This is remark-
able, since the SVD approach assumes white noise degra-
dation, and still — also for this real world scenario —an im-
provement is present.

5. CONCLUSIONS

Our findings confirm results [6] of abetter noise robust ASR
performance with the MV-SVD approach compared to NSS
for weakly correlated noise scenarios. The main advantage
relies on its robust performance with respect to parameter
tuning. Especially the proposed adaptive approach needs no
speech detection, essentially no parameter tuning and out-
performs NSS in our applications.
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